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Markovian Property 

• Markovian Property 
− Given past states and present state, conditional distribution of any 

future state is independent of past states and depends only on the 
present state. 

• Markov Process 
− A stochastic process that satisfies the Markovian property.  

• Types 
− Discrete time Markov chain (DTMC) 
− Continuous time Markov chain (CTMC) 
− Embedded Markov chain  
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Discrete Time Markov Chain  

• The state duration has a geometric distribution. 

• 𝑝𝑝𝑖𝑖𝑖𝑖 𝑚𝑚 = Pr 𝑋𝑋𝑚𝑚+1 = 𝑗𝑗  𝑋𝑋0 = 𝑖𝑖1, 𝑋𝑋1 = 𝑖𝑖2, … , 𝑋𝑋𝑚𝑚 = 𝑖𝑖  

    = Pr 𝑋𝑋𝑚𝑚+1 = 𝑗𝑗  𝑋𝑋𝑚𝑚 = 𝑖𝑖  
- 𝑝𝑝𝑖𝑖𝑖𝑖 𝑚𝑚  : one-step transition probability from state i to state j  
                   at the m-th time index                                         

 
time 

event event 

State:  𝑋𝑋𝑚𝑚 

State duration 

 Time index: m 

0           0           1           1            2           2           2           3            3           3 

event 

0 1 2  3             4             5             6             7             8              9 
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Continuous Time Markov Chain 

• The state duration has an exponential distribution. 

• 𝑝𝑝𝑖𝑖𝑖𝑖 𝑠𝑠 = Pr 𝑋𝑋𝑡𝑡+𝑠𝑠 = 𝑗𝑗  𝑋𝑋𝑡𝑡 = 𝑖𝑖, 𝑋𝑋𝑢𝑢 = 𝑥𝑥𝑢𝑢, 0 ≤ 𝑢𝑢 < 𝑡𝑡  

   = Pr 𝑋𝑋𝑡𝑡+𝑠𝑠 = 𝑗𝑗  𝑋𝑋𝑡𝑡 = 𝑖𝑖  
 

time 

Event Event Event 

Continuous 
 time domain 

State 𝑋𝑋𝑢𝑢 𝑋𝑋𝑡𝑡 𝑋𝑋𝑡𝑡+𝑠𝑠 
s 

State duration 

u t t+s 
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• The state duration of original process has general distribution; not Markov process. 
• When observing the system only at departure epochs , the process has Markovian 

property. Then,  the process at observation times  is called Embedded Markov chain. 
• The original process and the embedded Markov chain have the same statistical 

properties. 

Embedded Markov Chain 

arrival 

General 
distribution 

Original process 

departure 

i-1 

Exponential 
distribution State duration 

i-1 i i-1 i-1 i-2 EMC state 

i-1 i i+1 i i i-1 i i-1 i-2 

State duration 

state 
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• Markovian property 
• Time homogeneity 

• Ergodicity 
− Irreducible 

− Positive recurrent 

− Aperiodic 
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Mathematically analyzable process 

Homogeneous 
Ergodic 
Markov Process 



• If the conditional probability, Pr 𝑋𝑋𝑚𝑚+1 = 𝑗𝑗  𝑋𝑋𝑚𝑚 = 𝑖𝑖 , is 
independent of m, the DTMC is said to be homogeneous. 

Time homogeneity (1) 

time 

Event : 

State : 

… 

l l+1 m m+1 

𝑋𝑋𝑙𝑙 = 𝑖𝑖 𝑋𝑋𝑙𝑙+1 = 𝑗𝑗 

Current state Next state 

𝑋𝑋𝑚𝑚 = 𝑖𝑖 𝑋𝑋𝑚𝑚+1 = 𝑗𝑗 

Current state Next state 

Observation 
time : 

− 𝑝𝑝𝑖𝑖𝑖𝑖 = Pr 𝑋𝑋𝑙𝑙+1 = 𝑗𝑗  𝑋𝑋𝑙𝑙 = 𝑖𝑖   = Pr 𝑋𝑋𝑚𝑚+1 = 𝑗𝑗  𝑋𝑋𝑚𝑚 = 𝑖𝑖                
without respect to time index l, m 

− The next state depends only on the current state and is independent of 
observation times. 

… 𝑝𝑝𝑖𝑖𝑖𝑖 𝑝𝑝𝑖𝑖𝑖𝑖 
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• The homogeneous DTMC is described with the state space, S, 
and one-step transition probability matrix, ℙ = [𝑝𝑝𝑖𝑖𝑖𝑖],                      
or  state transition probability diagram. 

Time homogeneity (2) 

− One-step transition probability matrix:   ℙ =    

0   1   0 
1

4
   

1

4
   

1

2
 

1

2
   0   

1

2
 
  

− State space:  S = 1, 2, 3  
 

− State transition Probability diagram :  

1 2 3 

𝑃𝑃12 = 1 

𝑃𝑃31 = 
1
2
 

𝑃𝑃21 = 
1
4
 𝑃𝑃23 = 

1
2
 

𝑃𝑃22 = 
1
4
 𝑃𝑃33 = 

1
2
 

• Example 
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− One-step transition probability 
                𝑝𝑝𝑖𝑖𝑖𝑖 = Pr 𝑋𝑋𝑚𝑚+1 = 𝑗𝑗  𝑋𝑋𝑚𝑚 = 𝑖𝑖  

− n-step transition probability 
          𝑃𝑃𝑖𝑖𝑖𝑖

(𝑛𝑛) = Pr 𝑋𝑋𝑚𝑚+𝑛𝑛 = 𝑗𝑗  𝑋𝑋𝑚𝑚 = 𝑖𝑖  

− Chapman-Kolmogorov equation 

        𝑃𝑃𝑖𝑖𝑖𝑖
(𝑚𝑚+𝑛𝑛) = ∑ 𝑃𝑃𝑖𝑖𝑘𝑘

(𝑚𝑚)𝑃𝑃𝑘𝑘𝑖𝑖
(𝑛𝑛)

𝑘𝑘∈𝑆𝑆  

        ℙ (𝑚𝑚+𝑛𝑛) = ℙ (𝑚𝑚) × ℙ (𝑛𝑛) 
 

Time homogeneity (3) 
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• An ergodic Markov chain has a limiting distribution. 
− State transition probability to state j is converge to only one value 

without respect to an initial state. 

− 𝑙𝑙𝑖𝑖𝑚𝑚
𝑛𝑛→∞

 𝑃𝑃𝑖𝑖𝑖𝑖
(𝑛𝑛) = 𝑞𝑞𝑖𝑖  

 
− After a long period of time, an ergodic Markov chain has a distribution 

independent of the starting condition (limiting distribution). 

 

An Ergodic Markov Chain (1) 
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1 2 3 

1
2

 

1
4

 
1
2

 

1
4

 
1
2

 1 

ℙ =    

0   1   0 
1
4   

1
4   

1
2 

1
2    0   

1
2 

    

2
9 

  
4
9

   
3
9

 

2
9

   
4
9

   
3
9

 

2
9

   
4
9

   
3
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  𝑛𝑛 → ∞ 



• Ensemble average distribution  
− Let 𝜋𝜋𝑖𝑖

(𝑛𝑛) be the unconditional probability that DTMC is in state j at the n-th 

time index, i.e.,   𝜋𝜋𝑖𝑖
(𝑛𝑛) ≜ Pr 𝑋𝑋𝑛𝑛 = 𝑗𝑗  

− 𝜋𝜋𝑖𝑖
(𝑛𝑛) =  ∑ 𝜋𝜋𝑖𝑖

(0)𝑃𝑃𝑖𝑖𝑖𝑖
(𝑛𝑛)

𝑖𝑖∈𝑆𝑆  
 

− 𝜋𝜋𝑖𝑖 ≜ lim
𝑛𝑛→∞

𝜋𝜋𝑖𝑖
(𝑛𝑛) 

        = lim
𝑛𝑛→∞

∑ 𝜋𝜋𝑖𝑖
(0)𝑃𝑃𝑖𝑖𝑖𝑖

(𝑛𝑛)
𝑖𝑖∈𝑆𝑆  

        = ∑ 𝜋𝜋𝑖𝑖
(0) 𝑖𝑖∈𝑆𝑆 lim

𝑛𝑛→∞
𝑃𝑃𝑖𝑖𝑖𝑖

(𝑛𝑛) 
 

• The ensemble average distribution is the same as the limiting 
distribution 

− Since lim
𝑛𝑛→∞

 𝑃𝑃𝑖𝑖𝑖𝑖
(𝑛𝑛) = 𝑞𝑞𝑖𝑖 ,   𝜋𝜋𝑖𝑖 = 𝑞𝑞𝑖𝑖 ∑ 𝜋𝜋𝑖𝑖

(0) 𝑖𝑖∈𝑆𝑆 = 𝑞𝑞𝑖𝑖       ⇒        𝜋𝜋𝑖𝑖 = 𝑞𝑞𝑖𝑖 

An Ergodic Markov Chain (2) 

state space 
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− 𝜋𝜋𝑖𝑖
(𝑛𝑛) = ∑ 𝜋𝜋𝑖𝑖

(𝑛𝑛−1)𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖∈𝑆𝑆  

             lim
𝑛𝑛→∞

𝜋𝜋𝑖𝑖
(𝑛𝑛) = lim

𝑛𝑛→∞
 ∑ 𝜋𝜋𝑖𝑖

(𝑛𝑛−1)𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖∈𝑆𝑆   

                             =∑ lim
𝑛𝑛→∞

𝜋𝜋𝑖𝑖
𝑛𝑛−1

𝑖𝑖∈𝑆𝑆 𝑃𝑃𝑖𝑖𝑖𝑖 
 

 

• We can obtain the state distribution of ergodic Markov chain, 
by solving (1) and (2). 
 

−  𝜋𝜋𝑖𝑖 = ∑ 𝜋𝜋𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖∈𝑆𝑆         for all 𝑖𝑖 ∈ 𝑆𝑆    …  (1) 
− ∑ 𝜋𝜋𝑖𝑖 = 1𝑖𝑖∈𝑠𝑠              …  (2) 

 

An Ergodic Markov Chain (3) 

 𝜋𝜋𝑖𝑖= ∑ 𝜋𝜋𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖 𝑖𝑖∈𝑆𝑆   
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− 𝜋𝜋1 = 1
2

𝜋𝜋1 + 1
4

𝜋𝜋2 

      𝜋𝜋2 = 1
4

𝜋𝜋1 + 1
2

𝜋𝜋2 + 1
2

𝜋𝜋3 

      𝜋𝜋3 = 1
2

𝜋𝜋2 + 1
2

𝜋𝜋3 

− 𝜋𝜋1 + 𝜋𝜋2 + 𝜋𝜋3 = 1 

An Ergodic Markov Chain (4) 

− State space   S = 1, 2, 3  
 − State transition Probability diagram :  

• Example 

1 3 

𝑃𝑃12 = 
1
2
 

𝑃𝑃32 = 
1
2
 𝑃𝑃21 = 

1
4
 

𝑃𝑃23 = 
1
2
 

𝑃𝑃22 = 
1
4
 

𝑃𝑃33 = 
1
2
 

2 
𝑃𝑃11 = 

1
2
 

𝜋𝜋1 =
2
9

, 𝜋𝜋2 =
4
9

, 𝜋𝜋3 =
3
9
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Necessary Conditions for an Ergodic MC (1) 

• State 𝑗𝑗 is reachable from state 𝑖𝑖 if there is an integer 𝑛𝑛 ≥ 1 such 
that  𝑃𝑃𝑖𝑖𝑖𝑖

(𝑛𝑛) > 0. 

• If state 𝑖𝑖 is reachable from state 𝑗𝑗 and state 𝑗𝑗 is reachable from state 𝑖𝑖, 
state 𝑖𝑖 and 𝑗𝑗 are said to communicate. 

• If all states in the Markov chain communicate to each other, the 
Markov chain is called “irreducible”. 

i j k 

reducible 

i j k 

irreducible 

 Irreducible 
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• 𝑓𝑓𝑖𝑖𝑖𝑖 : the probability of ever making a transition into state 𝑗𝑗, given that 
Markov chain is in state 𝑖𝑖.  

• State 𝑖𝑖 is said to be recurrent  if 𝑓𝑓𝑖𝑖𝑖𝑖 = 1 

• If the mean recurrent time is finite, state 𝑖𝑖 is a positive recurrent state. 

• If all states in the Markov chain are positive recurrent, the Markov 
chain is called “positive recurrent”. 

• An irreducible Markov chain having the finite number of states is 
positive recurrent. 

 
 

 Positive recurrent 

Necessary Conditions for an Ergodic MC (2) 
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• State 𝑖𝑖 is said to have a period of 𝑑𝑑, if 𝑃𝑃𝑖𝑖𝑖𝑖
(𝑛𝑛) = 0 whenever 𝑛𝑛 is not 

divided by 𝑑𝑑 and 𝑑𝑑 is the greatest integer with this property. 
• A state with period 1 is an aperiodic state. 
• If all states in the Markov chain are aperiodic, the Markov chain is 

called “aperiodic”. 

 Aperiodic 

i j k i j k i j k 

Periodic 

aperiodic if there is 
at least one self-loop 

Aperiodic Aperiodic 

GCD𝑆𝑆(𝑛𝑛1, 𝑛𝑛2, … ) : the greatest common divisor of  the state transition steps (𝑛𝑛1, 𝑛𝑛2, …) for back to  the state s. 

GCD𝑖𝑖(2,3,4,5,…) = 1 
GCD𝑖𝑖(2,3,4,5,…) = 1 
GCD𝑘𝑘(2,3,4,5,…) = 1 

GCD𝑖𝑖(2,4,5,6,7,8,…) = 1 
GCD𝑖𝑖(2,3,4,5,6,7,…) = 1 
GCD𝑘𝑘(1,2,3,4,5,6,…) = 1 

GCD𝑖𝑖(2,4,6,8,…) = 2 
GCD𝑖𝑖(2) = 2 
GCD𝑘𝑘(2,4,6,8,…)  = 2 

Self-loop 

Necessary Conditions for an Ergodic MC (3) 
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Time Average and Ensemble Average 

• If a system is an ergodic Markov chain, the ensemble average is 
equal to the time average. 

• 𝜋𝜋𝑖𝑖 can be interpreted as two aspects; one is the time average, and 
the other is the ensemble average. 
− Time average 

• 𝜋𝜋𝑖𝑖 is the long-run time proportion that the Markov Chain is in state i. on 
any sample path 

− Ensemble average 
• 𝜋𝜋𝑖𝑖 is the probability that the state of Markov chain is i in steady state. 

 

• {𝑋𝑋 𝑡𝑡 } is ergodic in the most general sense if all its measures can 
be determined or well approximated from a single realization of 
the process. 

• It is often done in analyzing simulation outputs 
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Stationary DTMC 

• 𝜋𝜋𝑖𝑖
(𝑛𝑛) = ∑ 𝜋𝜋𝑖𝑖

(𝑛𝑛−1)𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖∈𝑆𝑆 .     ⇒    Π(𝑛𝑛) = Π(𝑛𝑛−1)ℙ  

• If the initial state distribution Π(0) is set to  the limiting distribution, 

                  Π(1) = Π(0)ℙ  = Πℙ = Π 

                  Π(2) = Π(1)ℙ  = Πℙ = Π 
                            … 
                  Π(𝑚𝑚) = Π(𝑚𝑚−1)ℙ  = Πℙ = Π 

     The state distribution is invariant over time,  𝜋𝜋𝑖𝑖=  Pr 𝑋𝑋𝑛𝑛 = 𝑖𝑖   for all n 
         ⇒ stationary process 
• In summary, DTMC of which the initial state distribution is set to the 

limiting distribution is stationary, and then the limiting distribution is 
called the stationary distribution. 
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⇒    Π(𝑛𝑛) = Π,     for all n   
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