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AC Steady-State Power

Goal
o Power in AC circuit
Represent the circuit in the frequency domain.
Average power, real and reactive power, complex power, power factor, rms
values
Maximum power transfer using matching network.

o Coupled inductor and/or ideal transformer
Represent the magnetically coupled coils in the frequency domain.
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Electric Power

= Controlling and distributing the energy is important.

= Why AC in transmission line?
o Easy to convert magnitude of voltage by coupled inductor (e.g. transformer)

=  Why high voltage AC in transmission line?
o Reducing loss in the transmission line.
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Instantaneous Power and Average Power

= Instantaneous power

p(r) = (1) i(1) »
= Average power - l
o Average power delivered to circuit. _
Figure 11.3-1

= Instantaneous and average power delivered to the circuit 11.3-1 at specific

time t
P =v0 i) mp =g po

Io
Integral of the time function over a complete period, divided by the period.
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Example 11.3-1 Average Power

= Find the average power delivered to a resistor R when the current through the
resistor is i(t), as shown in Figure 11.3-2.

T 0 T OT 1(s) —
Figure 11.3-2

2ep5*,  Department of Electrical and Computer Engineering, SNU
W&y Prof. SungJune Kim




Solution

= The current can be describe as

Iy
= —t 0<t<T
‘ST

= Instantaneous power is

= Average power is
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Instantaneous Power and Average Power

Suppose v(t) = V,,cos(wt + 6y),
Then, i(t) = I, cos(wt + 6;) (~ linear and steady state)

p(r) = v(t) i(z)

=V, [m cos(wt + 8y) cos(wt + ;) =

1 to+T
Pi= = / p(t)dt
1o

mlm

2

[cos(6y — 6;) + cos(Qwt + 6, + 6)]

Then, average power will be,

Vilm

P =
2

cos (Oy — 0;)
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Example 11.3-2 Average Power

The circuit shown in figure below is at steady state. The mesh current is
i(t) = 721cos(100t — 419) [mA]
The element voltages are
v (t) = 20cos(100t — 152) [V]
vp(t) = 18cos(100t — 412) [V]
v,(t) = 8.66c0s(100t + 499) [V]

Find the average power delivered to each device in this circuit
N UR(f) B

25 Q +
vs(1) = 20 cos (100¢ — 15°) V (ﬁ) 120 mH < v (2)

i(1)
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Solution

e b

Average power delivered is V& — T COS (QV — 81)

Average power delivered by the voltage source is

p - (20)(;).721)

cos(~15"— (—41")) = 6.5W

Similarly, Average power delivered to the resistor is 6.5W.

18)(0.721
p, = 490720

cos (—41" = (—41")) =65 W
o The average power delivered to any inductor is zero.

8.66)(0.721
p, = 860072

cos (49" - (—41")) =0 W
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Power for purely resistive circuits

= Phase of voltage and current of the
resistor is same.

= Instantaneous real power p(t)

current

V_ 1 .
p(t) = "é = [cos(8y — 6)) + cosQRuwt + 0, + 6,)

V I,
2

= Average power

— 21 + cosRwt + 26,)]

lem

2
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Power for purely inductive circuits

A current

= Phase of current lags by 90° compared
to phase of voltage.

= Instantaneous real power p(t)

V.
p(t) = T; ~[cos(6y — 6;) + cosQwt + 6; + 6y,
Vol . Vil .
== [cosRwt + 26, +909)] = — 5 [sin(2wt + 26,)]

= Average power

P=0
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Power for purely capacitive circuits
current
= Phase of current leads by 90° compared M\
to phase of voltage. }

= Instantaneous real power p(t) \/(\U/\UAUQUAY

V. I
p(t) = "; = [cos(8y — 6)) + cosQRuwt + 8; + HV)J

V. I
2
= Average power

VI
= [sin(Rwt + 26,)]

= [cosQwt + 26, — 909)] 7;
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Effective Value of Periodic Waveform

We want to change AC voltage (or current) to effective DC voltage (or
current) while average power remains still.

i ot

—_— —_—

The effective value is commonly called as root-mean-square (rms) value.
This Is equivalent to an effective DC value in terms of power computation.
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Effective Value of Periodic Waveform

= The effective value of voltage in circuit is
T

1
Vs = Vrms? _Tf v2dt
0

of sinusoidally varying current i(t) = I,,coswt,

T
1
S 12 costwtdt = 4 |- 1 + cos 2wt) dt —,f—\
S \/ / \/ ) (\/_l

= I rms
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Example 11.3-2 Effective Value

= Find the effective value of current for the sawtooth waveform shown in below

figure.
/ )

: I
e The current can be describe as j = ?mt 0<t<T

2

The effective value i 12‘1fT'2dt—1fTIMt2dt—IM Ly = 2
« The effective value is eff—TOl —TO(T) =3 T3

2ep5*,  Department of Electrical and Computer Engineering, SNU
W&y Prof. SungJune Kim




Instantaneous Power, Average Power, and
Complex Power

Suppose v(t) = V,cos(wt + 6y — 0;), i(t) = I,,, cos(wt)

Instant power

p(t) = v(1) i(2)
=V, L, cos(wt + 0y — ;) cos(wt) =
= P 4+ P cos(2wt) — Qsin (2wt)

I
= [cos(8y — 6)) + cosQRuwt + 8y — 8,)]

AVverage powers Real (Average) power Watt

P - % [ pat = szfm cos(6, —6,) P=V_1I_cos(6, —86)
VI .
0 = —2=sin(6, - ,) Reactive power VAR
Q - IJ?H.S‘ rms 511'1((9 9 ) (\/Olt_AmD
Reactive)
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Instantaneous Power, Average Power, and
Complex Power for Circuit Elements

= Resistive circuits

M

current Current is in the same phase of voltage
/\J%f p(t)=P+ Pcos2wt—Qsin 2ot
0 =0,
cos(@,—6)=1, sin(6,—6.)=0
(1) :‘\P:Jk P cos 2ot
>
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Instantaneous Power, Average Power, and
Complex power for Circuit Elements

= Inductive circuits

A current
p(t) =P+ Pcos2amt —Qsin 2ot

Current lags voltage by 90°

6, =6.+90°
cos(@,—6)=0, sin(@ —6)=1
(1) = Opin 20t

- Average power is zero. Therefore, there is no energy conversion.
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‘ Instantaneous Power, Average Power, and
Complex Power for Circuit Elements

= Capacitive circuits

Current
p(t)=P+ Pcos 2wt — Qs 2wt

Current leads voltage by 90°
0. =6,+90°
cos(é? —-60.)=0, sin(f,—6.)=
p(t) =| Qtsm 2ot

W

- Average power is zero. Therefore, there is no energy conversion.
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‘ Complex Power Calculation

= Complex power in terms of average power

S=P+j0 P[W], O[VAR], S[VA]
|S| :apparent power, VA(volt —amps)

= Solving S (complex power),

VI Vi .
S :%cos(ﬂ. ~0,) +.f%sm(9v —0)

VI, @)

2

_ J(6,-6) _ 6, —jd _
=V 5l € =V el e’ =V g

#

Re (S)
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Complex Power

Power calculated in the frequency domain.

o Assume linear circuit with sinusoidal input is at steady state, all the element
voltages and currents will be sinusoidal with same frequency as the input.

®)=1In /0 and V(o) =V, /0y

Complex power delivered to the element is defined to be

. Vm 9 ]m _9
S:V21 :( v)g L) :Vlglm By

Vinlm
2

The magnitude of S is called apparent-power.

S| =
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Complex Power

Complex power S can be represented as,

Vinlm R -
= cos (Oy — 6y) +J

S =P +j0

P (real part of S): average power
VmIm

S

sin (QV — 6])

P =

cos (Oy —0;) =v. I _ cos(@y—0))

Q (imaginary part of S): reactive power

Vinlm
2

Q = sin (9\[ — 91) =V I Sin(ey — 01)

rms-rms
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Complex Power

= Units of the average power are watts, while units of complex power are
volt-amps(VA), and the units of reactive power are volt-amp reactive
(VAR)

RELATIONSHIP USING RELATIONSHIP
QUANTITY PEAK VALUES USING rms VALUES UNITS
Element voltage, v(1) v(t) = Vi cos (wt + 0y) V(1) = Vims V2 cos (ot + Oy) v
Element current, i(z) i(r) = Imcos(wt + O) i(t) = Ims V2 cos (wt + 0;) A
Complex power, S S = % cos (By — 0;) S = VimsIims cos (Oy — 6y) VA

Vil +jVmsIrms sin (By — 0)
+j—“é ™ sin (Oy — 0))

o lem |S‘ = VI‘IHSIITTIS VA
Apparent power, |S| S| = )
Vil =V. — 0
Average power, P P=- I; Zcos(Oy — 0r) P = Vouslouacos(by = b1) W
Vil — V. ; -
Reactive power, O Q= 1; - sin(Oy — Or) 0 = Vomslwssin{fy — br) VAR

Department of Electrical and Computer Engineering, SNU
Prof. SungJune Kim




‘ Complex Power in terms of impedance
(alternate forms)

= Circuit in time and frequency domain.

. | ity = 1, cos (i + 0,) X b 1@) = 1701

v(t) = V,,, cos (ot + By) V(o) = VyelfV

(a) (b)

Vin /0 n
Z(w) = Viw) _ v_Y /Ov — O

(o) 1,/0; Inm

Z(w) = ? cos (Oy — 0y) —I—j? sin (Oy — 0y)

m m

= Think about the power for each electric components (resistor, capacitor,
inductor) by their impedance.
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Complex Power in terms of impedance
(alternate forms)

Complex power can be expressed in terms of impedance

V";m cos (Oy — 01) +J Vmlm sin (Oy — 0y)

Imz Vm . Imz Vm .
= (T)I—COS(HV —6;)+] (7) —sin(6y — 6;)
m 2 m

I
:(1”’2"—2)Re(2)+j =t m(2)

= (Irmsz)Re(Z) + j(lrmsz)lm(z)

S —

VITl . VITI .
Z(w) = 7 cos (Oy — 0)) +jl— sin (Oy — 0;)

Average power delivered to the element is

2ep5*,  Department of Electrical and Computer Engineering, SNU
W&y Prof. SungJune Kim




Example 11.5-1 Complex Power

Q

The circuit shown in below consists of a source
driving a load. The current source is i(t) = +

1.25c0s(5t-15°) [A] i(1) (T) v (1) R
What is the value of the complex power delivered
by the source to the load when R=20ohm and L = B

3H? N

What are the values of the resistance R and source load

inductance L, when the source delivers
11.72+j11.72V A to the load?
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Solution (1/2)

Represent the circuit in the frequency domain where I = 1.252 — 152 [A]

+
'[wLR
(1 Vv R joL 7 = _JwLi
CD B R + jwR
sou?ce load
(a) Find complex power.
7= 3% — 12/53 0ohm

20+j15
V=IZ=(1.252 — 15°)(12 £ — 53°) = 152382 [V]

§ = = USSSRUL24IS) 9375 £53°[VA]
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Solution (2/2)

(b) Find R, L at given power.

. VI v 2S 2% 16.57245° 2659 1302 [V
= —— = = = = . 0
2 I 1.25,15°¢ V]

Equivalent impedance

V.  26.52 230° joLR
7 =— = 21.21 £45° [ohm] = ————
R +jwR

[ 1252 —15¢°

R =30 [ohm], L = 6 [H]
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Complex Power

Complex power is conserved. Vil

Vka all elements all elements
— =0
2 &) :

V. I
all KK): z Q0 = 0

elements I m( >

all elements all elements

o The total complex power supplied by the source is equal to the total
complex power received by the other elements

V.1, VI,
S(;rces % B Z %

other
elements
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Example 11.5-3 Complex Power

= Verify that complex power is conserved in the circuit below when v,=100cos1000t
[V].

R=10Q L=20mH

~C =100uF
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Solution (1/2)

Verify total complex power supplied by the source is equal to the total complex power
received by the other elements

V.I, V.I,
,\'(;3.\‘ % N Z %

other
elements

Find V and | for each element

Vs(w) = 1002£0[V]

Vs(w
[(w) = (@) = 7074~ 45 [A]
R+](1)R—]R

Then,
Vo(w) = RI(w) = 70.72 — 45[V]
V,(w) = jwLl(w) = 141.4245[V]

V() = —j%[(a))70.74 — 135[V]
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Solution (2/2)

Equate the complex power from the voltage and current.
o Source

" =353.5,452 [VA]

|4

¢ v
2

o Other elements

S p="5"=250,0° [VA]

S, = L2 =500290° [VA]

S (==5-=2502 — 90° [VA]

<
*

S, =353.52452, Sp+S,+S,=353.5245°
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Power Factor (pf)

Average power absorbed by the element can be represented as pf.
Vinlm

2
mTIm : apparent power

P= cos (Oy — Oy)
v

The ratio of the average power to the apparent power is called power factor

(). Vil

pf = cos(6, — 6,) , (8, — 6,): power factor angle P = 7 pf

lagging or leading
o Leading: 6y — 6; <0
o Lagging: 8, —6; >0

Power factor refers transmission 10ss.
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Example 11.6-1 Parallel Loads

A customer’s plant has two parallel loads connected to the power utility’s
distribution lines. The first load consist of 50 kW of heating and is resistive. The
second load is a set of motors that operate at 0.86 lagging power factor. The motors’
load is 100 KVVA. Power is supplied to the plant at 10,000 volts rms. Determine the

total current flowing form the utility’s lines into the plant and the plant’s overall
power factor.

o) = [S] =100 kVA i) = P =136 kW
S pf=0.86 S V. =10ky | pf=0.94
A coswt lagging A cosot ki lagging
I
R L
2 2
Power plant ~ Transmission line  Customer’s load Power plant ~ Transmission line Customer’s load
(a) (b)
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Solution

+

vl =
A cosar

P =50 kW

= Determine total complex power

o Power at resistive load (S,)

Sl — Pl — 50 [kW] Power plant ~ Transmission line  Customer's load

(a)
o Power at 0.86 lagging load (S,)

sl=100km] [ =145 P=136 kW
pf=086 i “ V= 10kV | pf=0.94
lagging Acosot lagging
]
RL
2 2
Power plant ~ Transmission line  Customer's load
(b)

S, = |S,|26, = 100cos™(0.86) [V] =100+ + 30.7° [kV A]

o SumofS;andS,
§S=8,+S5,=145.2220.6° [kV A]
o Calculate pf
pf = cos(20.6°) = 0.94 lagging
= Find current from the calculated power

V.1
|S| = % = Vrms Irms / _ 145.2k _
rms 10k

14.52 [A]
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Corrected Power Factor

Power plant supply electric power to the customer through transmission
line. It is essential to minimize the loss at the transmission line.

Power loss at transmission line as a function of pf.

R, L,
2 2 R
O O
v(r) = A cos wr w L E> Vw) =A/0° e
O O
R, I
2 2

joL

R, Ly

2 2
Power plant Transmission line  Customer’s load Power plant Transmission line  Customer's load
Impedance of the transmission line Zjnel®) = Ry + jwL,
I 2 I 2 2P
: Pine=2Re(Z}) = 2R +~— I,=
Average power absorbed by the line ine= 5 RE(Zime) =5 Ry mov,pf

Piine= 2 (V:pf) ’Ry
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Corrected Power Factor

Power loss at transmission line as a function of pf.

P2 ()R,

Increasing pf will reduce the power absorbed in the transmission line.

o If, pfis 1, then load should appear resistive. (6,= 6;) ,p
o If pf becomes small, power loss at the line becomes large. I = V_pf

Add a compensating impedance (Zc(w)) to make pf close to “1’.
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Corrected power Factor

Add compensating impendance Zc(w) parallel to the Z(w)

! jo —
2 2
Power plant Transmission line Customer’s load

Add Zc so the phase of current I, (w) (= I-(w) + I(w)) is equal to phase of
voltage V¢(w).
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Corrected power Factor (pfc)
Compensating impedance:

V(@ = A/0°

Power plant Transmission line Customer’s load

Z
. . P
o Zs(w): reactive element, since we want Z- to absorb no average power.

- 7. o
Zp = (ZpllZ) —Z+ZC—RP + jXp = Z206)p

o Angle of power factor is equal to angle of Zp.
pf = cos(8, — 0,) =cos(0 — (—0,)) = cos(0))
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Corrected power Factor (pfc)

Find corrected power factor using Zp.

X
pfc = cos Op = cos (tanl RP>

P

Find the compensated impedance at given corrected power factor.

R* + X

Xc =
© 7 Rtan (cos! pfc) — X

—> Textbook page 498, 499.
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Example 11.6-2 Power factor correction

A load as shown figure below has an impedance of Z = 100 + j100 ohm. Find the
parallel capacitance required to correct the power factor to (a) 0.95 lagging and
(b)1.0. Assume that the source is operating at w = 377 rad/s.

Transmission

line current
_C ot
Power T $ T Il
v +> Customer’s 7 Parallel 7 | Load
CRIHPaTy TeX e terminals I limpedance
generator i
_C ", l
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Solution

DA Olﬂ
S S
a

R* +X° —j
R tan (cos™! pfc) — X  oC

Determine compensating impedance Xc =

5 pfc=0.95 X, =—-2979 [ohm] - C = 8.9 [uF]

o pfe=1 X, = —200 [ohm] - C = 13.3 [uF]

pf 2l 2= 0|=otH =D
o &F2f phaseE F 0t

v v Xc 1 .
S S —Aac Xc? ' 200
0, =t
jXc 100+ 100 (200 (XCZ * 200) = 6 = an T
200
a) pfc =0.95
cos(By —0;) =095 -6, —0;, =0—0; =cos™1(0.95) » Xc = —297.9 ohm
b) pfc =1

cos(@y —0;))=1 -0, —60,=0—0;, =—60; =cos (1) » Xc = —200 ohm
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The Power Superposition Principle

Circuit with two or more sources.

o Superposition principle applies to current and voltage.
o Does it applies i In oower?

J‘? (1)

(a)

I=1+ 1
17 R (T, ., Zero only if sources
P=_ [ pdt=_[ (i{+i3+2ii)dt :
T/o g T/o 102+ 200) have different
R [T R [T 2R [T -
JO J0O JO

P=P +P

Power superposition applies only if the sources have different frequencies.
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Example 11.7-1 Power Superposition

The circuit in figure below contains two sinusoidal sources. To illustrate power
superposition, consider two cases:

a0 (1) VA(t) = 12cos3t [V] and Vg(t) = cosat [V]
0 (2) V() = 12cos4t [V] and Vg(t) = cosat [V]
Find the average power absorbed by the 6 ohm resistor.

i)

—_—

60 2H
valt) =12 cos ant V e o vgle) = 4 cos wyt V

(a)
iy(1) is(r)

60 2H 60Q 2H
valr) vglt)

(b)

1y () 1o(w)

60 j2a, 60 j2m,
V(o) Vglw)
(c)
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Solution

= (@) Find the average power using power superposition.

a%xz)(i 6W . P = Eli’"”—‘—:’—6 0.48 W

) ‘6+J’3‘d P:P1+P2

B =

P=P+P,=648 W

= (b) Find total current and calculate the average power.

v(t) =v (t)+vg(t) =8cos 4t

(8ﬁw-)
ﬁ*ia

P = 6=192W
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The Maximum Power Transfer Theorem

Maximum power transfer in a sinusoidal steady state circuit containing
reactive impedance

@)

Z, =R, + jXL
1o I

Fa
Nt

Average power delivered to the load is

V, V. I 2 IV.I2R, /2

I = = . p = =
Z.+ZL (Re+jx0)+RL+jx) P53k (R, +R)?+ (X, + X,)?
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The Maximum Power Transfer Theorem

To maximize P
o X+X, can be eliminated by setting X, =-X;
VPR, /2
(R, + RL)?

o The value of R, that maximize P is determined by taking the derivative dP/dR,
and setting it to zero. P maximize at R =R,

P maximizes when Z, =Z.*
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Example 11.8-1 Maximum Power Transfer

Find the load impedance that transfers maximum power to the load and determine
the maximum power delivered to the load for the circuit shown below.

5 — j6

10/0° vCi) Z

2ep5*,  Department of Electrical and Computer Engineering, SNU
W&y Prof. SungJune Kim




Solution

= Select Z, to have complex conjugate of Z,

Z, =7, =5+ j6 [ohm]

= Maximum power delivered to the load

1020
['= = [A]
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Coupled Inductors

Coupled inductors, or coupled coil, are magnetic devices that consist of
two or more multiturn coils wound on a common core.

Current and voltage relation in coupled coil.
(in terms of inductance and/or number of turns of coils)

-

Prof. SungJune Kim

Cross-sectional
area A ™
~

L;, L,,: self inductance
L.,, L,;: mutual inductance
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Coupled Inductors

Self inductance and mutual inductance

o Sinusoidal current in coil 1 - Magnetic field induced by coil 1 (determined by
self inductance L,) = Induced magnetic field at coil 2 = Induced current as
well as voltage in coil 2 (determined by Mutual inductance M)

d I=] self inductance
i (Ol 7212 8F= &)  i#j mutual inductance

if
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Coupled Inductors: Self and mutual inductance

= Self inductance and mutual inductance
o Self inductance

¢ = c1N i
dt;b d . Qdil
—N;— =N;—(ciN = cINT7T—
151 ldt ldl‘(CI 111) C1 s

L] = ClN%

o Mutual inductance qualitatively shows how two coils interact.

2 gy T MR e N

NN, \ > M2
LiLy = (ciN}) (2N3) = cica(NiN2)* = ( - kl 2> 3

M
k = k: coupling coefficient 0<k <1
VI, Ping =5=
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Coupled Inductors

= Dot convention
o 1s used to indicate winding direction.
o affects the sign of induced voltage.

V =Vself +V

_ _ induced
i;(2) (t}
—1 M, di di
’ V1 = L] : -+ M—2
v <L, L, v,(1) » dt dt
_ dip di
Vo =L,—+M—
(a) dt dt
i1(1)
-~ diy di
R ‘ b M
Ul(f) L, L, Ug(f
di di
] v=L——M—
d dt




Coupled Inductors

= Equivalent circuit of coupled inductors using dependent sources

L, (1)

i1(1) i) :
M
+ ¢ * o+
«—>
v1(6) Ly L, v,(1) v
(a)

A\ :jcoL111 +]COM I,
A\ :jCOLQIQ —|—j00M I

(b)
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Coupled Inductors

= Voltage across each coil , _

zl(t) l_;g(f)

((::;LCuur::te% vy () L, L, va(0) Cl(rlgglf})z I = 2 - v
(Vo) (tats = 4%) + o L1 Z2))

Primary Secondary
(a) For ideal transformer, M2=L,L,
,ra)M
/L,
Vo, =741, =,/—V
V1<> q joL, joL, q |:| g 2% Ly 1
2
(b) b _M_p
L, N
o The ratio of voltage across each coil
IS same as the ratio of turns of each Vo =nV,

coil.
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Example 11.9-1 Coupled Inductors

= Find the voltage v,(t) in the circuit shown below.

i1(1) io(f)

o 5% R i -t
MA——5 2H

+—

+

5 cos (4t + 45°) V (t) v1(0) 4H 3H v,(1) §12 Q

e
W

Primary Secondary

(a)
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Solution

= Represent the circuit in the frequency domain and express the coil voltages.

8 Il |2

V, = j16l, + j8lI,

v, =j8l, +j12I, e

Primary Secondary

: : (b)
= Write mesh equations for each mesh

5245 =81, + V,

= Solving for V, gives

V, =1.656239 [V] - v,(t) = 1.656 cos(4t + 39) [V]
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Example 11.9-2 Coupled Inductors

The input to the circuit shown in figure below is the voltage of the voltage source,

v,(t) = 5.94 cos(3t + 140) [V]
The output is the voltage across the right-hand coil, v,(t). Determine the output

voltage v,(t).

5Q 4 H

VVV T 2
o0 () 2H —=<5H vy
* o
(a)

2ep5*,  Department of Electrical and Computer Engineering, SNU
W&y Prof. SungJune Kim




Solution

= Represent the circuit in the frequency domain and express the coil voltages.

5Q jlze
Veoin  J12I + j6I NNA—% YT L °
V,z J151 + j6I
coil2 _J J Vo) () 6Q —= 2150 V(0
(o) A B
= Write mesh equations °
(b)

51 + (j12 +j6)I + (j15 + j6)I — 5.942140 = 0
= Solving for I gives

[ =0.151257 [A]

= Solving for Vg,

V, = j151 + j6I = 3.172147 [V] » v0(t) = 3.17(3t + 147) [V]
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The Ideal Transformer

Coupling coefficient is ‘1. primary  secondary
il il
Voltage and current NN ilff)' pi
n= —
o Time domain (Turn ratio) oM N
N> N, v,(1)
) = —vi(t) i1(t) = ——ir(t :
va (1) val()ll() Nllz() ]
) |deal
o Frequency domain (a)
N, N,
V,=—V, I, =——"1I
2 Nl 1 11 Nl 2

Ideal transformer modeled using dependent source.

i (1) is(1)

(b)
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The Ideal Transformer

Power loss in ideal transformer
o Lossless
o Zero complex power, zero average power, zero reactive power.

Load impedance seen at primary coil

(w) )
."\'rl . "\1"2

Circuit 1 | ‘ ‘ Z(w) Circuit 1 | V() Z, () = {Nl-]p Z(w)

(a) (b)
o Primary coil is a source, secondary coil has a load! = Source in the primary
coil operate load in the secondary coil even though there is no connection.

o Load impedance Z(w) can be seen as n’Z(w) at primary coil. = Actual load
impedance has scaled by a factor of n2 when connecting ideal transformer

Department of Electrical and Computer Engineering, SNU
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Impedance matching

Load impedance seen at primary coil

A Z[0A = LA
\%
I] 1:a I; 7 =L
Z, [=—0—> 00— in
+ ., 1
v v, ” z,| =2 @z 2
5 _ . Vl
o ot V, = joMl, = joM —
ideal JoL,
=aV,
: v
e, 7z —-a 1V _Z
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Example 11.10-1 Maximum Power Transfer

Often, we can use an ideal transformer to represent a transformer that connects the
output of a stereo amplifier V, to a stereo speaker, as shown in figure below. Find
the value of the turns ratio n that is required to cause maximum power to be
transferred to the load when R, =8 ohm and Rg=48 ohm.

|deal
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Solution

= Maximum power transfer is achieved when Rg = R, . Find the R, seen at primary coil.

AT TR

= Find n which satisfies Rg = R, .

R, 8 o1
N, = V6N,
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Maximum Power Transfer_0il Al (Pf.

- 2| cellular telephone antennaZ

Oled Ol

=/ O

- 2500 20 M0| WL TE sl2YS Mt

ve(t) = A cos (1)
A=10V
w =27 x 10°

R.=1Q Lg=1uH

22 A)

-

O A= 10+56.28 Q O|Ch.

L = 10uH

Fa
L

Source

Matching
network

Z. =R +joL =1+ j2710° x10° =1+ j0.628

ol
=]

Jy
ro
=
x
HT

Q

Cr—s

o

Matching
network
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Maximum Power Transfer Ol Hl(Pf.2 =)

- BOI)|2 AR50 AAIEQ HAS =F L =10 uH
] ]
Z,=—(R+jol) ——(10+j6 28)
n-
~3.16 r
|deal
-n20] 10 0|9 AlABC 3| M2 Mg X M g Load
210l OHEQ| S 3128 = 0H=Q| PHEICH -
- HIHAIEZ AL,
Z. =7 =1-;0.628 - 80
— I Tin I_O_’+ i
— [ ]
V() 1OQ§
- ]
10x27x10° x2x0.628 Zin Ideal o
—0.1267 uF M “hing -Bge

NOTK
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Example 11.10-2 Transformer Circuit

The input to the circuit shown in figure below is the voltage source vg(t). The
output is the voltage across the 9-H inductor, v,(t). Determine the output voltage

Vg (b).

) 8 Q 30 Q
O AVAYAY, . 81 " g
(j) v () = 75.5 cos (4 + 26°) V | | 9H < v,
o o
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Solution

Represent the circuit in the frequency domain and express the load impedance seen in
primary coil.

l) 8Q 300
3:
3 2 s VW 0
2
Zload at prlmary (30 + ]36) V(w) =75.5/26°V j36 Q V,(w)
o

Find the current in the primary coil using mesh equation.
Vs =18+7,, atprimary) — [ =0.6822 — 21 [A]

Calculate the current flowing through secondary coil using current in primary coil.

3
I, =— <E)I = —1.0232 — 21 [A]

Calculate Vo
V,=—j36l, =36.82269 [V] - vO(t) = 36.82(4t + 69) [V]
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