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L Inear circult

Superposition:
vin,l - vout,l
vin,z - vout,Z

vin,l + vin,z - vout,l + vout,Z

Homogeneity:
Vin = Vout

kvin - kvout
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At any fixed frequency

Between the input and the output sinusoid, these are constant.
o The ratio of the amplitude
o The difference of the phase angles
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At any fixed frequency

= Between the input and the output sinusoid, these are constant.
o The ratio of the amplitude
o The difference of the phase angles

Voltage, 2 V/div

Input — / —

Output | / N\ |/

Time (125 ps/div)
FIGURE 13.2-2
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At any fixed frequency

= Between the input and the output sinusoid, these are constant.

o The ratio of the amplitude
o The difference of the phase angles
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At any fixed frequency

= Between the input and the output sinusoid, these are constant.
o The ratio of the amplitude
o The difference of the phase angles

Voltage, 2 V/div
P N

A1\
/ \

— phase shift = wAt

Time (125 ps/div)
FIGURE 13.2-2
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Network function

Changing the frequency of the input changes the gain and phase shift.
o The gain and phase shift is the function of the frequency

o When X is the input and Y is the output, we define a Network function at
steady state as follows:

gain = [H(w)| = 3}

phase shift = /H(w) = /Y(w) — /X(w)
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Network function - example

V. (w V w 1
ln( ) + out( ) + ].a)CVOUt(w) — O ]COC
R4 R,

Vout () _ —R; !

|1
I
NN—2
R;
H((U) B Vin(w) B Rl +ijR1R2 A= >_'

& Vin(w) Ct) \_;OUJ[(C())
gain = |H(w)] = ——21 .
J 1+ w?C?R5 T
phase shift = 2zH(w) = 180° — tan~1(wCR,) FIGURE 13.2-3
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Network function - example

joC
when R1 = Sk.Q, Rz = SOk.Q, C = 2nF

Vour (@) ~10 R,

|1

I
ANA—

R;
H@) =" = T+ jw 10000 VWV— >_.
R3§

‘0 V.. (o) C_>

J1+ w?/108 1T

Voutl®)

gain = |[H(w)| =

phase shift = 2zH(») = 180° — tan"1(x»/10000) FIGURE 13.2-3
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Network function

Frequency response
o Equations that represent the gain and phase shift as functions of frequency
o The same information can be represented by a table or by graphs

The network function really does represent the behavior of the circuit.
o Suppose that v;,,(t) = 0.4 cos(5000t + 45°) V

~10
H(w) = — 8.94,153°
(@) = T775000/10000

V() = H@)V; (@) = (8.942153°) (0.4245°) = 3.58,198°

o Back in the time domain, the steady-state response is

Ve (t) = 3.58 cos(5000t + 198°) V
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Example 13.2-1 Network Function of a Circuit

Consider the circuit shown in Figure 13.2-4a. The input to the circuit is the
voltage of the voltage source v;(t). The output is the voltage v, (t) across
the series connection of the capacitor and the 16-kQ resistor. The network
function that represents this circuit has the form

8 kQ
VW -
o T
0.23 uF
1
(a)

The network function depends on two parameters, z and p. The parameter z
Is called the zero of the circuit and the parameter is called the pole of the
circuit. Determine the values of z and of p for the circuit in Figure 13.2-4a
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Solution

= The impedances of the capacitor and the 16-kQ resistor are connected in
series. The equivalent impedance of this combination is

Z,(w) = 16kQ +

j(0.23uF)w

= The equivalent impedance is connected in series with the 8-kQ resistor. V; (w)
is the voltage across the series impedances, and V, (w) is the voltage across
the equivalent impedance Z,(w). Apply the voltage division principle to get

8 kQ
1 —\\W * O
_|_
16kQ + -
_ j(0.23uF)w 16 kO g
V,(w) = 1 Vi(w) V() (j) V(o)
8kQ + 16kQ + -

](0.23MF)(1) jw(0.23)MQ —

. o
(b)
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Solution

Doing some algebra gives

1 + 16kQ(0.23uF)w

Vo (@) = T~ 5ka + 16k0) (0. 23uF)w (Y
1+j2
Equating to the network function H(w) = 1+]§ gives
p
- ! _1 = 181.16
P = 8kQ +16k0)(0.23uF) t 0.00552 " g
- 1 _8sketieke 1
2= 8ka(0.23uF)  8ke P~ 0.0036g 2’1.74rad/s
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Example 13.2-2 Network Function of a Circuit

Consider the circuit shown in Figure 13.2-5a. The input to the circuit is the
voltage of the voltage source v;(t). The output is the voltage v, (t) across
the series connection of the inductor and the 2Q resistor. The network

function that represents this circuit is

8Q

NNA—2 o
142 0
H(CO) — VO(C{)) — 0.2 2) o0 () o)

Determine the value of the inductance L.
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Solution

= The impedances of the inductor and the 2-Q resistor are connected in series.
The equivalent impedance is

Z,(w) =2+ jwlL

= The equivalent impedance is connected in series with the 8-Q resistor. V; (w)
is the voltage across the series impedances, and V, (w) is the voltage across
the equivalent impedance Z,(w). Apply the voltage division principle to get

8Q
AMA 5
.+.
2Q
20 + jol
V = V Vi(CO) i Vo(co)
ol®) = g0t 20 1jeL V1@ ©
JjwL
o
(b)
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Solution

Doing some algebra gives

)
1 1+jwsa
Hw) =z ———42— V()
I1+jogn+2n
Where
B L 1 L 80+20
P 8a+r20 7 “"20° 20 P
142
Equating to the network function H(w) = 0.2 1+]_§ gives
25
B L 1

&~ N

1
5’ 10 25
4H
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Example 13.2-3 Network Function of a Circuit

Consider the circuit shown in Figure 13.2-6. The input to the circuit is the
voltage of the voltage source v;(t). The output is the voltage across the
capacitor, v, (t). The network function that represents this circuit is

_Vo(a)) _ 3
Vi(w) 1 —I-] 1 +] )

({% 40Q %v(f) A v, (1) OmF V(1)

Determine the value of the inductance L and of the gain A of the voltage-
controlled voltage source (VCVS).
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Solution

The circuit consists of two meshes. In the left-hand mesh, the resistor and the

[ |
inductor form the voltage divider.

V(@) = V() —em
) = VRS0 + 40

= The resistor and the capacitor form the voltage divider in the right-hand mesh

Z_O
Vo) = AVy(w) —
4Q) + —
JoL Jw 4 Q
N\N—2 O
! 20 )
Viiw) (F) (li(w) 4Q V(0 AV, (o) Lo T Q= V()
1 j@
. o o
19
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Solution

Two meshes are cascaded. With some algebra,

20
V(@) = V() A 9 vy () —2 -
o\W) = lw =Vi\w
jwL + 40 20 4()
4Q+jw 1+]a)4Q 1+jw20
Where the poles are,
40 1 20 1
P1 = L _TL, p2_4Q_Tc

20



Hy

L_ow-pass filter whose network function is H(w) =

1+ jwi0
First-order low-pass filters have network functions of the form
H
SR 1+ @ 1
+JCO_() @
The gain and phase shift of the filter are ”
) P _+ ANA—
R1 RZ
. |Ho — AAA——]
gamn = ——
L2 - .
s Vo) () Rs §Vout(w)
phase shift = /H, — tan™' (w/wy) T

|Hy| Is called the dc gain, and w is called the corner frequency, the 3-
dB frequency, or the half-power frequency
2ep5*,  Department of Electrical and Computer Engineering, SNU
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L_ow-pass filter whose network function is H(w) =

H, is called the DC gain as H(0) = H,

1+]—

w, is called the half power frequency. Vito) ()
o At low frequencies, power delivered to R is,

p— 1 |vout((‘))|2 _ 1 |H0vin(w) |2 _ |HO|2 vin(w)z
2 R3 2 R; 2 R3

o When w = wy, power delivered to R is,

1 [voue (@) 1[H(wp)vin(wo) ]* |Hy|? vy (w9)?

2  Rj 2 R; 4 R
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Low-pass filter whose network function is H(w) = 1+]_
wo

The gain and phase of the network function changes as frequency changes.
0 When w K wy, 1+j-~1,  gain=|H|  phase=0°
0

H
o0 When w = wy, 1+jw£= 1+, gain=|—\/%l, phase = —45°
0

LW W w
o When w > Wy, 1+]w_0~]w_0; galnzzolHOl’ phasez_goo
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Low-pass filter whose network function is H(w) = —2

w
1+ j—
wo
magnitude

Hﬂ I I ! | | | | 1 1
0.8H -
06H .

T
04H -
0.2H -
1
=) Ia.r'ﬂ 10 Lu'ﬂ
1

w
1] -
o
(=]
1] -
=
z i
™

-a0 1 1 | | | | | 1 1

0 ""'Iﬂ 2 ""'Iﬂ 3 Lu'ﬂ 4 """Iﬂ 5 Ln.,'ﬂ G Lu'ﬂ 7 """Iﬂ 8 Ln.,'ﬂ 9 Ln.,'ﬂ 10 Lu'ﬂ

Frequency, rad/s
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L_ow-pass filter whose network function is H(w) =

Hy

.
1+4j—
wo
magnitude
20 log., H, Cr e , —r—— —
- n
0
T 20logH, 20 b
= 0
8
=
N —
20 log H, - 40
0
15

< H, degrees
&
]

_m i i PR S T A R | i i PR R T S A | i i I R S | I — —

0.1 Ln.,'ﬂ ""’Iﬂ

Frequency, rad/s
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Low-pass filter circuits

PHASE SHIFT FIRST-ORDER LOW-PASS FILTER CIRCUIT DESIGN EQUATIONS
R;
R, N\
o—AWV I o R,
C Ho=-2=
90° < phase shift < 180° b
1
==
RC
O J_ O
—A\\VV
Ry
R, (1 Ry
s 3
Ry +R, R,
—90° < phase shift < 0° R2 § =cC
R, + R
0= Rl R c2
1-2
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Low-pass filter circuits

PHASE SHIFT FIRST-ORDER LOW-PASS FILTER CIRCUIT DESIGN EQUATIONS
Ry
R, MV
o—AMW I o R,
| 2
& 0""R
90° < phase shift < 180° 1
1
o
lj> O R,C
e, _I_ O
V_=V,=0
> - 1 -~ _+](UC Vout=_ Vout
R4 1 R; R,
Ra|l=
jwC

Vour _ Ry 1
Vi R, 1+ jwR,C

=
N
S
—/
Il
Il
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‘ Low-pass filter circuits

magnitude
2'D|Dg1ﬂ|'|ﬂ 1 T T LA B i | UL |
- |
=
T 20logH, -20 |
= 0
g N
R I
| -
2ﬂ|og|-|ﬂ_4ﬂ i M A | i PR R i ]
EL‘I...J[II wp "H:iu..JII:II
180
165

< H, degrees
B & B
| ] |

—

=

n
|

e

S

0.1 “p wp 10 wp
Frequency, rad/s
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Low-pass filter circuits

FIRST-ORDER LOW-PASS FILTER CIRCUIT

DESIGN EQUATIONS

PHASE SHIFT
o—AMWV +
Ry _
R, Ry
o= R +R, (1 ' ?4)
—90° < phase shift < 0° R2§ ——
Ry +R,
Ry @o = RlRZC
O ® O
R, || —r R,
v,  felljec T+jwCR, R, R 1
Ry + Ry + jwCRiR; Ry + Ry | JORiR,

V.. 1 -
" Rllige TR T55wcR,

|4 V R; + R R
out out: 3 4:1+ 3

vV, V_ R, R,
1% Vour V- R R 1

H((D) — out — out — 2 <1+_3> T
Vi-n V+ Vi-n R1+R2 R4 1+ jw 1422

R{+ R,

Ri + R,

¢




Low-pass filter circuits

20 log|H| , dB

magnitude
2{"{@10H0 ' T U e | : o
20 log H, -20 |-
‘\H‘"\H
"“\.\_\_‘MH
b ‘H-\"x._‘

zﬂleﬂ_m i i i ..|‘;.|1| i i i i aal i i i II-:H;.I

0

168

< H, degrees
&
]

0.1 wo “p 10 “p
Frequency, rad/s
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Bode plot

= Achart of gain in decibels and phase in degrees versus the logarithm of

frequency.
o The use of logarithms expands the range of frequencies portrayed on the
horizontal axis.

—
o

|

S
- 0 Asymptotic
Y S S e - --E --..t______ curve
o0 xac el
S -10 curve -ﬁihn
o ..hl
S 1 g
(a)
0
g NN
%D o \\\
2 ~
\é'. '--...______.___“-
-90
0.10)0 H)O 10(00
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Bode plot when network function H = Hz® = Hel®

= Logarithmic gain MAGNITUDE, H 20 log H (dB)
0.1 —20.00
o logarithmic gain = 20 log,, H 02 —15.98
0.4 —7.96
o The unit is decibel (dB) 0.6 —4.44
. . 1.0 0.0
o Also called gain in dB % i
1.4 2.92
1.6 4.08
- Phase 2.0 6.02
3.0 9.54
0 phase = o 4.0 12.04
o 5.0 13.98
o The unit is degrees (°) 6.0 _
7.0 16.90
10.0 20.00
100.0 40.00
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Bode plot when network function H(w) =

1+]—

The logarithmic gain is

1

20 log,oH = 20 10910\/1 TAPYPW = —-2010g10y1 + (w/wy)?
0

2
o For small frequencies, w < wy, 1+ (wﬂ) = 1
0

20 log,oH = —20 log,,V1 = 0 dB

o For large frequencies, w > wy, 1+ (w )2 = (2)2

wWo wWo

20 logloH = _20 loglOV ((1.)/(1)0)2
= —201log g(w/wgy)
= 201log19 wo — 20log,ow dB
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Bode plot when network function H(w) = T
W

o The value of the slope of the low-frequency is 0 dB/decade, because

20 log1p|H(w)| = 20log,y 1

o The value of the slope of the high-frequency is

20 logyolH(w3)| — 20 logso|H (w4)]

[ —1 Ezo o8y oMoy ope o 222l 22 o)
0J10W> 0d10W1 81002 1081001
& 20 log olHlemz)|
_ 20 logyo (wo/w2) — 20 1logi9(wo/wq) Y
lOglo(l)Z — lOglo(l)l :r;l;

—20 loglo ((()2/(,()1) z' i S1ope = 20.10810Ma)| - 20 I0g) Mty )
_ £ 20logioMo logy g, — 1083 gy
l0g10(w2/w1) = 20 log; (@)
= _20 dB/decade m{lo:Lnumm- Sf.'d“:::.
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Bode plot when network function H(w) =

1+]—

Asymptotic Bode plot

o Low-frequency asymptote for w < wg, and high-frequency asymptote for
w > wy.
o These asymptotes are good approximation to the Bode plot when w «< wy

or w > wy. Near w = wy, the asymptotic Bode plot deviates from the
exact Bode plot.

Corner frequency

o At w = wy, the value of the asymptotic Bode plot is 0 dB, whereas the
value of the exact Bode plot is

1
20 loglolH(wo)l =20 lOglo\/—E = —-3.01dB

o The low- and high-frequency asymptotes form a corner where they
Intersect. Because the asymptotes intersect at frequency w = wgy, wy IS
called the corner frequency. (same name as 3-dB frequency or half-
power frequency)
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Bode plot when network function H(w) =

1+]—
wo
1
H— = / tan ' (w/wg) = H @
L4+j— V14 w/ -
)
10
] Asy|mptoti|c
to 0F=——F===4 ._......E_._.E___'___ curve
2 xac bl
& _10 curve %}
o
o~
: 1 -
(a)
0
\\
w0
T
%‘3 -45 \L\
3 T
s E&
-90
0.1wg g 10wq
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1+jwi1

Bode plot when network function H(w) = k s

w32

Bode plots of the circuit consisting of voltage source, L, and R.

The network function of this circuit is Rq
H— Vo R+jwl +
"V, R;+R+jwL
'
Put this network function into the form g CL) .,
S — 0]
.
1 ‘|']a)—1
H=k— R
1 +]w—2 B

2ep5*,  Department of Electrical and Computer Engineering, SNU
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1+jwi1

1+jwﬂ2

Bode plot when network function H(w) = k

)]
R ) LN )

The network function can be expressed as H = (
R + R,

. w
LY ®RFROL

o dcgain k =
R+Rg

R+Rg

. R
o zero and pole frequencies are related by w; = T < =

The gain corresponding to a network function of this form is,

w0 \2 (k w < wq
1+((1)_> kow
1 — w<w<w,
H=k ~ { Wq
2 kw
w- \a)l

The phase angle of H is

, W W w w
CD:Lk+L<1+]w—>—L<1 +J—>=t3n_1——tan_1—
1
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14—

Bode plot when network function H(w) = k s
Ay

= The phase Bode plot and the asymptotic magnitude Bode plot

20 log « L~
20 dB/dec |
,x/ |
T | | |

0 = | | 90°
20 log (H/k) | | |

(dB) || T~ | ¢ (w)

)il | \\ — 45°

11 | |
/ | | | ¥
—1 | || | |
| | | 0°
@1 O %)
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Example 13.3-1 Bode Plot

= Find the asymptotic magnitude Bode plot of

jw
w
1+j=
I

H(w) =K

2ep5*,  Department of Electrical and Computer Engineering, SNU
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Solution

]a)

= Network function H(w) = K ey

= Approximate (1 +j ) by 1 when w < p, and by] “ when w > p to get

K jw w<p
= The logarithmic gain is

20logio K + 20logipw w<p
20 10g10 |H((1))| = {20 1081(()) Kp 10 w > p

= The jw factor in the numerator of H(w) causes the low-frequency asymptote
to have a slope of 20 dB/decade. The slope of the asymptotic magnitude Bode
plot decrease by 20 dB/decade (from 20 dB/decade to zero) as the frequency
increases past w = p.

= The phase is 90° w K p
tH(w) = {45° w=p
0° w>»p

™ __e_;}y.; Department of Electrical and Computer Engineering, SNU
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Solution

The asymptotic magnitude bode plot and the phase bode plot is,

dB

20 log,o(Kp) [~

0 decade

20 logyo[H(e)|, dB

45 -

< H, degrees
=
|

-
n
!

e,

0 i PR S S T R | i R T S T I | i PR S S S A |
01p 1] 10p

Frequency, rad/s
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Example 13.3-2 Bode Plot of a Circuit

Consider the circuit shown in Figure 13.3-6a. The input to the circuit is the
voltage of the voltage source v;(t). The output is the node voltage at the
output terminal of the op amp v,(t). The network function that represents
this circuit is

Vo(w)

Vi(w)

The corresponding magnitude Bode plot is shown in Figure 13.3-6b.
Determine the values of the capacitances C; and C,.

H(w) =

10 kQ

|[H(w)| (dB)

; ' w, rad/sec
80 500 (log scale)

(a) (b)

2ep5*,  Department of Electrical and Computer Engineering, SNU
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Solution

= Step 1: Finding the network function corresponding to the Bode plot

o Two corner frequencies, at 80 and 500 rad/s. The corner frequency at 80 rad/s is a
pole because the slope of the Bode plot decreases at 80 rad/s. The corner frequency
at 500 rad/s is a zero because the slope increases at 500 rad/s

o The corner frequencies are separated by log;, (58000) = 0.796 decades. The slope

—15.9-15.9

of the Bode plot is = —40 dB/decade between the corner frequencies.

o At low frequencies — that IS, at frequencies smaller than the smallest corner
frequency — the slope is -1 x 20 dB/decade, so the network function includes a
factor w) ™1

= Consequently, the network function corresponding to the Bode plot is

44




Solution

= Step 2: Analyzing the circuit to determine its network function.

We first analyze the node labeled as node a. The current entering the noninverting input of

a
the op amp is zero, so the two currents in this node equation, the currents in the impedances
corresponding to 125-kQ resistor and capacitor C;, have same magnitude.
1
Vo (w) _ JwCy . 1
jwCy
o Next, we analyze the node labeled as node b. The currents in the impedances corresponding
to 10-kQ resistor and capacitor C,, have same magnitude as at the node a. 1
Vy (w) 10k jwC, (10kQ) w? b f‘?FE
= = : —= 1 Il
(@) 1oKkq +- 1 14+ jwC,(10kQ) -
jwC;
125kQ
—AW &
o Equating V,(w) and V,(w) and gives, 1 +
) Vi(w) (£ ' =A'A Vo(®
Vy(w) 1 1+ jwC,(10kQ) 2°Q  ha 0 @
Vilw) 1+4jwC(125kQ) jwC,(10kQ) & T .
*P Department of Electrical and Computer Engineering, SNU
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Solution

Step 3: The network functions given in Step 1 and Step 2 must be equal.

I+Jjzg0 _ H(w) = 1 1+ jwC,(10kQ)
— N TN LC,(125k0)  jwC, (10kQ)

o Equating coefficients gives

1 1 1
— = C,(125kQ), —— = C,(10kQ), dk = — 500
g0~ (1 ) ggg = (2(10kQ), an C,(10kQ)

a SO

~ 80+ 125 % 103 500(10 * 103)

2ep5*,  Department of Electrical and Computer Engineering, SNU
W& Prof. SungJune Kim

46



Solution

= Bode plotof H(w) = 500
jw

magnitude

20 log|H| , dB

Fhase

< H, degrees

BO
Frequency, rad/s

47



Example 13.3-3 Bode Plot of a Circuit

Consider the circuit shown in Figure 13.3-8a. The input to the circuit is the
voltage of the voltage source v;(t). The output is the node voltage at the
output terminal of the op amp v,(t). The network function that represents
this circuit is

The corresponding magnitude Bode plot is shown in Figure 13.3-8b.
Determine the values of the capacitances C; and C,.

e

1 ? o1
400 kO [H(w)| (dB)
20 kQ 8
e
Ui(!) UD([)
o, rad/sec

< ! 40 160 (log scale)

(a) (b)
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Solution

Step 1: Finding the network function corresponding to the Bode plot

o Two corner frequencies, at 40 and 160 rad/s. Both corner frequencies are poles
because the slope of the Bode plot decreases at both the corner frequencies.

o Between the corner frequencies, the gain is |H(w)| = 26 dB = 10%6/20 = 20V /V.

k (jw)
. W
)40
o At low frequencies — that is, at frequencies smaller than the smallest corner
frequency — the slope is 1 x 20 dB/decade, so the network function includes a
factor (jw)?!

|H(w)| = 40k = 20, so |k| =0.5

Consequently, the network function corresponding to the Bode plot is
+0.5(w)

(1+i30) (1 +) 160)

H(w) =

2ep5*,  Department of Electrical and Computer Engineering, SNU
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Solution

= Step 2: Analyzing the circuit to determine its network function.
o We will write a node equation at the node labeled as node a. In doing so, we will treat the

series impedance, 20kQ and ]w% as a single equivalent impedance equal to 20kQ + jwlc
1 1

Also, we will treat the parallel impedance, 400k and % as a single equivalent

impedance equal to % The node voltage at node a is zero volts because the
JOC2 T h0ka
voltages at the input nodes of an ideal op amp are equal. '1 jm162
JoC, .
1l t
Vi (w
i(w) : + V() (ja)Cz n 400kﬂ> — 0 20 KO 400 kQ
20kQ + - T
_](UCl Vi(w) V (o)
T o
o Doing some algebra gives, )
H(w) = Volw) 1 1 B —jwC;(400kQ)
“Viw) 1 I " (14 0C20k0))(1 + jwC, (400kQ)
i 2060 + 72 j0Cs + 5070 (1+jwt )(1+jwG, )

f—::j}r: Department of Electrical and Computer Engineering, SNU
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Solution

Step 3: The network functions given in Step 1 and Step 2 must be equal.

+0.5(jw) —jwC; (400kQ)

= H(a)) =
: W W 1+ jwC,(20kQ) N1+ jwC,(400k)
(1+i45) (1 +i1e5) (14 jwC; (20kQ))(1 + jwCy( )

o Equating coefficients gives

1

0= (120K, = C(400kQ),  —0.5 = —C; (400k0)
a SO

C; = = 1.25 uF C, = = 15.625uF

1~ 20(20k0) we 2~ 160(400k0)’ ¢

™ __e_;}y.; Department of Electrical and Computer Engineering, SNU
Wllal  Prof. SungJune Kim



Solution

—0.5(w)
(1+145) (1 +) 160)

magnitude
30 T ' — r 1 T T I

= Bode plotof H(w) =

20 log|H| , dB

< H, degrees

_EFD i i i i i i il | 1 |
40 160

Frequency, rad/s
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Example 13.3-4 Network Function with Complex Poles

The network function of a second-order low-pass filter can have the form

2
kwj

H(w) = (jw)? + j2lwow + wh

This network function depends on three parameters: the dc gain k; the corner
frequency wg; and the damping ratio ¢. For convenience, we consider the

case where k = 1. Then, using j2 = —1, we can write network function as
2
w
Hw) =————
Wy — W + J2{wyw

Determine the asymptotic magnitude Bode plot of the second-order low-pass
filter when the dc gain is 1.
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Complex poles

Consider the complex plane or the s-plane

a

In chapter 9, we used the s-plane to show the location of the roots of the
characteristic equation of circuits.

The natural response of a circuit was in the form of eSt. The points at
the vertical axis represents pure sinusoid functions in this form.

We use this plane to describe the network function with poles.

jw

Consider the network function with a pole, H(w) = - f_ow — Wy

Y gﬁl’[fu %
B

wo
H(w) = H, - “jr"jw IS a reciprocal of relative position from the pole
0
to jw multiplied by DC gain and pole.

The magnitude of the network function inversely proportional to the
distance between the pole and jw. The distance is wy when ® is small,

o when o is large, and V2w, when o equals to w,.
The phase is the angle at the pole with negative sign.

Department of Electrical and Computer Engineering, SNU
Prof. SungJune Kim
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Complex poles

When we have two independent energy storage elements in the circuit, two
roots of the characteristic equation exists, which can be rewritten as,

jo
2 2 2 2
oondambed s =—a+yJa"—w, and s,=-a—a" -,
Underdamped Koo =0
J@g
o0<mg
\ The roots of the characteristic equation assume three possible conditions:
________ Q) .
. 1% 1 Two real and distinct roots when -> overdamped
Overdamped 2 Two real equal roots when - critically damped
o>mg 3. Two complex roots when - underdamped
— X /3& X (4] o .":?;,_'
Critically
damped x4 nn !
(two identical i S et ime
roots) X<— ]y ':.: LA ; B (sec
X g L T e e
. | -6 "'.' starq’ted fr?om rest.
F|g_9-10-1 after Barger&0lsson
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Complex poles

When we have complex polesat a + jwy,

o

Complex poles J@%
!
z

X ———— ] jog

H——————— ~jiy

\ _jeog

a—jwg a+jwg

H(wy) = Hy - . , ,
7 o+ (a—jwg) jo+ (@ +jog)
a? + wj
(jw)? + jow 2a + (a? + w3)

Let{ = —and w, = a2 + w2, then
0

w§

O (jw)? + j2¢wow + wE

=[—I0

H(wy,) = H

Any pole on the semi circle has same w,,
differs only ¢

2ep5*,  Department of Electrical and Computer Engineering, SNU
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Complex poles

= As frequency approaches to the upper pole, the distance between them
decreases and the magnitude of the network function peaks.

o We can find out the peak frequency by differentiating the magnitude.

( = 0.05 Jw
\ d|H(wo)| |Hy|w? 2(w? — w§) 2w) + (2{wy)?*(2w)
- do ~ 070 3
— i
{=1/N2 “ J% 2((0? - 03)? + (2{wow)? )’
\ | Wpeak = "wczi_az
LT T
I | 20 —{=005
o A
l : 10 R 020
| | Za\ WS
| | o 0 A
(Oh) ! o ;'-.
N 0 O|5w° £ -10 0.40_50
I | 5 08
| | & :
| | 20
| [ .
B — o — _j(ﬂd \\
. -30 N
| ™N
\| . N
Ko | —jiog ol 02 03 04 060810 2 3 456 810
w/wg = frequency ratio

0
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Complex poles

= When the frequency is wg, the sum of the angle at both poles equals to the
90°, so the phase is always 90° at w, regardless of ¢.

=005 jo
{=1/V2 x— | oo
I
\ | 5
o SR
| i 2 NN o2
[ ~40 0.3 %\ ‘\\%KL__.(---O.E
| : RSN\
| | - 0'50.608 —
l l $ -80 : 1 D"‘
' ' g % '
wo I E —].00
V2 | N
| | -140 N
SR N B, -180 %
x | Jiy 0.1 0.2 0.3 0.4 0.6 0.8 1.0 2 3 4 5 6 8 10
\I o/wq = frequency ratio
|
e | g

*‘P Department of Electrical and Computer Engineering, SNU
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Solution

2
w
= The network function H(w) = 0

wi — w? + j2{wow

= The denominator of H(w) contains a new factor, one that involves w?. The
asymptotic Bode plot is based on the approximation,

wi w<wg
(wd — w?) + j2{wow = w2
—E w > Wy

= Using this approximation, we can express the logarithmic gain as

0 w < Wy

20 logqo|H(w)| = {40 logiowo — 40 logiow W > Wy

2ep5*,  Department of Electrical and Computer Engineering, SNU
W& Prof. SungJune Kim
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Solution

= The asymptotic magnitude Bode plot of the second-order low-pass filter is,

dB
decade

o
|

40

20 logo|H(w)|, dB

|
@0

o (rad/s, logarithmic scale)

*‘P Department of Electrical and Computer Engineering, SNU
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Solution

= The Bode plot of the second-order low-pass filter with real poles, H(w) =

(

magnitude
o I T

@ 50| i
T a0k il
g

= B0l T a
(o] 60 ""\-q._h__

_80 il L il T
0.1 u.,'ﬂ Ia.r'ﬂ 10 Ia.r'ﬂ
Phase
0 T L T

w -0 .
L1k ]

o .60 -
o
- U 3
T 120} .
h 150

180 ol | _n—.—l_'__‘_—. —
0.1 ""’Iﬂ L..,'ﬂ 10 L..,'ﬂ

Angular Frequency, rad/s

Wll”  prof. SungJune Kim
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Solution

= The asymptotic Bode plot is a good approximation to the actual Bode plot
when w < wy or w > wy. Near w = w,, the asymptotic Bode plot deviates
from the actual Bode plot. At w = w, the value of the asymptotic Bode plot
is 0 dB, whereas the value of the actual Bode plot is,

1
H(wg) = 27

= The deviation between the actual and asymptotic magnitude Bode plot near
w = w, depends on ¢.

*‘P Department of Electrical and Computer Engineering, SNU
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‘ Solution

Bode diagram of H(jw) =

20 loglHI(dB)

¢ (degrees)

27\ . jw
1+ (— Jo+{—
wo wo
20 =005
_-0.10
0.15
10 0.20
= 0.25
|
0
03 4?1:
-10 0.50.
0.8
1.0
-20
-30 ™N
\
N
-40 N
0.1 02 0304 060810 2 3 4 56 810
w /g = frequency ratio
(a)
~J | | =005
N
NN /010
NSV 0.15
—0.20
0.25
~
N
0.1 0.2 03 04 0.6 0.8 1.0 2 3 4 6 8
w/wq = frequency ratio
(b)

Prof. SungJune Kim
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Example 13.3-5 Magnitude Bode Plot for a Complicated Network Function

Find the asymptotic magnitude Bode plot of

5(1 + 0.1jw)

H(w) =
’ jw(l+0.5jw) [1 +0.6 (]5“6) - (5‘”—0)2]

- if;rr-? Department of Electrical and Computer Engineering, SNU
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Solution

= The corner frequencies of H(w) are z =10, p = 2, and w, = 50 rad/s. The
smallest corner frequency is p = 2. When o < 2, H(w) can be approximated as

5
H(w) = —
Jw
= S0 the equation of the low-frequency asymptote is

20 log10 H = 20 10g10 5 —20 10g10 w

= Let’s find a appoint on the low-frequency asymptote. When o =1,

20 logio H = 201log195 — 201logp1 = 14dB

= The low-frequency asymptote is a straight line with a slope of -20 dB/decade
passing through the point w = 1 rad/s, |H| = 14dB.

= The slope of the asymptotic Bode plot will change as o increases past each
corner frequency. The slope decreases by 20 dB/decade at ® = p = 2 rad/s, then
increases by 20 dB/decade at » = 10 rad/s, and finally decreases by 40
dB/decade at 50 rad/s.

2ep5*,  Department of Electrical and Computer Engineering, SNU
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Solution

The asymptotic magnitude Bode plot is

40 —
-20 dB/dec
20—
O |
-40 dB/dec
dB —20[” —20 dB/dec
40}
-60 dB/dec
—o0T™ Pole Zero Two poles
| | |
| | | | |
0.1 1 2 10 50 100
w (rad/s)

Prof. SungJune Kim
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Solution

The Bode plot of H(w) = 5(1+0'1jw).w —7 IS
ja)(1+0.5ja))[1+0.6(é—0)—(§) ]
magnitude

20 log|H| , dB

0.1 1 2 10 50 100

Fhase

_EFD i i i i i | 1 1 1
0.1 1 2 10 o0 100

Angular Frequency, rad/s

Department of Electrical and Computer Engineering, SNU
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Example 13.3-6 Designing a Circuit to Have a Specified Bode Plot

Let’s design the circuit shown in Figure 13.3-3 to satisfy the following
specifications

o The low-frequency gain is 0.1

o The high-frequency gain is 1.

o The corner frequencies lie in the range of 100 hertz to 2000 hertz

2ep5*,  Department of Electrical and Computer Engineering, SNU
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Solution

= Our earlier analysis of this circuit showed that the low-frequency gain is less than 1
and that the high-frequency gain is equal to 1. This circuit can be used only to satisfy
specifications that are consistent with these facts. Fortunately, the given specifications
are consistent with these facts. The first specification requires

R
R + R,

0.1 = low — frequency gain = k =

= Because the high-frequency gain is 1, the second specification is satisfied.

= Now let’s turn our attention to the specifications on the corner frequencies. The
specified frequency range is given using units of hertz, whereas the corner frequencies

have units of rad/s. Because w; > w-, the third specification requires that

S

R R +
(2m)100 < = wq,(21)2000 > = w9y

= Our job is to find values of R, R, and L that satisfy these three requirements. We have
no guarantee that appropriate values exist. Also, it may well not be unique.
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Solution

m Let'stry
R =100Q

= The specification on the low-frequency gain requires that
R, = 9R = 9000

= The specification on the zero will be satisfied if

L = 0.159H

~ (2m)100
= It remains to verify that these values of R, R, and L satisfy the specification on
the pole frequency. The specification is satisfied because

R + R,
L

= This solution is not unique. Indeed, when R = 100 and R, = 900, any inductance
in the range 0.0796 < L < 0.159H can be used to satisfy these specifications.

= 6289 < 12,566 = (2m)2000

2ep5*,  Department of Electrical and Computer Engineering, SNU
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Example 13.3-7 Designing a Circuit to Have a Specified Bode Plot

= Design a circuit that has the asymptotic magnitude Bode plot shown in
Figure 13.3-13a.

m

©

3 34 20

= decade

=

oT4]

o

o

Q|

|
500
o (logarithmic scale)
(a)
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Solution

= The slope of this Bode plot is 20 dB/decade for low frequencies, that is,
w < 500 rad/s, so H(w) must have a jw factor in its numerator. The slope
decreases by 20 dB/decade as o increases past w = 500 rad/s, so H(w)
must have a pole at w = 500 rad/s. Based on these observations,
jw
. W
1+J500

H(w) = tk

= The gain of the asymptotic Bode plot is 34 dB = 50 when w > 500 rad/s, so

jw
50 = +k_—w= ik* 500
J500
m Thus, k = +0.1 and
jw
H(w) = +0.1 —
1+73500

2ep5*,  Department of Electrical and Computer Engineering, SNU
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Solution

The design equations provided in row 4 of Table 13.3-2 indicate that

1
0.1=R,C, 500=——

CR,4
Pick C = 1uF. Then
0.1
R2=10_6=100kﬂ, R1=500*10_6=2k9
oko LHF 100 kQ
MA—)F——WWA—

*‘P Department of Electrical and Computer Engineering, SNU

Prof. SungJune Kim
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Solution

= The Bode plot of H(w) = 0.1~ IO s,

*J500

magnitude

5

20 log|H| , dB
o B
| |

3

-40 | |

102

-
=
=
-
a—\.

S

104

3

< H, degrees
=
]

10° 10’ 10?
Angular Frequency, rad/s
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‘ Solution

CIRCUIT NETWORK FUNCTION
e
Hiw) = - k ;}
+] ﬁ
where R
Fr R
1
Oy
-
"= ks
Hio) = - —F—
14§ 7
where Ry
"R
1 -
CRy

Hiw) = x—(n,g]

Hio) =k 1:{”2
C+)L‘i I + where k:RZ}:'
RL%F” p=—
L
kO " Hi) = Kijo)
N =
(+) i } . where : :1(1
R v - 111
JT— “ Caly
Department of Electrical and Computer Engineering, SNU
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Solution

CIRCUIT NETWORK FUNCTION
—W—
Hiw) =~k -
:: — 41
8 i Co where R.
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Solution

CIRCUIT NETWORK FUNCTION

Vo<w>=v,-<w>—1 <R2|| 1) V@) —
2
H(w) = —2 1
R1 1+](1)R2C

Department of Electrical and Computer Engineering, SNU
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Solution

CIRCUIT NETWORK FUNCTION
Ry
MW R;
—+ I +—' M Hiw) - -‘I[L+]E
Il
C
oy 8 where R-
O , +
Ky §1'|} _
CR;
1 + jwR,C

Vo(w) = l(w)< +](DC> * —Rp = _Vl(w)

R
H(w) = —R—j (1+jwR,0)

R4
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Solution

CIRCUIT NETWORK FUNCTION
.H] ' H;:-
A———WA—
Hia) = —k —22

1 (1]
+ '
(:) l + - where - RaC

o gru p= —

]
CRy

HE

B _ jwC
Vo(w) =V;(w) (R N 1 )* R, = —V;(w) R; 1+ jwR,C
17 jwC
H(w) = —R,C — 3%
@ =Tt T iR C

Department of Electrical and Computer Engineering, SNU
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Solution

CIRCUIT NETWORK FUNCTION
C -
R 1 AN k(o)
MA—F—— | e
Il [ 'Ir”l)[ 'IPE}
Co
C,) o ) where k= C\R,
i 4 1
Pl= ~ 5
HL L&y { ]H]
2 &
_T_ P2™ C Ry
ja)C1 1
Vo(w) =Vi(w) * — <R2|| > = -Vi(w)
1 JwC; "1+ jwRC; 1 | .
(Rl +jw61> R, + jwC;

jw 1
1 +_i(l)R1€1 1 +ijZCZ

H((l)) = —R2C1
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Resonant Circuits

Consider the situation shown below. The input to this circuit is the
current of the current source, and the response is the voltage across the
current source. Because the input to the circuit is sinusoidal, we can use
phasors to analyze this circuit. We know the network function of the
circuit is the ratio of the response phasor to the input phasor. In this

. . - Vv _ As6
case, the network function will be an impedance, Z = - = —
O ®
_I_
: _ RLC
i(t) = A cos (w1) C) v(t) = B cos (ot +0) ——
o o

2ep5*,  Department of Electrical and Computer Engineering, SNU
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Resonant Circuits

Figure (b) shows some data that were obtained by applying an input with

an amplitude of 2mA and a frequency that was varied. Row 1 of this table
describes the performance of this circuit when w = 200rad/s. At this

it = A cos (00

_I_

) v(1) = B cos (w1 +6)

Ol

il
circuit

(a)

frequency, the impedance of the circuit is Z = 6:63 :

2ep5*,  Department of Electrical and Computer Engineering, SNU
W& Prof. SungJune Kim

= 33002£48°().
A, A w, rad/s | B,V 0
0.002 200 6.6 48°
0.002 220 8.4 532
0.002 250 10.0 0°
0.002 270 9.3 |-21°
0.002 300 7.4 |-43°
(b)
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Resonant Circuits

Let’s convert this impedance from polar form to rectangular form:
Z = 2208 + j2452 Q.

This looks like the equivalent impedance of a series resistor and inductor.
The resistance would be 2208 and the inductance would be 12.26H.

Recall that in rectangular form impedances are represented as Z = R + jX

where R is called the resistance and X is called the reactance. When w is

200 rad/s, we say that the reactance of this circuit is inductive because the
reactance is positive and therefore could have been caused by a single

inductor.

+0Q

RLC
0 =acos)(}) v0=Beoswr+o) | KLC

Ol

Wil Prof. SungJune Kim

*‘P Department of Electrical and Computer Engineering, SNU

A, A w, rad/s | B,V 0
0.002 200 6.6 48°
0.002 220 8.4 532
0.002 250 10.0 0°
0.002 270 9.3 |-21°
0.002 300 7.4 |-43°
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Resonant Circuits

The last row of the table describes the performance of this circuit when w

7.44—43°
0.002

IS 300 rad/s. Now Z =

= 3700 £—43° = 2706 — j2523 ().

Because the reactance is negative, it could not have been caused by a

single inductor. This impedance looks like the equivalent impedance of a
single resistor connected in series with a single capacitor:

R —j— =2706 — j25230Q
wC
Equating the real parts shows that the resistance is 27062 . Equating the

Imaginary parts shows that the capacitance is 1.32uF

+0Q

RLC

i) = A cos (o) C) v()=Bcos(@r+6) | Fo-

Ol

Wil Prof. SungJune Kim
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A, A w, rad/s | B,V 0

0.002 200 6.6 48°
0.002 220 8.4 532
0.002 250 10.0 0°
0.002 270 9.3 |-21°
0.002 300 7.4 |-43°
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Resonant Circuits

The reactance of this circuit is inductive at some frequencies and

capacitive at other frequencies. We can tell the reactance will be inductive

and when it will be capacitive by looking at the last column of the table.

When the input frequency is less than 250 rad/s, the reactance is
inductive, but when the input frequency is greater than 250 rad/s, the
reactance is capacitive. This frequency is called resonant frequency and is

denoted as w,.

At the resonant frequency, the impedance is purely resistive. Also, the

magnitude of the impedance is maximum

+0Q

RLC

i) = A cos (o) C) v()=Bcos(@r+6) | Fo-

Ol

Wil Prof. SungJune Kim
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A, A w, rad/s | B,V 0
0.002 200 6.6 48°
0.002 220 8.4 532
0.002 250 10.0 0°
0.002 270 9.3 |-21°
0.002 300 7.4 |-43°
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Resonant Circuits

Consider the circuit below. This circuit is called the parallel resonant
circuit. The equivalent impedance of the parallel resistor, inductor, and
capacitor Is

1 1 . 1
Z=1 1 = > ZA—tan_R wC—E
=+ jwC ++— 1 1
RO oL (&) + (o)
O o
+
i (1) (1) Lo 2 §R
o :

i(t) = A cos (w1)
v(t) = B cos (wt +0)

2ep5*,  Department of Electrical and Computer Engineering, SNU
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Resonant Circuits

The circuit exhibits some familiar behavior. The reactance will be zero

1

when wC — — = 0.
wL

The frequency that satisfies this equation is the resonant frequency w.
Solving this equation gives w, = ——=

VLC
1 1 9 1
Z = _ = > 2L—tan R<wC—E>
RO far [(3) + (wc— )

i (1) (1) Lo 2 §R

i(t) = A cos (w1)
v(t) = B cos (wt +0)

2ep5*,  Department of Electrical and Computer Engineering, SNU
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Resonant Circuits

= Atw = wy, Z = R. The magnitude of Z decreases as w deviates from w,.
The angle of Z is positive when w < w, and negative when w > w,, so the
reactance is inductive when w < w and capacitive when w > w,

magnitude
1
R .Q:-I
[42] Q=4
E -
Q=16
S 05+ <
N S
D " — — et
0.1 Wy 10w,
Frequency, rad/s
Phase
90— :
—__‘—‘——__ ---"'-._

v B0 T N — 0=
o . Q=4
@ 30 + \\ L)
o .\ 0=16
Lo
= N
N -30 - N
" ' T

60| .

-90 e ——]

01wy,

“o
Frequency, rad/s
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Resonant Circults

The impedance can be put in the form

k
Z= w w
1+50(gr =)

where

_ B C 1
k—R,Q—R Z,wo—\/?c
The parameters k, Q, and w, characterize the resonant circuit. The
resonant frequency wy Is the frequency at which the reactance is zero
and where the magnitude of the impedance is maximum. k is the
maximum value of the impedance. Q is called the quality factor of the
resonant circuit. It controls how rapidly |Z| decreases.

2ep5*,  Department of Electrical and Computer Engineering, SNU
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Resonant Circults

The larger the value of Q, the more sharply peaked is the frequency
response plot. We can quantify this observation by introducing the

bandwidth of the resonant circuit. To that end, let w; < w, denote the
frequencies where

1Z(6)] = —= |Z(wy)] = —
w _\/E (1)0 _\/E

There will be two such frequencies, one smaller than w, and the other

larger than wy. Let w; < wy and w, > wg. The bandwidth BW of the
resonant circuit is defined as BW = w, — w-.

The frequencies w4, w- are solutions of the equation

ko k
" e-n
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Resonant Circuits

Doing some algebra, we get,
_o (L _%0
=0 (“’0 w>

wWow
w0 F———w§ =

Q

This equation has two positive solutions

) W \?
wlz—2—3+\/( 3) +w; and w, =

It can be rearranged as

Finally, the bandwidth is
W

BW=w2—w1=—

Q

™ __e_;}y.; Department of Electrical and Computer Engineering, SNU
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Example 13.4-1 Series Resonant Circuit

Figure 13.4-4 shows a series resonant circuit. Determine the relationship between
parameters k, Q, and w, and the element values R, L, and C for the series resonant
circuit,

i(t) = B cos (wt +6) R L

—
W
o/

Cf) v(t) = A cos (wt) —C

Q
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Solution

= The input to this circuit is the voltage source, and the response is the current in the mesh.
The network function is the ratio of the response phasor to the input phasor. In this case, the
network function is the equivalent admittance of the series resistor, capacitor, and inductor:

v I 1
Voo, 1
R+ jwL +ja)_C
= Toidentify k, Q, and w,, this network function must be rearranged so that it is in the form
k
Y= w w
02 — %o
1+/0 ((Uo W )
= Rearranging the equation gives 1
1 1 D
Y= 1 1\ : 1
R+ jwl + +—= — —
+jw +]wC R+'\/Z w _w/LC 1+_l Ll o _w/LC
el ™1 w JRNC| 1 W
VLC VLC

= Comparing two equations gives,

1 1 |L 1
k‘E'Q_E\E'a”d‘“O_\/T_c
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Example 13.4-2 Frequency Response of a Resonant Circuit

= Figure 13.4-5 shows the magnitude frequency response of a resonant circuit. What
are the values of the parameters k, Q, and w,?

|Z(w)], ohms
5.0K
(2.2491 K, 3.9989 K)
40K
(2.3322 K, 2.8220 K)
30 & =
20K
(2.1720 K, 2.8178 K)
1.0K
0
2.0 Kh 3.0 Kh
Frequency

&Y Prof. SungJune Kim 94
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Solution

The first step is to find the peak of the frequency response and determine the values of the
frequency and the impedance corresponding to that point. This frequency is the resonant
frequency wg, and the impedance at this frequency is k. The frequency and the impedance is

wo = (2m)2249 = 14,130 rad/s
k = 4000 Q

Next, the frequency w, and w-, are identified by finding the points on the frequency response
where the value of the impedance is k /2 = 2828 Q.

w, = (2m)2172 = 13,647 rad/s and w, = (2m)2332 = 14,653 rad/s

The quality factor Q is calculated as
Wy Wy 14,130

= W T @, —w, 1465313647
Then the network function can be expressed as
7 B 4000
(@) = 1+ 14 (5 14,130)
I 14130 7 7 w

2ep5*,  Department of Electrical and Computer Engineering, SNU
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Example 13.4-3 Parallel Resonant Circuit

= Design a parallel resonant circuit that has k = 4000 Q, Q = 14, and wy = 14,130 rad/s

SERIES RESONANT CIRCUIT PARALLEL RESONANT CIRCUIT

i R L °

I

/

< +C
M\

=

(‘-

I

Il

a

Circuit . Ci’) “7 .

Q1

Y= . Z=
Network function - o O B o O
L+jO|——-— 1+j0— - —
(o) (a5 )
Resonant frequency g = 1 g = \/1_
VLC LC
Maximum magnitude k= % k=R

Quality factor — L1 JL - Rﬁ
Q R~NC ¢ L
Bandwidth aw= K BW = L
L RC

74 96
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Solution

= From Table 13.4-1, we have the relationship between parameters k, Q, and w, and the
element values R, L, and C for the parallel resonant circuit. These relationships can be used
to calculate R, L, and C from k, Q, and w,. First,

R =k =4000Q

1
— = wy = 14,130 rad /s
= o /
and
R C o= 14
[-¢=
= Rearranging these equations gives
14+/L 1
o =
4000 14,130VL
= So,
4000 1
" 14,130(14) 20mH and € = 14,1302(0.002) 0.25 uF
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Frequency Response of Op Amp Circuits

The gain of an op amp is not infinite; rather, it is finite and decreases

with frequency. The gain A(w) of the operational amplifier is a function
of w given by

A, is the dc gain and w; is the corner frequency. The dc gain is
normally greater than 10* and w; is less than 100 rad/s.

2ep5*,  Department of Electrical and Computer Engineering, SNU
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Example 13.5-1 Frequency Response of a Noninverting Amplifier

Consider the noninverting amplifier in Figure 13.5-2a. Replacing the op amp with a
frequency-dependent op amp gives the circuit shown in Figure 13.5-2b. Suppose that
R, =90 kQ and R; = 10 kQ and that the parameters of the op amp are 4, = 10°
and w; = 10 rad/s. Determine the magnitude Bode plot for both the gain of the op
amp A(w) and the network function of the noninverting amplifier V,, / V..

FIGURE 13.5-2
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Solution(1/4)

= Since we have A(w) = 2o the Bode plot of 20 log|A(w)| is as shown in Figure 13.5-

1+jw/w,’

3. Note that the magnitude is equal to 1 (0 dB) at w = 10°rad/s.

20 log | A(w) |
(dB)

120 —
100
80

60

I
I
I
I
|
|
|
40 |
Noninverting amplifier with £k = 10
L
|
|
0 I I | |
d 10 102 103 104 10° 106
®

20

FIGURE 13.5-3
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Solution(2/4)

= Then, writing a node equation at in Figure 13.5-2b gives

Vi + VS n Vi + VS +A((1))Vl _
R, R, -

= The frequency-dependent model of the op amp is described by

V, = -A(w)V;
= Combining these equations gives
Vo A(w)
V, { +A(ou)
k

where k = (R, + R,)/R; is the gain of the noninverting amplifier when the op amp is
modeled as an ideal op amp.

- if;rr-? Department of Electrical and Computer Engineering, SNU
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Solution(3/4)

Substituting for A(w), we get
Vo Ap/(1+jw/w,) Ay A

V, 1+ A,/ +jojw) 1+ jw/o+ Ak 1+ jo/(Awr)

where A. is the gain of the noninverting amplifier defined as A, = iAo and4, =1+
+_
k

%. Usually, 1 < %, SOA. = kand A4, = %. Then
|7A k

~~

V, = (1+jw/wo)

where wy, = A,w1/k is the corner frequency of the noninverting amplifier. Notice that
the product of the dc gain and the corner frequency is

k

This is called the gain-bandwidth product. Notice it depends only on the op amp, not
on R, and R,.

(l)ok = k - Ao(l)l

*‘P Department of Electrical and Computer Engineering, SNU
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Solution(4/4)

= For this example, k = 10, and A, = 100 dB, and, thus, we have A, = 10, 4, = 10%,

and w4, = 10°.

= Therefore, Vv, 10
V, 1410 5w

= This circuit has a magnitude Bode plot as shown in color in Figure 13.5-3. Note that
noninverting op amp has a low-frequency gain of 20 dB and a break frequency of 10°

rad/s. The gain-bandwidth product remains 10° rad/s

20 log| A(e) |

(dB)

120

100

80

60

40

20

0

Op amp

I
|
|
|
|
I
|
|
|

Noninverting amplifier with k = 10

Je”
|
|

| | |

1

10 102 103 104 100 106

FIGURE 13.5-3
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How to find out the network function

When the circuit with one energy storage element has a sinusoid input,

d x(t) .
. TN jwt
dtx(t) + - Ke

Where x(t) is the current passing through the inductor, or the voltage
across the capacitor. Converting this equation to the frequency domain,

jwX(w) +@ =K

Then,
X(w) =

jw + %
We can get the voltage across the inductor or the current passing through
the capacitor by multiplying jw to the X(w)
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How to find out the network function

The network function of the circuit with one energy storage element is
jow

1
H(w) = Hy—% , where p = %

14227
p

When the frequency is zero, H(0) = H,, and when the frequency is
infinity, H(o0) = g. Combining these equations give

Hy + jow TH(0)

H —
(@) l1+jwrT
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How to find out the 2" order network function

When we have two energy storage elements in the circuit, the network
aog+a;(jw)+a,(jw)?

1+b; (jw)+bz (jw)?

The only way for a coefficient w to occur in a transfer function of a
lumped circuit is as a multiplicative factor to a capacitor or an inductor,
as in C;s or L;s. Let us initially limit our discussion to just capacitors and

then generalize to include the inductors.

In that case, the b, coefficient must be a linear combination of all the
capacitors in the circuit. The b, term cannot contain a term C;C; because

such a term must have an w? multiplier. The b, coefficient must consist
of a linear combination of two-way products of different capacitors. The
same argument can be applied to a; coefficients in the numerator and,

function of the circuit is H(w) =

ay + (aiCy + azC)(jw) + a3°C,C;(jw)?
1+ (B1Cy + BEC)(w) + Br2C1Cr(jw)?

H(w) =

2ep5*,  Department of Electrical and Computer Engineering, SNU
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How to find out the 2" order network function

The network function is determined independently of the specific value

of the capacitor and must be valid for all capacitor values including zero
and infinity. Let us look at a reduced case when all capacitors, except C;,
have a value of zero. The transfer function reduces to the first-order one.

H(w) = ao + i C;(jw)
T 1+ BiC(jw)

The reduced system has a time constant of 7 = R C; where R} is the
resistance seen by the capacitor C; looking into port i with all other
reactive elements their zero value, namely open-circuited capacitors and
short-circuited inductors, and the independent sources nulled.

Hence, the first denominator coefficient b, is simply given by the sum of
these zero-value time constants. b; = 7 + 75.

Same arguments can be applied to an inductor

2ep5*,  Department of Electrical and Computer Engineering, SNU
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How to find out the 2" order network function

When C; — oo while the other elements are still at zero value, the transfer
function from the input to the output reduces to a constant,

i o
Cj—>0 :81
[#j

Where H! is a first-order transfer constant between the input and the
output with the single reactive element i at its infinite value and all others
zero-valued. We have already determined B! to be RY, which leads to

at = RYH!. Therefore, atC; = RYC;H' = 7). Thus, we can write

a; = TYH + tIH?
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How to find out the 2" order network function

Assume that we set C; to infinity and consider a capacitor C; at port

while all other capacitors have a value of zero. This is a first-order
system, yet different from the one we used to determine b;. The time
constant of this new first-order system is

I _ pipr.
Tj —R]C]

Where R} IS the resistance seen at port j with port i infinite valued.

Evaluating the network function with C; — oo and all other capacitors
other than C; and C; at their zero value, we obtain 4

Ci(jw) (ai + a;j(]js) al 1+ _16 (]a))

Ciooo C;(jw) (:Bli +5zijcf(i“))) ﬁl ﬁz Ci(jw)
&

H(w) |

Equating the coefficient of s in the denominator,
7 =PBiR} = R)R}
b2 - RgClRECZ
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Filters

® Filters

— Eliminate unwanted signal from the loop
— Low Pass, High Pass, Band Pass, Notch, ...
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Passive First-Order Low Pass Filter

» Pass desired Audio signal and
reject undesired RF signal

=
i
-

|
|
|
I
I
I
i

w, Frequency
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Passive First-Order High Pass Filter

= Pass desired High frequency
signal and reject undesired
low frequency signal

-
~le
o

-
. Frequency
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Passive Second-Order Low Pass Filter

1
= To increase the attenuation of V, () = Vi(w) jwC
transfer function R+ jwlL+ 'IC
= Order of Filter J®
1
¢ Number of C and L =Vi(@) 7 TTeRC T Ga)PLe
V, (w 1
H(w) = O( ) e - - >
Vilw) 1+j2{(w/w)+ (jow/w.)
Y L R v, Hg A Underdamped & <1
O—TB0 ——AMA———O V.

Critically
‘\\ Overdamped & >1

B
: o
w, Frequency
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Passive Second-Order High Pass Filter

= To increase the attenuation of V,(w) =V;(w) Jol
transfer fu.nctlon foC + R+ jwL
= Order of Filter (j)?LC
W
¢ Number of Cand L = Vi(w)1+ijc+ G@)?LC
H(w) _ Vo (w) . _(w/wc)z

Vilw) 1+j2{(w/w)+ (jw/w)?

0.<
_ O

| gm
o
=<

Vo Vo 4 Underdamped ¢ <1

Critically damped é’ =1
Overdamped ( >1
-

w Frequency
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Active First-Order Low Pass Filter

« Inverting Amp + Feedback « Identical frequency response
Capacitor with Passive filter

* Very Low Output impedance
— Negligible Loading Effect

O .=
:
i

I
I
|
I
I
I
J

w, Frequency
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Active First-Order High Pass Filter

= Inverting Amp + Input = Identical frequency response
Capacitor with Passive filter

= Very Low Output impedance
¢ Negligible Loading Effect

— — — == = e —

-
Frequency
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Active High-Order Filters

¢+ Low Pass Filters

C, o
I I
1" ks
R R 1 1 1
—O —0
v, C, v, Vi C; CST v,
(o T O o~ T -0
(a) {b)
¢ High Pass Filters
1
R, c,
_l'.m .ﬁ"'."
c c 1 1 1
o—jf—— o—jf————
—0 —0
1 1
v R, v v ‘Ez- E; v
o 0 o —0
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Bandpass and Band-Reject Filters

4 Butterworth Filters
— Maximally Flat Magnitude response in pass band
— High Attenuation Rate

# Chebyshev Filters
— Maximum Attenuation Rate
— Ripple in pass band

# Bessel Filters
— Maximally flat time delay in response to step input
— Attenuation Rate is very gradual

Intro. to BME, 2014 SNU



	Chapter 13�Frequency Response
	Linear elements
	Linear circuit
	At any fixed frequency
	At any fixed frequency
	At any fixed frequency
	At any fixed frequency
	Network function
	Network function - example
	Network function - example
	Network function
	Example 13.2-1 Network Function of a Circuit
	Solution
	Solution
	Example 13.2-2 Network Function of a Circuit
	Solution
	Solution
	Example 13.2-3 Network Function of a Circuit
	Solution
	Solution
	Low-pass filter whose network function is 𝑯 𝜔 =  𝐻 0  1+𝑗 𝜔  𝜔 0    
	Low-pass filter whose network function is 𝑯 𝜔 =  𝐻 0  1+𝑗 𝜔  𝜔 0   
	Low-pass filter whose network function is 𝑯 𝜔 =  𝐻 0  1+𝑗 𝜔  𝜔 0   
	Low-pass filter whose network function is 𝑯 𝜔 =  𝐻 0  1+𝑗 𝜔  𝜔 0   
	Low-pass filter whose network function is 𝑯 𝜔 =  𝐻 0  1+𝑗 𝜔  𝜔 0   
	Low-pass filter circuits
	Low-pass filter circuits
	Low-pass filter circuits
	Low-pass filter circuits
	Low-pass filter circuits
	Bode plot
	Bode plot when network function 𝑯=𝐻∠Φ=𝐻 𝑒 𝑗Φ �
	Bode plot when network function 𝑯 𝜔 = 1 1+𝑗 𝜔  𝜔 0   
	Bode plot when network function 𝑯 𝜔 = 1 1+𝑗 𝜔  𝜔 0   
	Bode plot when network function 𝑯 𝜔 = 1 1+𝑗 𝜔  𝜔 0   
	Bode plot when network function 𝑯 𝜔 = 1 1+𝑗 𝜔  𝜔 0   
	Bode plot when network function 𝑯 𝜔 =𝑘 1+𝑗 𝜔  𝜔 1   1+𝑗 𝜔  𝜔 2   
	Bode plot when network function 𝑯 𝜔 =𝑘 1+𝑗 𝜔  𝜔 1   1+𝑗 𝜔  𝜔 2   
	Bode plot when network function 𝑯 𝜔 =𝑘 1+𝑗 𝜔  𝜔 1   1+𝑗 𝜔  𝜔 2   
	Example 13.3-1 Bode Plot
	Solution
	Solution
	Example 13.3-2 Bode Plot of a Circuit
	Solution
	Solution
	Solution
	Solution
	Example 13.3-3 Bode Plot of a Circuit
	Solution
	Solution
	Solution
	Solution
	Example 13.3-4 Network Function with Complex Poles
	Complex poles
	Complex poles
	Complex poles
	Complex poles
	Complex poles
	Solution
	Solution
	Solution
	Solution
	Solution
	Example 13.3-5 Magnitude Bode Plot for a Complicated Network Function
	Solution
	Solution
	Solution
	Example 13.3-6 Designing a Circuit to Have a Specified Bode Plot
	Solution
	Solution
	Example 13.3-7 Designing a Circuit to Have a Specified Bode Plot
	Solution
	Solution
	Solution
	Solution
	Solution
	Solution
	Solution
	Solution
	Solution
	Resonant Circuits
	Resonant Circuits
	Resonant Circuits
	Resonant Circuits
	Resonant Circuits
	Resonant Circuits
	Resonant Circuits
	Resonant Circuits
	Resonant Circuits
	Resonant Circuits
	Resonant Circuits
	Example 13.4-1 Series Resonant Circuit
	Solution
	Example 13.4-2 Frequency Response of a Resonant Circuit
	Solution
	Example 13.4-3 Parallel Resonant Circuit
	Solution
	Frequency Response of Op Amp Circuits
	Example 13.5-1 Frequency Response of a Noninverting Amplifier
	Solution(1/4)
	Solution(2/4)
	Solution(3/4)
	Solution(4/4)
	How to find out the network function
	How to find out the network function
	How to find out the 2nd order network function
	How to find out the 2nd order network function
	How to find out the 2nd order network function
	How to find out the 2nd order network function
	Filters
	Passive First-Order Low Pass Filter
	슬라이드 번호 112
	슬라이드 번호 113
	슬라이드 번호 114
	Active First-Order Low Pass Filter
	슬라이드 번호 116
	Active High-Order Filters
	Bandpass and Band-Reject Filters

