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 Superposition:

 Homogeneity:

Linear circuit

FIGURE 13.1-1

𝒗𝒗𝒊𝒊𝒊𝒊,𝟏𝟏 → 𝒗𝒗𝒐𝒐𝒐𝒐𝒐𝒐,𝟏𝟏

𝒗𝒗𝒊𝒊𝒊𝒊,𝟐𝟐 → 𝒗𝒗𝒐𝒐𝒐𝒐𝒐𝒐,𝟐𝟐

𝒗𝒗𝒊𝒊𝒊𝒊,𝟏𝟏 + 𝒗𝒗𝒊𝒊𝒊𝒊,𝟐𝟐 → 𝒗𝒗𝒐𝒐𝒐𝒐𝒐𝒐,𝟏𝟏 + 𝒗𝒗𝒐𝒐𝒐𝒐𝒐𝒐,𝟐𝟐

𝒗𝒗𝒊𝒊𝒊𝒊 → 𝒗𝒗𝒐𝒐𝒐𝒐𝒐𝒐

𝒌𝒌𝒗𝒗𝒊𝒊𝒊𝒊 → 𝒌𝒌𝒗𝒗𝒐𝒐𝒐𝒐𝒐𝒐
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 Between the input and the output sinusoid, these are constant.
 The ratio of the amplitude
 The difference of the phase angles

At any fixed frequency

FIGURE 13.1-1
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 Between the input and the output sinusoid, these are constant.
 The ratio of the amplitude
 The difference of the phase angles

At any fixed frequency

FIGURE 13.2-2

Input

Output
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 Between the input and the output sinusoid, these are constant.
 The ratio of the amplitude
 The difference of the phase angles

𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 =

At any fixed frequency

FIGURE 13.2-2

AB 𝑩𝑩
𝑨𝑨
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 Between the input and the output sinusoid, these are constant.
 The ratio of the amplitude
 The difference of the phase angles

phase shift =

At any fixed frequency

FIGURE 13.2-2

Δt
ωΔt
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 Changing the frequency of the input changes the gain and phase shift.
 The gain and phase shift is the function of the frequency
 When X is the input and Y is the output, we define a Network function at 

steady state as follows:

Network function
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Network function - example

FIGURE 13.2-3

𝑉𝑉𝑖𝑖𝑖𝑖 𝜔𝜔
𝑅𝑅1

+
𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 𝜔𝜔

R2
+ j𝜔𝜔CVout 𝜔𝜔 = 0

𝐻𝐻 𝜔𝜔 =
𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 𝜔𝜔
𝑉𝑉𝑖𝑖𝑖𝑖 𝜔𝜔 =

−𝑅𝑅2
𝑅𝑅1 + 𝑗𝑗𝜔𝜔𝐶𝐶𝑅𝑅1𝑅𝑅2

𝒈𝒈𝒈𝒈𝒊𝒊𝒊𝒊 = 𝑯𝑯(ω) =

𝑹𝑹𝟐𝟐
𝑹𝑹𝟏𝟏

𝟏𝟏 + ω𝟐𝟐𝑪𝑪𝟐𝟐𝑹𝑹𝟐𝟐𝟐𝟐

𝒑𝒑𝒑𝒑𝒈𝒈𝒑𝒑𝒑𝒑 𝒑𝒑𝒑𝒑𝒊𝒊𝒔𝒔𝒐𝒐 = ∠𝑯𝑯 ω = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏 − 𝒐𝒐𝒈𝒈𝒊𝒊−𝟏𝟏(ω𝑪𝑪𝑹𝑹𝟐𝟐)
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Network function - example

FIGURE 13.2-3

𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑅𝑅1 = 5𝑘𝑘𝛺𝛺,𝑅𝑅2 = 50𝑘𝑘𝛺𝛺,𝐶𝐶 = 2𝑤𝑤𝑛𝑛

𝐻𝐻 𝜔𝜔 =
𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 𝜔𝜔
𝑉𝑉𝑖𝑖𝑖𝑖 𝜔𝜔 =

−10
1 + 𝑗𝑗𝜔𝜔/10000

𝒈𝒈𝒈𝒈𝒊𝒊𝒊𝒊 = 𝑯𝑯(ω) =
𝟏𝟏𝟏𝟏

𝟏𝟏 + ω𝟐𝟐/𝟏𝟏𝟏𝟏𝟏𝟏

𝒑𝒑𝒑𝒑𝒈𝒈𝒑𝒑𝒑𝒑 𝒑𝒑𝒑𝒑𝒊𝒊𝒔𝒔𝒐𝒐 = ∠𝑯𝑯 ω = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏 − 𝒐𝒐𝒈𝒈𝒊𝒊−𝟏𝟏(ω/𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏)
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 Frequency response
 Equations that represent the gain and phase shift as functions of frequency
 The same information can be represented by a table or by graphs

 The network function really does represent the behavior of the circuit.
 Suppose that 𝑣𝑣𝑖𝑖𝑖𝑖 𝑡𝑡 = 0.4 cos 5000𝑡𝑡 + 45° 𝑉𝑉

 Back in the time domain, the steady-state response is 

𝒗𝒗𝒐𝒐𝒐𝒐𝒐𝒐 𝒐𝒐 = 𝟑𝟑.𝟓𝟓𝟏𝟏𝐜𝐜𝐜𝐜𝐜𝐜 𝟓𝟓𝟏𝟏𝟏𝟏𝟏𝟏𝒐𝒐 + 𝟏𝟏𝟏𝟏𝟏𝟏° 𝑽𝑽

Network function

𝐻𝐻 𝜔𝜔 =
−10

1 + 𝑗𝑗5000/10000 = 8.94∠153°

𝑽𝑽𝒐𝒐𝒐𝒐𝒐𝒐 ω = 𝑯𝑯 𝝎𝝎 𝑽𝑽𝒊𝒊𝒊𝒊(𝝎𝝎) = (𝟏𝟏.𝟏𝟏𝟗𝟗∠𝟏𝟏𝟓𝟓𝟑𝟑°) 𝟏𝟏.𝟗𝟗∠𝟗𝟗𝟓𝟓° = 𝟑𝟑.𝟓𝟓𝟏𝟏∠𝟏𝟏𝟏𝟏𝟏𝟏°
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Example 13.2-1 Network Function of a Circuit

 Consider the circuit shown in Figure 13.2-4a. The input to the circuit is the
voltage of the voltage source 𝑣𝑣𝑖𝑖(𝑡𝑡). The output is the voltage 𝑣𝑣𝑜𝑜(𝑡𝑡) across
the series connection of the capacitor and the 16-kΩ resistor. The network
function that represents this circuit has the form

 The network function depends on two parameters, z and p. The parameter z
is called the zero of the circuit and the parameter is called the pole of the
circuit. Determine the values of z and of p for the circuit in Figure 13.2-4a
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Solution

 The impedances of the capacitor and the 16-kΩ resistor are connected in 
series. The equivalent impedance of this combination is

 The equivalent impedance is connected in series with the 8-kΩ resistor. 𝑉𝑉𝑖𝑖 𝜔𝜔
is the voltage across the series impedances, and 𝑉𝑉𝑜𝑜 𝜔𝜔 is the voltage across 
the equivalent impedance 𝑍𝑍𝑒𝑒 𝜔𝜔 . Apply the voltage division principle to get

𝑍𝑍𝑒𝑒 𝜔𝜔 = 16𝑘𝑘Ω +
1

𝑗𝑗 0.23𝜇𝜇𝑛𝑛 𝜔𝜔

𝑽𝑽𝒐𝒐 𝝎𝝎 =
𝟏𝟏𝟏𝟏𝒌𝒌𝛀𝛀 + 𝟏𝟏

𝒋𝒋 𝟏𝟏.𝟐𝟐𝟑𝟑𝟐𝟐𝟐𝟐 𝝎𝝎

𝟏𝟏𝒌𝒌𝛀𝛀 + 𝟏𝟏𝟏𝟏𝒌𝒌𝛀𝛀 + 𝟏𝟏
𝒋𝒋 𝟏𝟏.𝟐𝟐𝟑𝟑𝟐𝟐𝟐𝟐 𝝎𝝎

𝑽𝑽𝒊𝒊(𝝎𝝎)
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Solution

 Doing some algebra gives

 Equating to the network function 𝑯𝑯 𝜔𝜔 =
1+𝑗𝑗𝜔𝜔𝑧𝑧
1+𝑗𝑗𝜔𝜔𝑝𝑝

gives

𝑉𝑉𝑜𝑜 𝜔𝜔 =
1 + 16𝑘𝑘Ω 0.23𝜇𝜇𝑛𝑛 𝜔𝜔

1 + 𝑗𝑗 8𝑘𝑘Ω + 16𝑘𝑘Ω 0.23𝜇𝜇𝑛𝑛 𝜔𝜔
𝑉𝑉𝑖𝑖 𝜔𝜔

𝒑𝒑 =
𝟏𝟏

𝟏𝟏𝒌𝒌𝛀𝛀 + 𝟏𝟏𝟏𝟏𝟏𝟏𝛀𝛀 𝟏𝟏.𝟐𝟐𝟑𝟑𝟐𝟐𝟐𝟐 =
𝟏𝟏
𝝉𝝉 =

𝟏𝟏
𝟏𝟏.𝟏𝟏𝟏𝟏𝟓𝟓𝟓𝟓𝟐𝟐 = 𝟏𝟏𝟏𝟏𝟏𝟏.𝟏𝟏𝟏𝟏

𝒓𝒓𝒈𝒈𝒓𝒓
𝒑𝒑

𝒛𝒛 =
𝟏𝟏

𝟏𝟏𝒌𝒌𝛀𝛀 𝟏𝟏.𝟐𝟐𝟑𝟑𝟐𝟐𝟐𝟐 =
𝟏𝟏𝒌𝒌𝛀𝛀 + 𝟏𝟏𝟏𝟏𝒌𝒌𝛀𝛀

𝟏𝟏𝟏𝟏𝛀𝛀 𝒑𝒑 =
𝟏𝟏

𝟏𝟏.𝟏𝟏𝟏𝟏𝟑𝟑𝟏𝟏𝟏𝟏 = 𝟐𝟐𝟐𝟐𝟏𝟏.𝟐𝟐𝟗𝟗 𝒓𝒓𝒈𝒈𝒓𝒓/𝒑𝒑
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Example 13.2-2 Network Function of a Circuit

 Consider the circuit shown in Figure 13.2-5a. The input to the circuit is the
voltage of the voltage source 𝑣𝑣𝑖𝑖(𝑡𝑡). The output is the voltage 𝑣𝑣𝑜𝑜(𝑡𝑡) across
the series connection of the inductor and the 2Ω resistor. The network
function that represents this circuit is

 Determine the value of the inductance L.
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Solution

 The impedances of the inductor and the 2-Ω resistor are connected in series. 
The equivalent impedance is

 The equivalent impedance is connected in series with the 8-Ω resistor. 𝑉𝑉𝑖𝑖 𝜔𝜔
is the voltage across the series impedances, and 𝑉𝑉𝑜𝑜 𝜔𝜔 is the voltage across 
the equivalent impedance 𝑍𝑍𝑒𝑒 𝜔𝜔 . Apply the voltage division principle to get

𝑍𝑍𝑒𝑒 𝜔𝜔 = 2 + 𝑗𝑗𝜔𝜔𝐿𝐿

𝑽𝑽𝒐𝒐 𝝎𝝎 =
𝟐𝟐𝛀𝛀 + 𝒋𝒋𝝎𝝎𝑳𝑳

𝟏𝟏𝛀𝛀 + 𝟐𝟐𝛀𝛀 + 𝒋𝒋𝝎𝝎𝑳𝑳
𝑽𝑽𝒊𝒊 𝝎𝝎
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Solution

 Doing some algebra gives

 Where

 Equating to the network function 𝑯𝑯 𝜔𝜔 = 0.2
1+𝑗𝑗𝜔𝜔5
1+𝑗𝑗𝜔𝜔25

gives

𝐿𝐿
2 =

1
5 ,

𝐿𝐿
10 =

1
25

𝑳𝑳 = 𝟏𝟏.𝟗𝟗𝑯𝑯

𝑯𝑯(𝜔𝜔) =
1
5

1 + 𝑗𝑗𝜔𝜔 𝐿𝐿
2Ω

1 + 𝑗𝑗𝜔𝜔 𝐿𝐿
8Ω + 2Ω

𝑉𝑉𝑖𝑖 𝜔𝜔

𝑝𝑝 =
𝐿𝐿

8Ω + 2Ω =
1
𝜏𝜏 , z =

L
2Ω =

8Ω + 2Ω
2Ω 𝑝𝑝
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Example 13.2-3 Network Function of a Circuit

 Consider the circuit shown in Figure 13.2-6. The input to the circuit is the
voltage of the voltage source 𝑣𝑣𝑖𝑖(𝑡𝑡). The output is the voltage across the
capacitor, 𝑣𝑣𝑜𝑜(𝑡𝑡). The network function that represents this circuit is

 Determine the value of the inductance L and of the gain A of the voltage-
controlled voltage source (VCVS).
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Solution

 The circuit consists of two meshes. In the left-hand mesh, the resistor and the 
inductor form the voltage divider.

 The resistor and the capacitor form the voltage divider in the right-hand mesh.

𝑉𝑉𝑎𝑎 𝜔𝜔 = 𝑉𝑉𝑖𝑖 𝜔𝜔
4Ω

𝑗𝑗𝜔𝜔𝐿𝐿 + 4Ω

𝑉𝑉𝑜𝑜 𝜔𝜔 = 𝐴𝐴𝑉𝑉𝑎𝑎 𝜔𝜔

20
𝑗𝑗𝜔𝜔

4Ω + 20
j𝜔𝜔

19



Department of Electrical and Computer Engineering, SNU
Prof. SungJune Kim

Solution

 Two meshes are cascaded. With some algebra,

 Where the poles are, 

 Comparing the given network functions gives A = 3V/V and L=2H.

3

1 + 𝑗𝑗 𝜔𝜔2 1 + 𝑗𝑗 𝜔𝜔5
= 𝑯𝑯 𝜔𝜔 =

𝐴𝐴

1 + 𝑗𝑗𝜔𝜔 𝐿𝐿
4Ω

1

1 + 𝑗𝑗𝜔𝜔 4Ω
20

𝑽𝑽𝒐𝒐 𝜔𝜔 = 𝑽𝑽𝒊𝒊 𝜔𝜔 𝐴𝐴
4Ω

𝑗𝑗𝜔𝜔𝐿𝐿 + 4Ω

20
𝑗𝑗𝜔𝜔

4Ω + 20
j𝜔𝜔

= 𝑽𝑽𝒊𝒊 𝜔𝜔
𝐴𝐴

1 + 𝑗𝑗𝜔𝜔 𝐿𝐿
4Ω

1

1 + 𝑗𝑗𝜔𝜔 4Ω
20

𝑝𝑝1 =
4Ω
𝐿𝐿 =

1
𝜏𝜏𝐿𝐿

, 𝑝𝑝2 =
20
4Ω =

1
𝜏𝜏𝐶𝐶
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 First-order low-pass filters have network functions of the form

 The gain and phase shift of the filter are

 |𝐻𝐻0| is called the dc gain, and 𝜔𝜔0 is called the corner frequency, the 3-
dB frequency, or the half-power frequency

Low-pass filter whose network function is 𝑯𝑯 𝜔𝜔 = 𝐻𝐻0
1+𝑗𝑗 𝜔𝜔𝜔𝜔0
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 𝐻𝐻0 is called the DC gain as 𝑯𝑯 0 = 𝐻𝐻0

 𝜔𝜔0 is called the half power frequency.
 At low frequencies, power delivered to 𝑅𝑅3 is,

 When 𝜔𝜔 = 𝜔𝜔0, power delivered to 𝑅𝑅3 is,

Low-pass filter whose network function is 𝑯𝑯 𝜔𝜔 = 𝐻𝐻0
1+𝑗𝑗 𝜔𝜔𝜔𝜔0

𝑃𝑃 =
1
2

|𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 𝜔𝜔 |2

𝑅𝑅3
=

1
2
𝐻𝐻(𝜔𝜔0)𝑣𝑣𝑖𝑖𝑖𝑖 𝜔𝜔0 2

𝑅𝑅3
=

𝑯𝑯𝟏𝟏
𝟐𝟐

𝟗𝟗
𝒗𝒗𝒊𝒊𝒊𝒊 𝝎𝝎𝟏𝟏

𝟐𝟐

𝑹𝑹𝟑𝟑

𝑃𝑃 =
1
2

|𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 𝜔𝜔 |2

𝑅𝑅3
=

1
2

|𝐻𝐻0𝑣𝑣𝑖𝑖𝑖𝑖 𝜔𝜔 |2

𝑅𝑅3
=

𝑯𝑯𝟏𝟏
𝟐𝟐

𝟐𝟐
𝒗𝒗𝒊𝒊𝒊𝒊 𝝎𝝎 𝟐𝟐

𝑹𝑹𝟑𝟑
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 The gain and phase of the network function changes as frequency changes.

 When 𝜔𝜔 ≪ 𝜔𝜔0, 1 + 𝑗𝑗 𝜔𝜔
𝜔𝜔0

≈ 1,

 When 𝜔𝜔 = 𝜔𝜔0, 1 + 𝑗𝑗 𝜔𝜔
𝜔𝜔0

= 1 + 𝑗𝑗,

 When 𝜔𝜔 ≫ 𝜔𝜔0, 1 + 𝑗𝑗 𝜔𝜔
𝜔𝜔0

≈ 𝑗𝑗 𝜔𝜔
𝜔𝜔0

,

Low-pass filter whose network function is 𝑯𝑯 𝜔𝜔 = 𝐻𝐻0
1+𝑗𝑗 𝜔𝜔𝜔𝜔0

𝒈𝒈𝒈𝒈𝒊𝒊𝒊𝒊 = 𝑯𝑯𝟏𝟏 , 𝐩𝐩𝐩𝐩𝐠𝐠𝐜𝐜𝐩𝐩 = 𝟏𝟏°

𝒈𝒈𝒈𝒈𝒊𝒊𝒊𝒊 =
𝝎𝝎𝟏𝟏
𝝎𝝎 𝑯𝑯𝟏𝟏 , 𝐩𝐩𝐩𝐩𝐠𝐠𝐜𝐜𝐩𝐩 = −𝟏𝟏𝟏𝟏°

𝒈𝒈𝒈𝒈𝒊𝒊𝒊𝒊 =
𝑯𝑯𝟏𝟏

𝟐𝟐
, 𝐩𝐩𝐩𝐩𝐠𝐠𝐜𝐜𝐩𝐩 = −𝟗𝟗𝟓𝟓°
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Low-pass filter whose network function is 𝑯𝑯 𝜔𝜔 = 𝐻𝐻0
1+𝑗𝑗 𝜔𝜔𝜔𝜔0
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Low-pass filter whose network function is 𝑯𝑯 𝜔𝜔 = 𝐻𝐻0
1+𝑗𝑗 𝜔𝜔𝜔𝜔0
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Low-pass filter circuits
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Low-pass filter circuits

𝑽𝑽− = 𝑽𝑽+ = 0

𝑽𝑽𝒊𝒊𝒊𝒊
𝑅𝑅1

= −
𝑽𝑽𝒐𝒐𝒐𝒐𝒐𝒐

𝑅𝑅2|| 1
𝑗𝑗𝜔𝜔𝐶𝐶

= −
1
𝑅𝑅2

+ 𝑗𝑗𝜔𝜔𝐶𝐶 𝑽𝑽𝒐𝒐𝒐𝒐𝒐𝒐 = −
1 + 𝑗𝑗𝜔𝜔𝑅𝑅2𝐶𝐶

𝑅𝑅2
𝑽𝑽𝒐𝒐𝒐𝒐𝒐𝒐

𝑯𝑯 𝜔𝜔 =
𝑽𝑽𝒐𝒐𝒐𝒐𝒐𝒐
𝑽𝑽𝒊𝒊𝒊𝒊

= −
𝑅𝑅2
𝑅𝑅1

1
1 + 𝑗𝑗𝜔𝜔𝑅𝑅2𝐶𝐶
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Low-pass filter circuits
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Low-pass filter circuits

𝑽𝑽+
𝑽𝑽𝒊𝒊𝒊𝒊

=
𝑅𝑅2|| 1

𝑗𝑗𝜔𝜔𝐶𝐶

𝑅𝑅2|| 1
𝑗𝑗𝜔𝜔𝐶𝐶 + 𝑅𝑅1

=

𝑅𝑅2
1 + 𝑗𝑗𝜔𝜔𝐶𝐶𝑅𝑅2
𝑅𝑅2

1 + 𝑗𝑗𝜔𝜔𝐶𝐶𝑅𝑅2
+ 𝑅𝑅1

=
𝑅𝑅2

𝑅𝑅1 + 𝑅𝑅2 + 𝑗𝑗𝜔𝜔𝐶𝐶𝑅𝑅1𝑅𝑅2
=

𝑅𝑅2
𝑅𝑅1 + 𝑅𝑅2

1

1 + 𝑗𝑗𝜔𝜔𝑅𝑅1𝑅𝑅2
𝑅𝑅1 + 𝑅𝑅2

𝑽𝑽𝒐𝒐𝒐𝒐𝒐𝒐
𝑽𝑽+

=
𝑽𝑽𝒐𝒐𝒐𝒐𝒐𝒐
𝑽𝑽−

=
𝑅𝑅3 + 𝑅𝑅4
𝑅𝑅4

= 1 +
𝑅𝑅3
𝑅𝑅4

𝑯𝑯 𝝎𝝎 =
𝑽𝑽𝒐𝒐𝒐𝒐𝒐𝒐
𝑽𝑽𝒊𝒊𝒊𝒊

=
𝑽𝑽𝒐𝒐𝒐𝒐𝒐𝒐
𝑽𝑽+

𝑽𝑽−
𝑽𝑽𝒊𝒊𝒊𝒊

=
𝑅𝑅2

𝑅𝑅1 + 𝑅𝑅2
1 +

𝑅𝑅3
𝑅𝑅4

1

1 + 𝑗𝑗𝜔𝜔 𝑅𝑅1𝑅𝑅2𝐶𝐶
𝑅𝑅1 + 𝑅𝑅2
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Low-pass filter circuits

30



Department of Electrical and Computer Engineering, SNU
Prof. SungJune Kim

 A chart of gain in decibels and phase in degrees versus the logarithm of 
frequency.
 The use of logarithms expands the range of frequencies portrayed on the 

horizontal axis.

Bode plot
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 Logarithmic gain



 The unit is decibel (dB)
 Also called gain in dB

 Phase



 The unit is degrees (ᵒ)

Bode plot when network function 𝑯𝑯 = 𝐻𝐻∠Φ = 𝐻𝐻𝑤𝑤𝑗𝑗Φ

phase = Φ
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 The logarithmic gain is

 For small frequencies, 𝜔𝜔 ≪ 𝜔𝜔0, 1 + 𝜔𝜔
𝜔𝜔0

2
≅ 1

 For large frequencies, 𝜔𝜔 ≫ 𝜔𝜔0, 1 + 𝜔𝜔
𝜔𝜔0

2
≅ 𝜔𝜔

𝜔𝜔0

2

Bode plot when network function 𝑯𝑯 𝜔𝜔 = 1
1+𝑗𝑗 𝜔𝜔𝜔𝜔0

𝟐𝟐𝟏𝟏 𝒍𝒍𝒐𝒐𝒈𝒈𝟏𝟏𝟏𝟏𝑯𝑯 = 𝟐𝟐𝟏𝟏 𝒍𝒍𝒐𝒐𝒈𝒈𝟏𝟏𝟏𝟏
𝟏𝟏

𝟏𝟏 + 𝝎𝝎/𝝎𝝎𝟏𝟏
𝟐𝟐

= −𝟐𝟐𝟏𝟏 𝒍𝒍𝒐𝒐𝒈𝒈𝟏𝟏𝟏𝟏 𝟏𝟏 + 𝝎𝝎/𝝎𝝎𝟏𝟏
𝟐𝟐

20 𝑙𝑙𝑙𝑙𝑔𝑔10𝐻𝐻 = −20 𝑙𝑙𝑙𝑙𝑔𝑔10 1 = 𝟏𝟏 𝒓𝒓𝑩𝑩

20 𝑙𝑙𝑙𝑙𝑔𝑔10𝐻𝐻 = −20 𝑙𝑙𝑙𝑙𝑔𝑔10 𝜔𝜔/𝜔𝜔0
2

= −20 𝑙𝑙𝑙𝑙𝑔𝑔10 𝜔𝜔/𝜔𝜔0

= 𝟐𝟐𝟏𝟏 𝐥𝐥𝐜𝐜𝐠𝐠𝟏𝟏𝟏𝟏 𝝎𝝎𝟏𝟏− 𝟐𝟐𝟏𝟏 𝐥𝐥𝐜𝐜𝐠𝐠𝟏𝟏𝟏𝟏 𝝎𝝎 𝒓𝒓𝑩𝑩
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Bode plot when network function 𝑯𝑯 𝜔𝜔 = 1
1+𝑗𝑗 𝜔𝜔𝜔𝜔0

 The value of the slope of the low-frequency is 0 dB/decade, because

 The value of the slope of the high-frequency is 

20 𝑙𝑙𝑙𝑙𝑔𝑔10 𝐻𝐻 𝜔𝜔2 − 20 𝑙𝑙𝑙𝑙𝑔𝑔10 𝐻𝐻 𝜔𝜔1
𝑙𝑙𝑙𝑙𝑔𝑔10𝜔𝜔2 − 𝑙𝑙𝑙𝑙𝑔𝑔10𝜔𝜔1

=
20 𝑙𝑙𝑙𝑙𝑔𝑔10 (𝜔𝜔0/𝜔𝜔2) − 20 𝑙𝑙𝑙𝑙𝑔𝑔10(𝜔𝜔0/𝜔𝜔1)

𝑙𝑙𝑙𝑙𝑔𝑔10𝜔𝜔2 − 𝑙𝑙𝑙𝑙𝑔𝑔10𝜔𝜔1

=
−20 𝑙𝑙𝑙𝑙𝑔𝑔10 (𝜔𝜔2/𝜔𝜔1)
𝑙𝑙𝑙𝑙𝑔𝑔10(𝜔𝜔2/𝜔𝜔1)

= −𝟐𝟐𝟏𝟏 𝒓𝒓𝑩𝑩/𝒓𝒓𝒑𝒑𝒅𝒅𝒈𝒈𝒓𝒓𝒑𝒑

20 𝑙𝑙𝑙𝑙𝑔𝑔10 𝐻𝐻 𝜔𝜔 = 20 log10 1
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 Asymptotic Bode plot
 Low-frequency asymptote for 𝜔𝜔 < 𝜔𝜔0, and high-frequency asymptote for 

𝜔𝜔 > 𝜔𝜔0. 
 These asymptotes are good approximation to the Bode plot when 𝜔𝜔 ≪ 𝜔𝜔0

or 𝜔𝜔 ≫ 𝜔𝜔0. Near 𝜔𝜔 = 𝜔𝜔0, the asymptotic Bode plot deviates from the 
exact Bode plot. 

 Corner frequency
 At 𝝎𝝎 = 𝝎𝝎𝟏𝟏, the value of the asymptotic Bode plot is 0 dB, whereas the 

value of the exact Bode plot is

 The low- and high-frequency asymptotes form a corner where they 
intersect. Because the asymptotes intersect at frequency 𝜔𝜔 = 𝜔𝜔0, 𝜔𝜔0 is 
called the corner frequency. (same name as 3-dB frequency or half-
power frequency)

Bode plot when network function 𝑯𝑯 𝜔𝜔 = 1
1+𝑗𝑗 𝜔𝜔𝜔𝜔0

𝟐𝟐𝟏𝟏 𝒍𝒍𝒐𝒐𝒈𝒈𝟏𝟏𝟏𝟏 𝑯𝑯 𝝎𝝎𝟏𝟏 = 𝟐𝟐𝟏𝟏 𝒍𝒍𝒐𝒐𝒈𝒈𝟏𝟏𝟏𝟏
𝟏𝟏
𝟐𝟐

= −𝟑𝟑.𝟏𝟏𝟏𝟏𝒓𝒓𝑩𝑩
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Bode plot when network function 𝑯𝑯 𝜔𝜔 = 1
1+𝑗𝑗 𝜔𝜔𝜔𝜔0
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 Bode plots of the circuit consisting of voltage source, L, and R.

 The network function of this circuit is

 Put this network function into the form

 k: dc gain, 𝜔𝜔1: zero, 𝜔𝜔2: pole

Bode plot when network function 𝑯𝑯 𝜔𝜔 = 𝑘𝑘
1+𝑗𝑗 𝜔𝜔𝜔𝜔1
1+𝑗𝑗 𝜔𝜔𝜔𝜔2

𝑯𝑯 =
𝑽𝑽𝒐𝒐
𝑽𝑽𝒑𝒑

=
𝑹𝑹 + 𝒋𝒋𝝎𝝎𝑳𝑳

𝑹𝑹𝒑𝒑 + 𝑹𝑹 + 𝒋𝒋𝝎𝝎𝑳𝑳

𝑯𝑯 = 𝒌𝒌
𝟏𝟏 + 𝒋𝒋 𝝎𝝎𝝎𝝎𝟏𝟏

𝟏𝟏 + 𝒋𝒋 𝝎𝝎𝝎𝝎𝟐𝟐
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 The network function can be expressed as 
 dc gain  𝑘𝑘 = 𝑅𝑅

𝑅𝑅+𝑅𝑅𝑠𝑠

 zero and pole frequencies are related by 𝜔𝜔1 = 𝑅𝑅
𝐿𝐿

< 𝑅𝑅+𝑅𝑅𝑠𝑠
𝐿𝐿

= 𝜔𝜔2
 The gain corresponding to a network function of this form is,

 The phase angle of H is 

Bode plot when network function 𝑯𝑯 𝜔𝜔 = 𝑘𝑘
1+𝑗𝑗 𝜔𝜔𝜔𝜔1
1+𝑗𝑗 𝜔𝜔𝜔𝜔2

𝑯𝑯 =
𝑅𝑅

𝑅𝑅 + 𝑅𝑅𝑠𝑠

1 + 𝑗𝑗 𝜔𝜔
𝑅𝑅/𝐿𝐿

1 + 𝑗𝑗 𝜔𝜔
𝑅𝑅 + 𝑅𝑅𝑠𝑠 /𝐿𝐿

𝐻𝐻 = 𝑘𝑘
1 + 𝜔𝜔

𝜔𝜔1

2

1 + 𝜔𝜔
𝜔𝜔2

2
≈

𝑘𝑘 𝜔𝜔 < 𝜔𝜔1
𝑘𝑘𝜔𝜔
𝜔𝜔1

𝜔𝜔1 < 𝜔𝜔 < 𝜔𝜔2

𝑘𝑘𝜔𝜔2
𝜔𝜔1

𝜔𝜔2 < 𝜔𝜔

Φ = ∠𝑘𝑘 + ∠ 1 + 𝑗𝑗
𝜔𝜔
𝜔𝜔1

− ∠ 1 + 𝑗𝑗
𝜔𝜔
𝜔𝜔2

= tan−1
𝜔𝜔
𝜔𝜔1

− tan−1
𝜔𝜔
𝜔𝜔2
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 The phase Bode plot and the asymptotic magnitude Bode plot

Bode plot when network function 𝑯𝑯 𝜔𝜔 = 𝑘𝑘
1+𝑗𝑗 𝜔𝜔𝜔𝜔1
1+𝑗𝑗 𝜔𝜔𝜔𝜔2
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Example 13.3-1 Bode Plot

 Find the asymptotic magnitude Bode plot of

𝑯𝑯 𝜔𝜔 = 𝐾𝐾
𝑗𝑗𝜔𝜔

1 + 𝑗𝑗 𝜔𝜔𝑝𝑝
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Solution

 Network function 𝑯𝑯 𝜔𝜔 = 𝐾𝐾 𝐽𝐽𝜔𝜔
1+𝑗𝑗𝜔𝜔𝑝𝑝

 Approximate 1 + 𝑗𝑗 𝜔𝜔
𝑝𝑝

by 1 when 𝜔𝜔 < 𝑝𝑝, and by 𝑗𝑗 𝜔𝜔
𝑝𝑝

when 𝜔𝜔 > 𝑝𝑝 to get

 The logarithmic gain is

 The 𝑗𝑗𝜔𝜔 factor in the numerator of 𝑯𝑯(𝜔𝜔) causes the low-frequency asymptote 
to have a slope of 20 dB/decade. The slope of the asymptotic magnitude Bode 
plot decrease by 20 dB/decade (from 20 dB/decade to zero) as the frequency 
increases past 𝜔𝜔 = 𝑝𝑝.

 The phase is

20 log10 |𝑯𝑯 𝜔𝜔 | ≅ �20 log10 𝐾𝐾 + 20 log10 𝜔𝜔 𝜔𝜔 < 𝑝𝑝
20 log10 𝐾𝐾𝑝𝑝 𝜔𝜔 > 𝑝𝑝

𝑯𝑯 𝜔𝜔 ≅ �𝐾𝐾 � 𝑗𝑗𝜔𝜔 𝜔𝜔 < 𝑝𝑝
𝐾𝐾 � 𝑝𝑝 𝜔𝜔 > 𝑝𝑝

∠𝑯𝑯(𝜔𝜔) ≅ �
90𝟏 𝜔𝜔 ≪ 𝑝𝑝
45° 𝜔𝜔 = 𝑝𝑝
0𝟏 𝜔𝜔 ≫ 𝑝𝑝
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Solution

 The asymptotic magnitude bode plot and the phase bode plot is,
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Example 13.3-2 Bode Plot of a Circuit

 Consider the circuit shown in Figure 13.3-6a. The input to the circuit is the
voltage of the voltage source 𝑣𝑣𝑖𝑖 𝑡𝑡 . The output is the node voltage at the
output terminal of the op amp 𝑣𝑣𝑜𝑜(𝑡𝑡). The network function that represents
this circuit is

 The corresponding magnitude Bode plot is shown in Figure 13.3-6b.
Determine the values of the capacitances 𝐶𝐶1 and 𝐶𝐶2.
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Solution

 Step 1: Finding the network function corresponding to the Bode plot
 Two corner frequencies, at 80 and 500 rad/s. The corner frequency at 80 rad/s is a 

pole because the slope of the Bode plot decreases at 80 rad/s. The corner frequency 
at 500 rad/s is a zero because the slope increases at 500 rad/s

 The corner frequencies are separated by log10
500
80

= 0.796 decades. The slope 

of the Bode plot is −15.9−15.9
0.796

= −40 dB/decade between the corner frequencies.

 At low frequencies – that is, at frequencies smaller than the smallest corner 
frequency – the slope is -1 x 20 dB/decade, so the network function includes a 
factor 𝑗𝑗𝜔𝜔 −1

 Consequently, the network function corresponding to the Bode plot is

 Where k is a constant that is yet to be determined

𝑯𝑯 𝜔𝜔 = 𝑘𝑘 𝑗𝑗𝜔𝜔 −1
1 + 𝑗𝑗 𝜔𝜔

500
1 + 𝑗𝑗 𝜔𝜔80

= 𝑘𝑘
1 + 𝑗𝑗 𝜔𝜔

500
𝑗𝑗𝜔𝜔 1 + 𝑗𝑗 𝜔𝜔80
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Solution

 Step 2: Analyzing the circuit to determine its network function.
 We first analyze the node labeled as node a. The current entering the noninverting input of 

the op amp is zero, so the two currents in this node equation, the currents in the impedances 
corresponding to 125-kΩ resistor and capacitor 𝐶𝐶1, have same magnitude.

 Next, we analyze the node labeled as node b. The currents in the impedances corresponding 
to 10-kΩ resistor and capacitor 𝐶𝐶2, have same magnitude as at the node a.

 Equating 𝑉𝑉𝑏𝑏 𝜔𝜔 𝑎𝑎𝑤𝑤𝑎𝑎 𝑉𝑉𝑎𝑎(𝜔𝜔) and gives,

𝑉𝑉𝑎𝑎 𝜔𝜔
𝑉𝑉𝑖𝑖 𝜔𝜔

=

1
𝑗𝑗𝜔𝜔𝐶𝐶1

125kΩ + 1
𝑗𝑗𝜔𝜔𝐶𝐶1

=
1

1 + j𝜔𝜔𝐶𝐶1 125𝑘𝑘Ω

𝑉𝑉𝑏𝑏 𝜔𝜔
𝑉𝑉𝑜𝑜 𝜔𝜔 =

10𝑘𝑘Ω

10kΩ + 1
𝑗𝑗𝜔𝜔𝐶𝐶2

=
j𝜔𝜔𝐶𝐶2 10𝑘𝑘Ω

1 + j𝜔𝜔𝐶𝐶2 10𝑘𝑘Ω

𝑉𝑉𝑜𝑜 𝜔𝜔
𝑉𝑉𝑖𝑖 𝜔𝜔

=
1

1 + j𝜔𝜔𝐶𝐶1 125𝑘𝑘Ω
1 + j𝜔𝜔𝐶𝐶2 10𝑘𝑘Ω

j𝜔𝜔𝐶𝐶2 10𝑘𝑘Ω
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Solution

 Step 3: The network functions given in Step 1 and Step 2 must be equal.

 Equating coefficients gives

 so

𝑘𝑘
1 + 𝑗𝑗 𝜔𝜔

500
𝑗𝑗𝜔𝜔 1 + 𝑗𝑗 𝜔𝜔80

= 𝑯𝑯 𝜔𝜔 =
1

1 + j𝜔𝜔𝐶𝐶1 125𝑘𝑘Ω
1 + j𝜔𝜔𝐶𝐶2 10𝑘𝑘Ω

j𝜔𝜔𝐶𝐶2 10𝑘𝑘Ω

1
80 = 𝐶𝐶1 125𝑘𝑘Ω ,

1
500 = 𝐶𝐶2 10𝑘𝑘Ω , 𝑎𝑎𝑤𝑤𝑎𝑎 𝑘𝑘 =

1
𝐶𝐶2 10𝑘𝑘Ω

= 500

𝐶𝐶1 =
1

80 ∗ 125 ∗ 103 = 0.1𝜇𝜇𝑛𝑛 𝑎𝑎𝑤𝑤𝑎𝑎 𝐶𝐶2 =
1

500 10 ∗ 103 = 0.2𝜇𝜇𝑛𝑛
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Solution

 Bode plot of 𝑯𝑯 𝜔𝜔 = 500
1 + 𝑗𝑗 𝜔𝜔

500
𝑗𝑗𝜔𝜔 1 + 𝑗𝑗 𝜔𝜔80
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Example 13.3-3 Bode Plot of a Circuit

 Consider the circuit shown in Figure 13.3-8a. The input to the circuit is the
voltage of the voltage source 𝑣𝑣𝑖𝑖 𝑡𝑡 . The output is the node voltage at the
output terminal of the op amp 𝑣𝑣𝑜𝑜(𝑡𝑡). The network function that represents
this circuit is

 The corresponding magnitude Bode plot is shown in Figure 13.3-8b.
Determine the values of the capacitances 𝐶𝐶1 and 𝐶𝐶2.
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Solution

 Step 1: Finding the network function corresponding to the Bode plot
 Two corner frequencies, at 40 and 160 rad/s. Both corner frequencies are poles 

because the slope of the Bode plot decreases at both the corner frequencies.
 Between the corner frequencies, the gain is 𝐻𝐻 𝜔𝜔 = 26 𝑎𝑎𝑑𝑑 = 1026/20 = 20𝑉𝑉/𝑉𝑉. 

so |k| = 0.5

 At low frequencies – that is, at frequencies smaller than the smallest corner 
frequency – the slope is 1 x 20 dB/decade, so the network function includes a 
factor 𝑗𝑗𝜔𝜔 1

 Consequently, the network function corresponding to the Bode plot is

𝑯𝑯 𝜔𝜔 =
±0.5 𝑗𝑗𝜔𝜔

1 + 𝑗𝑗 𝜔𝜔40 1 + 𝑗𝑗 𝜔𝜔
160

𝐻𝐻 𝜔𝜔 ≅
𝑘𝑘 𝑗𝑗𝜔𝜔

𝑗𝑗 𝜔𝜔40
= 40𝑘𝑘 = 20,
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 Step 2: Analyzing the circuit to determine its network function.
 We will write a node equation at the node labeled as node a. In doing so, we will treat the 

series impedance, 20kΩ and 1
𝑗𝑗𝜔𝜔𝐶𝐶1

, as a single equivalent impedance equal to 20𝑘𝑘Ω + 1
𝑗𝑗𝜔𝜔𝐶𝐶1

. 

Also, we will treat the parallel impedance, 400kΩ and 1
𝑗𝑗𝜔𝜔𝐶𝐶2

, as a single equivalent 

impedance equal to 1
𝑗𝑗𝜔𝜔𝐶𝐶2+

1
400𝑘𝑘Ω

. The node voltage at node a is zero volts because the 

voltages at the input nodes of an ideal op amp are equal.

 Doing some algebra gives,

Solution

𝑉𝑉𝑖𝑖 𝜔𝜔

20𝑘𝑘Ω + 1
𝑗𝑗𝜔𝜔𝐶𝐶1

+ 𝑉𝑉𝑜𝑜 𝜔𝜔 𝑗𝑗𝜔𝜔𝐶𝐶2 +
1

400𝑘𝑘Ω = 0

𝑯𝑯 𝜔𝜔 =
𝑉𝑉𝑜𝑜 𝜔𝜔
𝑉𝑉𝑖𝑖 𝜔𝜔

= −
1

20𝑘𝑘Ω + 1
𝑗𝑗𝜔𝜔𝐶𝐶1

1

𝑗𝑗𝜔𝜔𝐶𝐶2 + 1
400𝑘𝑘Ω

=
−𝑗𝑗𝜔𝜔𝐶𝐶1(400𝑘𝑘Ω)

1 + 𝑗𝑗𝜔𝜔𝐶𝐶1 20𝑘𝑘Ω 1 + j𝜔𝜔𝐶𝐶2 400𝑘𝑘Ω
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Solution

 Step 3: The network functions given in Step 1 and Step 2 must be equal.

 Equating coefficients gives

 so

±0.5 𝑗𝑗𝜔𝜔

1 + 𝑗𝑗 𝜔𝜔40 1 + 𝑗𝑗 𝜔𝜔
160

= 𝑯𝑯 𝜔𝜔 =
−𝑗𝑗𝜔𝜔𝐶𝐶1(400𝑘𝑘Ω)

1 + 𝑗𝑗𝜔𝜔𝐶𝐶1 20𝑘𝑘Ω 1 + j𝜔𝜔𝐶𝐶2 400𝑘𝑘Ω

1
40 = 𝐶𝐶1 20𝑘𝑘Ω ,

1
160 = 𝐶𝐶2 400𝑘𝑘Ω , −0.5 = −𝐶𝐶1(400𝑘𝑘Ω)

𝐶𝐶1 =
1

40 20𝑘𝑘Ω = 1.25 𝜇𝜇𝑛𝑛, 𝐶𝐶2 =
1

160 400𝑘𝑘Ω , = 15.625𝜇𝜇𝑛𝑛
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Solution

 Bode plot of 𝑯𝑯 𝜔𝜔 =
−0.5 𝑗𝑗𝜔𝜔

1 + 𝑗𝑗 𝜔𝜔40 1 + 𝑗𝑗 𝜔𝜔
160
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Example 13.3-4 Network Function with Complex Poles

 The network function of a second-order low-pass filter can have the form

 This network function depends on three parameters: the dc gain k; the corner
frequency 𝜔𝜔0; and the damping ratio 𝜁𝜁. For convenience, we consider the
case where k = 1. Then, using 𝑗𝑗2 = −1, we can write network function as

 Determine the asymptotic magnitude Bode plot of the second-order low-pass
filter when the dc gain is 1.

𝑯𝑯 𝝎𝝎 =
𝒌𝒌𝝎𝝎𝟏𝟏

𝟐𝟐

𝒋𝒋𝝎𝝎 𝟐𝟐 + 𝒋𝒋𝟐𝟐ζ𝝎𝝎𝟏𝟏𝝎𝝎 + 𝝎𝝎𝟏𝟏
𝟐𝟐

𝑯𝑯 𝝎𝝎 =
𝝎𝝎𝟏𝟏
𝟐𝟐

𝝎𝝎𝟏𝟏
𝟐𝟐 − 𝝎𝝎𝟐𝟐 + 𝒋𝒋𝟐𝟐𝒋𝒋𝝎𝝎𝟏𝟏𝝎𝝎
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Complex poles
 Consider the complex plane or the s-plane

 In chapter 9, we used the s-plane to show the location of the roots of the 
characteristic equation of circuits.

 The natural response of a circuit was in the form of 𝑤𝑤𝑠𝑠𝑜𝑜. The points at 
the vertical axis represents pure sinusoid functions in this form.

 We use this plane to describe the network function with poles.

 Consider the network function with a pole, 𝐻𝐻 𝜔𝜔 = 𝐻𝐻0
1+𝑗𝑗 𝜔𝜔𝜔𝜔0

 𝐻𝐻 𝜔𝜔 = 𝐻𝐻0
𝜔𝜔0

𝜔𝜔0+𝑗𝑗𝜔𝜔
is a reciprocal of relative position from the pole         

to 𝑗𝑗𝜔𝜔 multiplied by DC gain and pole. 
 The magnitude of the network function inversely proportional to the 

distance between the pole and 𝑗𝑗𝜔𝜔. The distance is 𝜔𝜔0 when ω is small, 
ω when ω is large, and 2𝜔𝜔0 when ω equals to 𝜔𝜔0.

 The phase is the angle at the pole with negative sign.

𝑗𝑗𝜔𝜔

𝜎𝜎
−𝜔𝜔0
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Complex poles

 When we have two independent energy storage elements in the circuit, two 
roots of the characteristic equation exists, which can be rewritten as,

Fig_9-10-1

2 2 2 2
1 0 2 0   and   s sα α ω α α ω= − + − = − − −

The roots of the characteristic equation assume three possible conditions:

1. Two real and distinct roots when           overdamped
2. Two real equal roots when         critically damped
3. Two complex roots when                                      underdamped
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Complex poles

 When we have complex poles at 𝛼𝛼 ± 𝑗𝑗𝜔𝜔𝑑𝑑, 

𝑯𝑯 𝜔𝜔0 = 𝐻𝐻0
𝛼𝛼 − 𝑗𝑗𝜔𝜔𝑑𝑑

𝑗𝑗𝜔𝜔 + 𝛼𝛼 − 𝑗𝑗𝜔𝜔𝑑𝑑
𝛼𝛼 + 𝑗𝑗𝜔𝜔𝑑𝑑

𝑗𝑗𝜔𝜔 + 𝛼𝛼 + 𝑗𝑗𝜔𝜔𝑑𝑑

= 𝐻𝐻0
𝛼𝛼2 + 𝜔𝜔𝑑𝑑

2

𝑗𝑗𝜔𝜔 2 + 𝑗𝑗𝜔𝜔 2𝛼𝛼 + 𝛼𝛼2 + 𝜔𝜔𝑑𝑑
2

𝑯𝑯 𝜔𝜔0 = 𝐻𝐻0
𝜔𝜔02

𝑗𝑗𝜔𝜔 2 + 𝑗𝑗2𝜁𝜁𝜔𝜔0𝜔𝜔 + 𝜔𝜔02

Let 𝜁𝜁 = 𝛼𝛼
𝜔𝜔0

and 𝜔𝜔0 = 𝛼𝛼2 + 𝜔𝜔𝑑𝑑2 , then

Any pole on the semi circle has same 𝜔𝜔0, 
differs only 𝜁𝜁
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Complex poles

 As frequency approaches to the upper pole, the distance between them 
decreases and the magnitude of the network function peaks.
 We can find out the peak frequency by differentiating the magnitude. 

𝜁𝜁 = 0.05

𝜁𝜁 = 1/ 2

𝛼𝛼 = 0.05𝜔𝜔0𝛼𝛼 =
𝜔𝜔0

2

𝑎𝑎|𝑯𝑯 𝜔𝜔0 |
𝑎𝑎𝜔𝜔

= − 𝐻𝐻0 𝜔𝜔0
2 2 𝜔𝜔2 − 𝜔𝜔0

2 2𝜔𝜔 + 2𝜁𝜁𝜔𝜔0
2 2𝜔𝜔

2 𝜔𝜔2 − 𝜔𝜔02 2 + 2𝜁𝜁𝜔𝜔0𝜔𝜔 2
3
2

= 0

𝜔𝜔𝑝𝑝𝑒𝑒𝑎𝑎𝑝𝑝 = 𝜔𝜔𝑑𝑑
2 − 𝛼𝛼2
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Complex poles

 When the frequency is 𝜔𝜔0, the sum of the angle at both poles equals to the 
90°, so the phase is always 90° at 𝜔𝜔0 regardless of 𝜁𝜁.

𝜁𝜁 = 0.05

𝜁𝜁 = 1/ 2

𝛼𝛼 = 0.05𝜔𝜔0𝛼𝛼 =
𝜔𝜔0

2
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Solution

 The network function

 The denominator of 𝐻𝐻(𝜔𝜔) contains a new factor, one that involves 𝜔𝜔2. The 
asymptotic Bode plot is based on the approximation,

 Using this approximation, we can express the logarithmic gain as

𝜔𝜔02 − 𝜔𝜔2 + 𝑗𝑗2𝜁𝜁𝜔𝜔0𝜔𝜔 ≅ �
𝜔𝜔02 𝜔𝜔 < 𝜔𝜔0

−
𝜔𝜔02

𝜔𝜔2 𝜔𝜔 > 𝜔𝜔0

20 𝑙𝑙𝑙𝑙𝑔𝑔10 𝐻𝐻 𝜔𝜔 ≅ �
0 𝜔𝜔 < 𝜔𝜔0
40 𝑙𝑙𝑙𝑙𝑔𝑔10𝜔𝜔0 − 40 𝑙𝑙𝑙𝑙𝑔𝑔10𝜔𝜔 𝜔𝜔 > 𝜔𝜔0

𝑯𝑯 𝜔𝜔 =
𝜔𝜔02

𝜔𝜔02 − 𝜔𝜔2 + 𝑗𝑗2𝜁𝜁𝜔𝜔0𝜔𝜔
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Solution

 The asymptotic magnitude Bode plot of the second-order low-pass filter is,
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Solution

 The Bode plot of the second-order low-pass filter with real poles,  𝑯𝑯 𝜔𝜔 = 1

1+𝑗𝑗 𝜔𝜔𝜔𝜔0
2,
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Solution

 The asymptotic Bode plot is a good approximation to the actual Bode plot 
when 𝜔𝜔 ≪ 𝜔𝜔0 𝑙𝑙𝑜𝑜 𝜔𝜔 ≫ 𝜔𝜔0. Near 𝜔𝜔 = 𝜔𝜔0, the asymptotic Bode plot deviates 
from the actual Bode plot. At 𝜔𝜔 = 𝜔𝜔0, the value of the asymptotic Bode plot 
is 0 dB, whereas the value of the actual Bode plot is,

 The deviation between the actual and asymptotic magnitude Bode plot near 
𝜔𝜔 = 𝜔𝜔0 depends on 𝜁𝜁.

𝑯𝑯 𝝎𝝎𝟏𝟏 =
𝟏𝟏
𝟐𝟐𝒋𝒋
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Solution

 Bode diagram of 𝐻𝐻 𝑗𝑗𝜔𝜔 = 1

1+ 2𝜁𝜁
𝜔𝜔0

𝑗𝑗𝜔𝜔+ 𝑗𝑗𝜔𝜔
𝜔𝜔0

2 is, 
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Example 13.3-5 Magnitude Bode Plot for a Complicated Network Function

 Find the asymptotic magnitude Bode plot of

𝑯𝑯 𝜔𝜔 =
5 1 + 0.1𝑗𝑗𝜔𝜔

𝑗𝑗𝜔𝜔 1 + 0.5𝑗𝑗𝜔𝜔 1 + 0.6 𝑗𝑗𝜔𝜔
50 − 𝜔𝜔

50
2
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Solution

 The corner frequencies of 𝐻𝐻(𝜔𝜔) are z = 10, p = 2, and 𝜔𝜔0 = 50 rad/s. The 
smallest corner frequency is p = 2. When ω < 2, 𝐻𝐻(𝜔𝜔) can be approximated as

 So the equation of the low-frequency asymptote is 

 Let’s find a appoint on the low-frequency asymptote. When ω = 1,

 The low-frequency asymptote is a straight line with a slope of -20 dB/decade 
passing through the point 𝜔𝜔 = 1 𝑜𝑜𝑎𝑎𝑎𝑎/𝑠𝑠, 𝑯𝑯 = 14𝑎𝑎𝑑𝑑.

 The slope of the asymptotic Bode plot will change as ω increases past each 
corner frequency. The slope decreases by 20 dB/decade at ω = p = 2 rad/s, then 
increases by 20 dB/decade at ω = 10 rad/s, and finally decreases by 40 
dB/decade at 50 rad/s.

𝑯𝑯 𝜔𝜔 =
5
𝑗𝑗𝜔𝜔

20 𝑙𝑙𝑙𝑙𝑔𝑔10 𝑯𝑯 = 20 log10 5 − 20 log10 𝜔𝜔

20 𝑙𝑙𝑙𝑙𝑔𝑔10 𝑯𝑯 = 20 log10 5 − 20 log10 1 = 14𝑎𝑎𝑑𝑑
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Solution

 The asymptotic magnitude Bode plot is
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Solution

 The Bode plot of  𝑯𝑯 𝜔𝜔 = 5 1+0.1𝑗𝑗𝜔𝜔

𝑗𝑗𝜔𝜔 1+0.5𝑗𝑗𝜔𝜔 1+0.6 𝑗𝑗𝜔𝜔
50 − 𝜔𝜔

50

2 is
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Example 13.3-6 Designing a Circuit to Have a Specified Bode Plot

 Let’s design the circuit shown in Figure 13.3-3 to satisfy the following
specifications
 The low-frequency gain is 0.1
 The high-frequency gain is 1.
 The corner frequencies lie in the range of 100 hertz to 2000 hertz
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Solution

 Our earlier analysis of this circuit showed that the low-frequency gain is less than 1 
and that the high-frequency gain is equal to 1. This circuit can be used only to satisfy 
specifications that are consistent with these facts. Fortunately, the given specifications 
are consistent with these facts. The first specification requires

 Because the high-frequency gain is 1, the second specification is satisfied.

 Now let’s turn our attention to the specifications on the corner frequencies. The 
specified frequency range is given using units of hertz, whereas the corner frequencies 
have units of rad/s. Because 𝜔𝜔1 > 𝜔𝜔2, the third specification requires that

 Our job is to find values of 𝑅𝑅,𝑅𝑅𝑆𝑆, 𝑎𝑎𝑤𝑤𝑎𝑎 𝐿𝐿 that satisfy these three requirements. We have 
no guarantee that appropriate values exist. Also, it may well not be unique.

𝟏𝟏.𝟏𝟏 = 𝒍𝒍𝒐𝒐𝒍𝒍 − 𝒔𝒔𝒓𝒓𝒑𝒑𝒇𝒇𝒐𝒐𝒑𝒑𝒊𝒊𝒅𝒅𝒇𝒇 𝒈𝒈𝒈𝒈𝒊𝒊𝒊𝒊 = 𝒌𝒌 =
𝑹𝑹

𝑹𝑹 + 𝑹𝑹𝒑𝒑

𝟐𝟐𝟐𝟐 𝟏𝟏𝟏𝟏𝟏𝟏 <
𝑹𝑹
𝑳𝑳 = 𝝎𝝎𝟏𝟏, 𝟐𝟐𝟐𝟐 𝟐𝟐𝟏𝟏𝟏𝟏𝟏𝟏 >

𝑹𝑹 + 𝑹𝑹𝒑𝒑
𝑳𝑳 = 𝝎𝝎𝟐𝟐
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Solution

 Let’s try

 The specification on the low-frequency gain requires that

 The specification on the zero will be satisfied if

 It remains to verify that these values of 𝑅𝑅,𝑅𝑅𝑠𝑠, 𝑎𝑎𝑤𝑤𝑎𝑎 𝐿𝐿 satisfy the specification on 
the pole frequency. The specification is satisfied because

 This solution is not unique. Indeed, when R = 100 and 𝑅𝑅𝑠𝑠 = 900, any inductance 
in the range 0.0796 < L < 0.159H can be used to satisfy these specifications.

𝑹𝑹 = 𝟏𝟏𝟏𝟏𝟏𝟏𝛀𝛀

𝑹𝑹 + 𝑹𝑹𝒑𝒑
𝑳𝑳 = 𝟏𝟏𝟐𝟐𝟏𝟏𝟏𝟏 < 𝟏𝟏𝟐𝟐,𝟓𝟓𝟏𝟏𝟏𝟏 = 𝟐𝟐𝟐𝟐 𝟐𝟐𝟏𝟏𝟏𝟏𝟏𝟏

𝑹𝑹𝒑𝒑 = 𝟏𝟏𝑹𝑹 = 𝟏𝟏𝟏𝟏𝟏𝟏𝛀𝛀

𝑳𝑳 =
𝑹𝑹

𝟐𝟐𝟐𝟐 𝟏𝟏𝟏𝟏𝟏𝟏 = 𝟏𝟏.𝟏𝟏𝟓𝟓𝟏𝟏𝑯𝑯
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Example 13.3-7 Designing a Circuit to Have a Specified Bode Plot

 Design a circuit that has the asymptotic magnitude Bode plot shown in
Figure 13.3-13a.
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Solution

 The slope of this Bode plot is 20 dB/decade for low frequencies, that is,     
𝜔𝜔 < 500 𝑜𝑜𝑎𝑎𝑎𝑎/𝑠𝑠, so 𝐻𝐻 𝜔𝜔 must have a 𝑗𝑗𝜔𝜔 factor in its numerator. The slope 
decreases by 20 dB/decade as ω increases past 𝜔𝜔 = 500 𝑜𝑜𝑎𝑎𝑎𝑎/𝑠𝑠, so H(𝜔𝜔)
must have a pole at 𝜔𝜔 = 500 𝑜𝑜𝑎𝑎𝑎𝑎/𝑠𝑠. Based on these observations,

 The gain of the asymptotic Bode plot is 34 dB = 50 when 𝜔𝜔 > 500 𝑜𝑜𝑎𝑎𝑎𝑎/𝑠𝑠, so

 Thus, 𝑘𝑘 = ±0.1 and

𝑯𝑯 𝝎𝝎 = ±𝒌𝒌
𝒋𝒋𝝎𝝎

𝟏𝟏 + 𝒋𝒋 𝝎𝝎
𝟓𝟓𝟏𝟏𝟏𝟏

𝟓𝟓𝟏𝟏 = ±𝒌𝒌
𝒋𝒋𝝎𝝎

𝒋𝒋 𝝎𝝎
𝟓𝟓𝟏𝟏𝟏𝟏

= ±𝒌𝒌 ∗ 𝟓𝟓𝟏𝟏𝟏𝟏

𝑯𝑯 𝝎𝝎 = ±𝟏𝟏.𝟏𝟏
𝒋𝒋𝝎𝝎

𝟏𝟏 + 𝒋𝒋 𝝎𝝎
𝟓𝟓𝟏𝟏𝟏𝟏
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Solution

 The design equations provided in row 4 of Table 13.3-2 indicate that

 Pick C = 1μF. Then

𝑹𝑹𝟐𝟐 =
𝟏𝟏.𝟏𝟏
𝟏𝟏𝟏𝟏−𝟏𝟏

= 𝟏𝟏𝟏𝟏𝟏𝟏𝒌𝒌𝛀𝛀, 𝑹𝑹𝟏𝟏 =
𝟏𝟏

𝟓𝟓𝟏𝟏𝟏𝟏 ∗ 𝟏𝟏𝟏𝟏−𝟏𝟏
= 𝟐𝟐𝒌𝒌𝛀𝛀

𝟏𝟏.𝟏𝟏 = 𝑹𝑹𝟐𝟐𝑪𝑪, 𝟓𝟓𝟏𝟏𝟏𝟏 =
𝟏𝟏
𝑪𝑪𝑹𝑹𝟏𝟏
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Solution

 The Bode plot of 𝐻𝐻 𝜔𝜔 = 0.1 𝑗𝑗𝜔𝜔
1+𝑗𝑗 𝜔𝜔

500
is,
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Solution
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Solution

𝑽𝑽𝒐𝒐 𝝎𝝎 = 𝑽𝑽𝒊𝒊 𝝎𝝎
𝟏𝟏
𝑹𝑹𝟏𝟏

+ 𝒋𝒋𝝎𝝎𝑪𝑪𝟏𝟏 ∗ − 𝑹𝑹𝟐𝟐||
𝟏𝟏

𝒋𝒋𝝎𝝎𝑪𝑪𝟐𝟐
= −𝑽𝑽𝒊𝒊 𝝎𝝎

𝟏𝟏 + 𝒋𝒋𝝎𝝎𝑹𝑹𝟏𝟏𝑪𝑪𝟏𝟏
𝑹𝑹𝟏𝟏

𝟏𝟏
𝟏𝟏
𝑹𝑹𝟐𝟐

+ 𝒋𝒋𝝎𝝎𝑪𝑪𝟐𝟐

𝑯𝑯 𝝎𝝎 = −
𝑹𝑹𝟐𝟐
𝑹𝑹𝟏𝟏

𝟏𝟏 + 𝒋𝒋𝝎𝝎𝑹𝑹𝟏𝟏𝑪𝑪𝟏𝟏
𝟏𝟏 + 𝒋𝒋𝝎𝝎𝑹𝑹𝟐𝟐𝑪𝑪𝟐𝟐
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Solution

𝑽𝑽𝒐𝒐 𝝎𝝎 = 𝑽𝑽𝒊𝒊 𝝎𝝎
𝟏𝟏
𝑹𝑹𝟏𝟏

∗ − 𝑹𝑹𝟐𝟐||
𝟏𝟏
𝒋𝒋𝝎𝝎𝑪𝑪 = −𝑽𝑽𝒊𝒊 𝝎𝝎

𝟏𝟏
𝑹𝑹𝟏𝟏

𝟏𝟏
𝟏𝟏
𝑹𝑹𝟐𝟐

+ 𝒋𝒋𝝎𝝎𝑪𝑪

𝑯𝑯 𝝎𝝎 = −
𝑹𝑹𝟐𝟐
𝑹𝑹𝟏𝟏

𝟏𝟏
𝟏𝟏 + 𝒋𝒋𝝎𝝎𝑹𝑹𝟐𝟐𝑪𝑪
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Solution

𝑽𝑽𝒐𝒐 𝝎𝝎 = 𝑽𝑽𝒊𝒊 𝝎𝝎
𝟏𝟏
𝑹𝑹𝟏𝟏

+ 𝒋𝒋𝝎𝝎𝑪𝑪 ∗ −𝑹𝑹𝟐𝟐 = −𝑽𝑽𝒊𝒊 𝝎𝝎 𝑹𝑹𝟐𝟐
𝟏𝟏 + 𝒋𝒋𝝎𝝎𝑹𝑹𝟏𝟏𝑪𝑪

𝑹𝑹𝟏𝟏

𝑯𝑯 𝝎𝝎 = −
𝑹𝑹𝟐𝟐
𝑹𝑹𝟏𝟏

(𝟏𝟏 + 𝒋𝒋𝝎𝝎𝑹𝑹𝟏𝟏𝑪𝑪)
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Solution

𝑽𝑽𝒐𝒐 𝝎𝝎 = 𝑽𝑽𝒊𝒊 𝝎𝝎
𝟏𝟏

𝑹𝑹𝟏𝟏 + 𝟏𝟏
𝒋𝒋𝝎𝝎𝑪𝑪

∗ −𝑹𝑹𝟐𝟐 = −𝑽𝑽𝒊𝒊 𝝎𝝎 𝑹𝑹𝟐𝟐
𝒋𝒋𝝎𝝎𝑪𝑪

𝟏𝟏 + 𝒋𝒋𝝎𝝎𝑹𝑹𝟏𝟏𝑪𝑪

𝑯𝑯 𝝎𝝎 = −𝑹𝑹𝟐𝟐𝑪𝑪
𝒋𝒋𝝎𝝎

𝟏𝟏 + 𝒋𝒋𝝎𝝎𝑹𝑹𝟏𝟏𝑪𝑪
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Solution

𝑽𝑽𝒐𝒐 𝝎𝝎 = 𝑽𝑽𝒊𝒊 𝝎𝝎
𝟏𝟏

𝑹𝑹𝟏𝟏 + 𝟏𝟏
𝒋𝒋𝝎𝝎𝑪𝑪𝟏𝟏

∗ − 𝑹𝑹𝟐𝟐||
𝟏𝟏

𝒋𝒋𝝎𝝎𝑪𝑪𝟐𝟐
= −𝑽𝑽𝒊𝒊 𝝎𝝎

𝒋𝒋𝝎𝝎𝑪𝑪𝟏𝟏
𝟏𝟏 + 𝒋𝒋𝝎𝝎𝑹𝑹𝟏𝟏𝑪𝑪𝟏𝟏

𝟏𝟏
𝟏𝟏
𝑹𝑹𝟐𝟐

+ 𝒋𝒋𝝎𝝎𝑪𝑪𝟐𝟐

𝑯𝑯 𝝎𝝎 = −𝑹𝑹𝟐𝟐𝑪𝑪𝟏𝟏
𝒋𝒋𝝎𝝎

𝟏𝟏 + 𝒋𝒋𝝎𝝎𝑹𝑹𝟏𝟏𝑪𝑪𝟏𝟏
𝟏𝟏

𝟏𝟏 + 𝒋𝒋𝝎𝝎𝑹𝑹𝟐𝟐𝑪𝑪𝟐𝟐
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 Consider the situation shown below. The input to this circuit is the 
current of the current source, and the response is the voltage across the 
current source. Because the input to the circuit is sinusoidal, we can use 
phasors to analyze this circuit. We know the network function of the 
circuit is the ratio of the response phasor to the input phasor. In this 
case, the network function will be an impedance, 𝒁𝒁 = 𝑽𝑽

𝑰𝑰
= 𝐴𝐴∠𝐴𝐴

𝐵𝐵∠0𝐵

Resonant Circuits
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 Figure (b) shows some data that were obtained by applying an input with 
an amplitude of 2mA and a frequency that was varied. Row 1 of this table 
describes the performance of this circuit when 𝜔𝜔 = 200𝑜𝑜𝑎𝑎𝑎𝑎/𝑠𝑠. At this 
frequency, the impedance of the circuit is 𝒁𝒁 = 6.6∠48𝐵

0.002
= 3300∠48𝐵Ω. 

Resonant Circuits
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 Let’s convert this impedance from polar form to rectangular form:       
𝒁𝒁 = 2208 + 𝑗𝑗2452 Ω. 

 This looks like the equivalent impedance of a series resistor and inductor. 
The resistance would be 2208Ω and the inductance would be 12.26H.

 Recall that in rectangular form impedances are represented as 𝒁𝒁 = 𝑅𝑅 + 𝑗𝑗𝑗𝑗
where R is called the resistance and X is called the reactance. When 𝜔𝜔 is 
200 rad/s, we say that the reactance of this circuit is inductive because the 
reactance is positive and therefore could have been caused by a single 
inductor.

Resonant Circuits
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 The last row of the table describes the performance of this circuit when 𝜔𝜔
is 300 rad/s. Now  𝒁𝒁 = 7.4∠−43𝐵

0.002
= 3700 ∠−43𝐵 = 2706 − 𝑗𝑗2523 Ω. 

 Because the reactance is negative, it could not have been caused by a 
single inductor. This impedance looks like the equivalent impedance of a 
single resistor connected in series with a single capacitor:

𝑅𝑅 − 𝑗𝑗 1
𝜔𝜔𝐶𝐶

= 2706 − 𝑗𝑗2523Ω

 Equating the real parts shows that the resistance is 2706Ω . Equating the 
imaginary parts shows that the capacitance is 1.32𝜇𝜇𝑛𝑛

Resonant Circuits
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 The reactance of this circuit is inductive at some frequencies and 
capacitive at other frequencies. We can tell the reactance will be inductive 
and when it will be capacitive by looking at the last column of the table.

 When the input frequency is less than 250 rad/s, the reactance is 
inductive, but when the input frequency is greater than 250 rad/s, the 
reactance is capacitive. This frequency is called resonant frequency and is 
denoted as 𝜔𝜔0.

 At the resonant frequency, the impedance is purely resistive. Also, the 
magnitude of the impedance is maximum

Resonant Circuits
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 Consider the circuit below. This circuit is called the parallel resonant 
circuit. The equivalent impedance of the parallel resistor, inductor, and 
capacitor is

Resonant Circuits

𝒁𝒁 =
𝟏𝟏

𝟏𝟏
𝑹𝑹 + 𝒋𝒋𝝎𝝎𝑪𝑪 + 𝟏𝟏

𝒋𝒋𝝎𝝎𝑳𝑳
=

𝟏𝟏

𝟏𝟏
𝑹𝑹

𝟐𝟐
+ 𝝎𝝎𝑪𝑪− 𝟏𝟏

𝝎𝝎𝑳𝑳
𝟐𝟐
∠ − 𝒐𝒐𝒈𝒈𝒊𝒊−𝟏𝟏𝑹𝑹 𝝎𝝎𝑪𝑪 −

𝟏𝟏
𝝎𝝎𝑳𝑳

86



Department of Electrical and Computer Engineering, SNU
Prof. SungJune Kim

 The circuit exhibits some familiar behavior. The reactance will be zero 
when 𝜔𝜔𝐶𝐶 − 1

𝜔𝜔𝐿𝐿
= 0.

 The frequency that satisfies this equation is the resonant frequency 𝜔𝜔0. 
Solving this equation gives 𝜔𝜔0 = 1

𝐿𝐿𝐶𝐶

Resonant Circuits

𝒁𝒁 =
𝟏𝟏

𝟏𝟏
𝑹𝑹 + 𝒋𝒋𝝎𝝎𝑪𝑪 + 𝟏𝟏

𝒋𝒋𝝎𝝎𝑳𝑳
=

𝟏𝟏

𝟏𝟏
𝑹𝑹

𝟐𝟐
+ 𝝎𝝎𝑪𝑪− 𝟏𝟏

𝝎𝝎𝑳𝑳
𝟐𝟐
∠ − 𝒐𝒐𝒈𝒈𝒊𝒊−𝟏𝟏𝑹𝑹 𝝎𝝎𝑪𝑪 −

𝟏𝟏
𝝎𝝎𝑳𝑳
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 At 𝜔𝜔 = 𝜔𝜔0,𝑍𝑍 = 𝑅𝑅. The magnitude of Z decreases as 𝜔𝜔 deviates from 𝜔𝜔0. 
The angle of Z is positive when 𝜔𝜔 < 𝜔𝜔0 and negative when 𝜔𝜔 > 𝜔𝜔0, so the 
reactance is inductive when 𝜔𝜔 < 𝜔𝜔0 and capacitive when 𝜔𝜔 > 𝜔𝜔0

Resonant Circuits
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 The impedance can be put in the form

 where

 The parameters k, Q, and 𝜔𝜔0 characterize the resonant circuit. The 
resonant frequency 𝜔𝜔0 is the frequency at which the reactance is zero 
and where the magnitude of the impedance is maximum. k is the 
maximum value of the impedance. Q is called the quality factor of the 
resonant circuit. It controls how rapidly |Z| decreases.

Resonant Circuits

𝒌𝒌 = 𝑹𝑹,𝑸𝑸 = 𝑹𝑹
𝑪𝑪
𝑳𝑳 ,𝝎𝝎𝟏𝟏 =

𝟏𝟏
𝑳𝑳𝑪𝑪

𝒁𝒁 =
𝒌𝒌

𝟏𝟏 + 𝒋𝒋𝑸𝑸 𝝎𝝎
𝝎𝝎𝟏𝟏

− 𝝎𝝎𝟏𝟏
𝝎𝝎
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 The larger the value of Q, the more sharply peaked is the frequency 
response plot. We can quantify this observation by introducing the 
bandwidth of the resonant circuit. To that end, let 𝜔𝜔1 < 𝜔𝜔2 denote the 
frequencies where 

 There will be two such frequencies, one smaller than 𝜔𝜔0 and the other 
larger than 𝜔𝜔0. Let 𝜔𝜔1 < 𝜔𝜔0 and 𝜔𝜔2 > 𝜔𝜔0. The bandwidth BW of the 
resonant circuit is defined as 𝑑𝑑𝐵𝐵 = 𝜔𝜔2 − 𝜔𝜔1.

 The frequencies 𝜔𝜔1,𝜔𝜔2 are solutions of the equation

Resonant Circuits

𝒌𝒌
𝟐𝟐

=
𝒌𝒌

𝟏𝟏 + 𝑸𝑸𝟐𝟐 𝝎𝝎
𝝎𝝎𝟏𝟏

−𝝎𝝎𝟏𝟏
𝝎𝝎

𝟐𝟐

𝒁𝒁 𝝎𝝎 =
𝟏𝟏
𝟐𝟐
𝒁𝒁 𝝎𝝎𝟏𝟏 =

𝒌𝒌
𝟐𝟐
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 Doing some algebra, we get,

 It can be rearranged as

 This equation has two positive solutions

 Finally, the bandwidth is 

Resonant Circuits

±𝟏𝟏 = 𝑸𝑸
𝝎𝝎
𝝎𝝎𝟏𝟏

−
𝝎𝝎𝟏𝟏
𝝎𝝎

𝝎𝝎𝟐𝟐 ∓
𝝎𝝎𝟏𝟏𝝎𝝎
𝑸𝑸 −𝝎𝝎𝟏𝟏

𝟐𝟐 = 𝟏𝟏

𝝎𝝎𝟏𝟏 = −
𝝎𝝎𝟏𝟏
𝟐𝟐𝑸𝑸 +

𝝎𝝎𝟏𝟏
𝟐𝟐𝑸𝑸

𝟐𝟐
+ 𝝎𝝎𝟏𝟏

𝟐𝟐 𝒈𝒈𝒊𝒊𝒓𝒓 𝝎𝝎𝟐𝟐 =
𝝎𝝎𝟏𝟏
𝟐𝟐𝑸𝑸 +

𝝎𝝎𝟏𝟏
𝟐𝟐𝑸𝑸

𝟐𝟐
+ 𝝎𝝎𝟏𝟏

𝟐𝟐

𝑩𝑩𝑩𝑩 = 𝝎𝝎𝟐𝟐 − 𝝎𝝎𝟏𝟏 =
𝝎𝝎𝟏𝟏
𝑸𝑸
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Example 13.4-1 Series Resonant Circuit

 Figure 13.4-4 shows a series resonant circuit. Determine the relationship between
parameters k, Q, and 𝜔𝜔0 and the element values R, L, and C for the series resonant
circuit.
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Solution
 The input to this circuit is the voltage source, and the response is the current in the mesh. 

The network function is the ratio of the response phasor to the input phasor. In this case, the 
network function is the equivalent admittance of the series resistor, capacitor, and inductor:

 To identify k, Q, and 𝜔𝜔0, this network function must be rearranged so that it is in the form

 Rearranging the equation gives

 Comparing two equations gives,

𝐘𝐘 =
𝐈𝐈
𝐕𝐕

=
1

𝑅𝑅 + 𝑗𝑗𝜔𝜔𝐿𝐿 + 1
𝑗𝑗𝜔𝜔𝐶𝐶

𝐘𝐘 =
𝑘𝑘

1 + 𝑗𝑗𝑗𝑗 𝜔𝜔
𝜔𝜔0

− 𝜔𝜔0
𝜔𝜔

𝐘𝐘 =
1

𝑅𝑅 + 𝑗𝑗𝜔𝜔𝐿𝐿 + 1
𝑗𝑗𝜔𝜔𝐶𝐶

=
1

𝑅𝑅 + 𝑗𝑗 𝐿𝐿
𝐶𝐶

𝜔𝜔
1
𝐿𝐿𝐶𝐶

−

1
𝐿𝐿𝐶𝐶
𝜔𝜔

=
1
𝑅𝑅

1 + 𝑗𝑗 1
𝑅𝑅

𝐿𝐿
𝐶𝐶

𝜔𝜔
1
𝐿𝐿𝐶𝐶

−

1
𝐿𝐿𝐶𝐶
𝜔𝜔

𝑘𝑘 = 1
𝑅𝑅

,𝑗𝑗 = 1
𝑅𝑅

𝐿𝐿
𝐶𝐶

, and 𝜔𝜔0 = 1
𝐿𝐿𝐶𝐶
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Example 13.4-2 Frequency Response of a Resonant Circuit

 Figure 13.4-5 shows the magnitude frequency response of a resonant circuit. What
are the values of the parameters k, Q, and 𝜔𝜔0?
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Solution

 The first step is to find the peak of the frequency response and determine the values of the 
frequency and the impedance corresponding to that point. This frequency is the resonant 
frequency 𝜔𝜔0, and the impedance at this frequency is 𝑘𝑘. The frequency and the impedance is

 Next, the frequency 𝜔𝜔1 and 𝜔𝜔2 are identified by finding the points on the frequency response 
where the value of the impedance is 𝑘𝑘/ 2 = 2828 Ω.

 The quality factor Q is calculated as

 Then the network function can be expressed as

𝜔𝜔0 = 2𝜋𝜋 2249 = 14,130 𝑜𝑜𝑎𝑎𝑎𝑎/𝑠𝑠

𝑘𝑘 = 4000 Ω

𝜔𝜔1 = 2𝜋𝜋 2172 = 13, 647 𝑜𝑜𝑎𝑎𝑎𝑎/𝑠𝑠 and 𝜔𝜔2 = 2𝜋𝜋 2332 = 14, 653 𝑜𝑜𝑎𝑎𝑎𝑎/𝑠𝑠

𝑗𝑗 =
𝜔𝜔0

𝑑𝑑𝐵𝐵
=

𝜔𝜔0

𝜔𝜔2 − 𝜔𝜔1
=

14,130
14,653 − 13,647

= 14

𝒁𝒁 𝜔𝜔 =
4000

1 + 𝑗𝑗14 𝜔𝜔
14,130 −

14,130
𝜔𝜔
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Example 13.4-3 Parallel Resonant Circuit

 Design a parallel resonant circuit that has 𝑘𝑘 = 4000 Ω, 𝑗𝑗 = 14, and  ω0 = 14,130 𝑜𝑜𝑎𝑎𝑎𝑎/𝑠𝑠
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Solution

 From Table 13.4-1, we have the relationship between parameters k, Q, and 𝜔𝜔0 and the 
element values R, L, and C for the parallel resonant circuit. These relationships can be used 
to calculate R, L, and C from k, Q, and 𝜔𝜔0. First,

and

 Rearranging these equations gives

 So,

1
𝐿𝐿𝐶𝐶

= 𝜔𝜔0 = 14,130 𝑜𝑜𝑎𝑎𝑎𝑎/𝑠𝑠

𝑅𝑅 = 𝑘𝑘 = 4000 Ω

𝑅𝑅
𝐶𝐶
𝐿𝐿

= 𝑗𝑗 = 14

14 𝐿𝐿
4000

= 𝐶𝐶 =
1

14,130 𝐿𝐿

𝐿𝐿 = 4000
14,130 14

= 20 𝑚𝑚𝐻𝐻 and 𝐶𝐶 = 1
14,1302 0.002

= 0.25 𝜇𝜇𝑛𝑛
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 The gain of an op amp is not infinite; rather, it is finite and decreases 
with frequency. The gain 𝐴𝐴(𝜔𝜔) of the operational amplifier is a function 
of 𝜔𝜔 given by

 𝐴𝐴𝑜𝑜 is the dc gain and 𝜔𝜔1 is the corner frequency. The dc gain is 
normally greater than 104 and 𝜔𝜔1 is less than 100 rad/s. 

Frequency Response of Op Amp Circuits

𝑨𝑨 𝝎𝝎 =
𝑨𝑨𝒐𝒐

𝟏𝟏 + 𝒋𝒋𝝎𝝎/𝝎𝝎𝟏𝟏
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Example 13.5-1 Frequency Response of a Noninverting Amplifier

 Consider the noninverting amplifier in Figure 13.5-2a. Replacing the op amp with a
frequency-dependent op amp gives the circuit shown in Figure 13.5-2b. Suppose that
𝑅𝑅2 = 90 𝑘𝑘Ω and 𝑅𝑅1 = 10 𝑘𝑘Ω and that the parameters of the op amp are 𝐴𝐴𝑜𝑜 = 105
and 𝜔𝜔1 = 10 𝑜𝑜𝑎𝑎𝑎𝑎/𝑠𝑠. Determine the magnitude Bode plot for both the gain of the op
amp 𝐀𝐀(ω) and the network function of the noninverting amplifier 𝐕𝐕𝑜𝑜/𝐕𝐕𝑠𝑠.

FIGURE 13.5-2
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Solution(1/4)

 Since we have 𝐀𝐀 𝜔𝜔 = 𝐴𝐴𝑜𝑜
1+𝑗𝑗𝜔𝜔/𝜔𝜔1

, the Bode plot of 20 log 𝐀𝐀 𝜔𝜔 is as shown in Figure 13.5-
3. Note that the magnitude is equal to 1 (0 dB) at 𝜔𝜔 = 106𝑜𝑜𝑎𝑎𝑎𝑎/𝑠𝑠.

FIGURE 13.5-3
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Solution(2/4)

 Then, writing a node equation at in Figure 13.5-2b gives

 The frequency-dependent model of the op amp is described by

 Combining these equations gives

where 𝑘𝑘 = (𝑅𝑅1 + 𝑅𝑅2)/𝑅𝑅1 is the gain of the noninverting amplifier when the op amp is 
modeled as an ideal op amp.

𝐕𝐕𝑖𝑖 + 𝐕𝐕𝑠𝑠
𝑅𝑅1

+
𝐕𝐕𝑖𝑖 + 𝐕𝐕𝑠𝑠 + 𝐴𝐴(𝜔𝜔)𝐕𝐕𝑖𝑖

𝑅𝑅2
= 0

𝐕𝐕𝑜𝑜 = −𝐀𝐀 𝜔𝜔 𝐕𝐕𝑖𝑖

𝐕𝐕𝑜𝑜
𝐕𝐕𝑠𝑠

=
𝐀𝐀 𝜔𝜔

1 + 𝐀𝐀 𝜔𝜔
𝑘𝑘
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Solution(3/4)

 Substituting for 𝐀𝐀 𝜔𝜔 , we get

where 𝐴𝐴𝑐𝑐 is the gain of the noninverting amplifier defined as 𝐴𝐴𝑐𝑐 = 𝐴𝐴𝑜𝑜
1+𝐴𝐴𝑜𝑜𝑘𝑘

and 𝐴𝐴2 = 1 +
𝐴𝐴𝑜𝑜
𝑝𝑝

. Usually, 1 ≪ 𝐴𝐴𝑜𝑜
𝑝𝑝

, so 𝐴𝐴𝑐𝑐 ≅ 𝑘𝑘 and 𝐴𝐴2 = 𝐴𝐴𝑐𝑐
𝑝𝑝

. Then

where 𝜔𝜔0 = 𝐴𝐴𝑜𝑜𝜔𝜔1/𝑘𝑘 is the corner frequency of the noninverting amplifier. Notice that 
the product of the dc gain and the corner frequency is

This is called the gain-bandwidth product. Notice it depends only on the op amp, not 
on 𝑅𝑅1 and 𝑅𝑅2.

𝑉𝑉𝑜𝑜
𝑉𝑉𝑠𝑠

=
𝐴𝐴𝑜𝑜/(1 + 𝑗𝑗𝜔𝜔/𝜔𝜔1)

1 + (𝐴𝐴𝑜𝑜/𝑘𝑘)/(1 + 𝑗𝑗𝜔𝜔/𝜔𝜔1)
=

𝐴𝐴𝑜𝑜
1 + 𝑗𝑗𝜔𝜔/𝜔𝜔1 + 𝐴𝐴𝑜𝑜/𝑘𝑘

=
𝐴𝐴𝑐𝑐

1 + 𝑗𝑗𝜔𝜔/(𝐴𝐴2𝜔𝜔1)

𝑉𝑉𝑜𝑜
𝑉𝑉𝑠𝑠
≅

𝑘𝑘
(1 + 𝑗𝑗𝜔𝜔/𝜔𝜔0)

𝜔𝜔0𝑘𝑘 =
𝐴𝐴𝑜𝑜𝜔𝜔1
𝑘𝑘 𝑘𝑘 = 𝐴𝐴𝑜𝑜𝜔𝜔1
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Solution(4/4)

 For this example, 𝑘𝑘 = 10, and 𝐴𝐴𝑜𝑜 = 100 𝑎𝑎𝑑𝑑, and, thus, we have 𝐴𝐴𝑐𝑐 = 10, 𝐴𝐴2 = 104, 
and ω1𝐴𝐴2 = 105.

 Therefore,

 This circuit has a magnitude Bode plot as shown in color in Figure 13.5-3. Note that 
noninverting op amp has a low-frequency gain of 20 dB and a break frequency of 105
rad/s. The gain-bandwidth product remains 106 rad/s

𝐕𝐕𝑜𝑜
𝐕𝐕𝑠𝑠

=
10

1 + 𝑗𝑗10−5𝜔𝜔

FIGURE 13.5-3
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How to find out the network function

 When the circuit with one energy storage element has a sinusoid input, 

 Where 𝑥𝑥(𝑡𝑡) is the current passing through the inductor, or the voltage 
across the capacitor. Converting this equation to the frequency domain,

 Then, 

 We can get the voltage across the inductor or the current passing through 
the capacitor by multiplying 𝑗𝑗𝜔𝜔 to the 𝑿𝑿(𝜔𝜔)

𝑎𝑎
𝑎𝑎𝑡𝑡
𝑥𝑥 𝑡𝑡 +

𝑥𝑥 𝑡𝑡
𝜏𝜏

= 𝐾𝐾𝑤𝑤𝑗𝑗𝜔𝜔𝑜𝑜

𝑗𝑗𝜔𝜔𝑿𝑿 𝜔𝜔 +
𝑿𝑿 𝜔𝜔
𝜏𝜏 = 𝐾𝐾

𝑿𝑿 𝜔𝜔 =
𝐾𝐾

𝑗𝑗𝜔𝜔 + 1
𝜏𝜏
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How to find out the network function

 The network function of the circuit with one energy storage element is 

𝑯𝑯 𝜔𝜔 = 𝐻𝐻0
1+𝑗𝑗𝜔𝜔𝑧𝑧
1+𝑗𝑗𝜔𝜔𝑝𝑝

, where 𝑝𝑝 = 1
𝜏𝜏
.

 When the frequency is zero, 𝐻𝐻(0) = 𝐻𝐻0, and when the frequency is 
infinity, 𝐻𝐻(∞) = 𝑝𝑝

𝑧𝑧
. Combining these equations give

𝑯𝑯 𝜔𝜔 =
H0 + j𝜔𝜔 𝜏𝜏𝐻𝐻 ∞

1 + 𝑗𝑗𝜔𝜔 𝜏𝜏
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How to find out the 2nd order network function

 When we have two energy storage elements in the circuit, the network 
function of the circuit is 𝑯𝑯 𝜔𝜔 = 𝑎𝑎0+𝑎𝑎1(𝑗𝑗𝜔𝜔)+𝑎𝑎2(𝑗𝑗𝜔𝜔)2

1+𝑏𝑏1(𝑗𝑗𝜔𝜔)+𝑏𝑏2(𝑗𝑗𝜔𝜔)2
.

 The only way for a coefficient 𝜔𝜔 to occur in a transfer function of a 
lumped circuit is as a multiplicative factor to a capacitor or an inductor, 
as in 𝐶𝐶𝑖𝑖s or 𝐿𝐿𝑗𝑗s. Let us initially limit our discussion to just capacitors and 
then generalize to include the inductors.

 In that case, the 𝑏𝑏1 coefficient must be a linear combination of all the 
capacitors in the circuit. The 𝑏𝑏1 term cannot contain a term 𝐶𝐶𝑖𝑖𝐶𝐶𝑗𝑗 because 
such a term must have an 𝜔𝜔2 multiplier. The 𝑏𝑏2 coefficient must consist 
of a linear combination of two-way products of different capacitors. The 
same argument can be applied to 𝑎𝑎𝑝𝑝 coefficients in the numerator and,

𝑯𝑯 𝜔𝜔 =
𝑎𝑎0 + 𝛼𝛼11𝐶𝐶1 + 𝛼𝛼12𝐶𝐶2 𝑗𝑗𝜔𝜔 + 𝛼𝛼212𝐶𝐶1𝐶𝐶2 𝑗𝑗𝜔𝜔 2

1 + 𝛽𝛽11𝐶𝐶1 + 𝛽𝛽12𝐶𝐶2 𝑗𝑗𝜔𝜔 + 𝛽𝛽212𝐶𝐶1𝐶𝐶2 𝑗𝑗𝜔𝜔 2
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How to find out the 2nd order network function
 The network function is determined independently of the specific value 

of the capacitor and must be valid for all capacitor values including zero 
and infinity. Let us look at a reduced case when all capacitors, except 𝐶𝐶𝑖𝑖, 
have a value of zero. The transfer function reduces to the first-order one.

 The reduced system has a time constant of 𝜏𝜏𝑖𝑖0 = 𝑅𝑅𝑖𝑖0𝐶𝐶𝑖𝑖 where 𝑅𝑅𝑖𝑖0 is the 
resistance seen by the capacitor 𝐶𝐶𝑖𝑖 looking into port i with all other 
reactive elements their zero value, namely open-circuited capacitors and 
short-circuited inductors, and the independent sources nulled.

 Hence, the first denominator coefficient 𝑏𝑏1 is simply given by the sum of 
these zero-value time constants. 𝑏𝑏1 = 𝜏𝜏10 + 𝜏𝜏20. 

 Same arguments can be applied to an inductor

𝑯𝑯 𝜔𝜔 =
𝑎𝑎0 + 𝛼𝛼1𝑖𝑖𝐶𝐶𝑖𝑖 𝑗𝑗𝜔𝜔
1 + 𝛽𝛽1𝑖𝑖𝐶𝐶𝑖𝑖 𝑗𝑗𝜔𝜔
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How to find out the 2nd order network function
 When 𝐶𝐶𝑖𝑖 → ∞ while the other elements are still at zero value, the transfer 

function from the input to the output reduces to a constant,

 Where 𝐻𝐻𝑖𝑖 is a first-order transfer constant between the input and the 
output with the single reactive element i at its infinite value and all others 
zero-valued. We have already determined 𝛽𝛽1𝑖𝑖 to be 𝑅𝑅𝑖𝑖0, which leads to 
𝛼𝛼1𝑖𝑖 = 𝑅𝑅𝑖𝑖0𝐻𝐻𝑖𝑖. Therefore, 𝛼𝛼1𝑖𝑖𝐶𝐶𝑖𝑖 = 𝑅𝑅𝑖𝑖0𝐶𝐶𝑖𝑖𝐻𝐻𝑖𝑖 = 𝜏𝜏𝑖𝑖0. Thus, we can write 

𝐻𝐻𝑖𝑖 ≡ 𝐻𝐻 �𝐶𝐶𝑖𝑖→∞
𝐶𝐶𝑗𝑗→0
𝑖𝑖≠𝑗𝑗

=
𝛼𝛼1𝑖𝑖

𝛽𝛽1𝑖𝑖

𝑎𝑎1 = 𝜏𝜏10𝐻𝐻1 + 𝜏𝜏20𝐻𝐻2
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How to find out the 2nd order network function
 Assume that we set 𝐶𝐶𝑖𝑖 to infinity and consider a capacitor 𝐶𝐶𝑗𝑗 at port j 

while all other capacitors have a value of zero. This is a first-order 
system, yet different from the one we used to determine 𝑏𝑏1. The time 
constant of this new first-order system is

 Where 𝑅𝑅𝑗𝑗𝑖𝑖 is the resistance seen at port j with port i infinite valued. 
Evaluating the network function with 𝐶𝐶𝑖𝑖 → ∞ and all other capacitors 
other than 𝐶𝐶𝑖𝑖 and 𝐶𝐶𝑗𝑗 at their zero value, we obtain

 Equating the coefficient of s in the denominator, 

𝛽𝛽2
𝑖𝑖𝑗𝑗 = 𝛽𝛽1𝑖𝑖𝑅𝑅𝑗𝑗𝑖𝑖 = 𝑅𝑅𝑖𝑖0𝑅𝑅𝑗𝑗𝑖𝑖

𝜏𝜏𝑗𝑗𝑖𝑖 = 𝑅𝑅𝑗𝑗𝑖𝑖𝐶𝐶𝑗𝑗

𝐻𝐻 𝜔𝜔 �
𝐶𝐶𝑖𝑖→∞

=
𝐶𝐶𝑖𝑖 𝑗𝑗𝜔𝜔 𝛼𝛼1𝑖𝑖 + 𝛼𝛼2

𝑖𝑖𝑗𝑗𝐶𝐶𝑗𝑗𝑠𝑠

𝐶𝐶𝑖𝑖 𝑗𝑗𝜔𝜔 𝛽𝛽1𝑖𝑖 + 𝛽𝛽2
𝑖𝑖𝑗𝑗𝐶𝐶𝑗𝑗 𝑗𝑗𝜔𝜔

=
𝛼𝛼1𝑖𝑖

𝛽𝛽1𝑖𝑖

1 +
𝛼𝛼2
𝑖𝑖𝑗𝑗

𝛼𝛼1𝑖𝑖
𝐶𝐶𝑗𝑗 𝑗𝑗𝜔𝜔

1 +
𝛽𝛽2
𝑖𝑖𝑗𝑗

𝛽𝛽1𝑖𝑖
𝐶𝐶𝑗𝑗 𝑗𝑗𝜔𝜔

𝑏𝑏2 = 𝑅𝑅10𝐶𝐶1𝑅𝑅2𝑖𝑖 𝐶𝐶2
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Filters

Filters
– Eliminate unwanted signal from the loop
– Low Pass, High Pass, Band Pass, Notch, …

Intro. to BME, 2014 SNU



Passive First-Order Low Pass Filter

• Pass desired Audio signal and 
reject undesired RF signal

Intro. to BME, 2014 SNU



Passive First-Order High Pass Filter

 Pass desired High frequency 
signal and reject undesired 
low frequency signal

Intro. to BME, 2014 SNU



Passive Second-Order Low Pass Filter

 To increase the attenuation of 
transfer function

 Order of Filter

 Number of C and L

Intro. to BME, 2014 SNU

𝑽𝑽𝒐𝒐 𝝎𝝎 = 𝑽𝑽𝒊𝒊 𝝎𝝎

𝟏𝟏
𝒋𝒋𝝎𝝎𝑪𝑪

𝑹𝑹 + 𝒋𝒋𝝎𝝎𝑳𝑳 + 𝟏𝟏
𝒋𝒋𝝎𝝎𝑪𝑪

= 𝑽𝑽𝒊𝒊 𝝎𝝎
𝟏𝟏

𝟏𝟏 + 𝒋𝒋𝝎𝝎𝑹𝑹𝑪𝑪 + 𝒋𝒋𝝎𝝎 𝟐𝟐𝑳𝑳𝑪𝑪

𝑯𝑯 𝝎𝝎 =
𝑽𝑽𝒐𝒐 𝝎𝝎
𝑽𝑽𝒊𝒊 𝝎𝝎

=
𝟏𝟏

𝟏𝟏 + 𝒋𝒋 𝟐𝟐𝒋𝒋(𝝎𝝎/𝝎𝝎𝒅𝒅) + 𝒋𝒋𝝎𝝎/𝝎𝝎𝒅𝒅
𝟐𝟐

1ζ >

1ζ =

1ζ <



Passive Second-Order High Pass Filter

 To increase the attenuation of 
transfer function

 Order of Filter

 Number of C and L

1ζ >
1ζ =

1ζ <

Intro. to BME, 2014 SNU

𝑽𝑽𝒐𝒐 𝝎𝝎 = 𝑽𝑽𝒊𝒊 𝝎𝝎
𝒋𝒋𝝎𝝎𝑳𝑳

𝟏𝟏
𝒋𝒋𝝎𝝎𝑪𝑪 + 𝑹𝑹 + 𝒋𝒋𝝎𝝎𝑳𝑳

= 𝑽𝑽𝒊𝒊 𝝎𝝎
𝒋𝒋𝝎𝝎 𝟐𝟐𝑳𝑳𝑪𝑪

𝟏𝟏 + 𝒋𝒋𝝎𝝎𝑹𝑹𝑪𝑪 + 𝒋𝒋𝝎𝝎 𝟐𝟐𝑳𝑳𝑪𝑪

𝑯𝑯 𝝎𝝎 =
𝑽𝑽𝒐𝒐 𝝎𝝎
𝑽𝑽𝒊𝒊 𝝎𝝎

=
−(𝝎𝝎/𝝎𝝎𝒅𝒅)𝟐𝟐

𝟏𝟏 + 𝒋𝒋 𝟐𝟐𝒋𝒋(𝝎𝝎/𝝎𝝎𝒅𝒅) + 𝒋𝒋𝝎𝝎/𝝎𝝎𝒅𝒅
𝟐𝟐



Active First-Order Low Pass Filter

• Inverting Amp + Feedback 
Capacitor

• Identical frequency response 
with Passive filter

• Very Low Output impedance
– Negligible Loading Effect

Intro. to BME, 2014 SNU



Active First-Order High Pass Filter

 Inverting Amp + Input 
Capacitor

 Identical frequency response 
with Passive filter

 Very Low Output impedance
 Negligible Loading Effect

Intro. to BME, 2014 SNU



Active High-Order Filters

Low Pass Filters

High Pass Filters

Intro. to BME, 2014 SNU



Bandpass and Band-Reject Filters

Butterworth Filters
– Maximally Flat Magnitude response in pass band
– High Attenuation Rate

Chebyshev Filters
– Maximum Attenuation Rate
– Ripple in pass band

Bessel Filters
– Maximally flat time delay in response to step input
– Attenuation Rate is very gradual

Intro. to BME, 2014 SNU
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