
Chapter 4  

 

    Dissipative systems 

 

According to the definitions given in Section 1.5, purely dissipative 

systems are obtained by adding damping forces to the systems hitherto 

considered. Apart from nonworking reactions, noncirculatory and 

possibly gyroscopic loads, they contain dissipative reactions or loads. 

Systems of this type are important since dissipative reactions or loads. 

Systems of this type are important sine dissipative forces appear 

everywhere and can hardly be completely eliminated. Theoretically, it 

is possible that the dissipative forces manifest themselves merely in 

certain particular motions of the system. This happens, for example, in 

a double pendulum in which one of the two hinges is free of friction. 

Practically, however, they affect any type of motion, as in a double 

pendulum with friction in both hinges. The following section will be 



confined to the latter case, i.e., to the so-called completely dissipative 

systems. 

 

4.1. General Aspect 

 

If the system is linear, its differential equations are given by (1.113), 
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Here, the matrices ( ikm ), ( ikg ), and ( ikc ) are constant; ( ikm )and ( ikc )are 

symmetric, and ( ikm )is positive definite. The matrix ( ikg ) generally is 

asymmetric. Its symmetric part represents the dissipative forces and is 

positive definite in a completely dissipative system. The antimetric 

part stems from the gyroscopic forces and may be absent. Proceeding 

as in Section 3.1, we obtain the characteristic equation  
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Here, however, the roots, in general, will not occur in equal and 



opposite pairs. 

It is convenient to compare the given system with the nongyroscopic 

conservative system obtained from it by dropping the dissipative and 

gyroscopic terms. According to Lagrange's theorem(Section 1.6), both 

systems are stable (even in the nonlinear case) so long as the potential 

energy (assumed to be a continuous function) is positive definite. If the 

system is linear and free from dissipative and gyroscopic forces, it is 

unstable, according to Theorem 1 (Section 2.1), when its potential 

energy is not positive definite, i.e., when at least one of the root i  of 

(4.2) is zero or positive for ( ikg ) (Figure 4.1). 
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The first case correpsonds to a static instability and is characterized by 

the fact that the constant term det ikc  in the characteristic equation (4.2) 

is zero. An instability of this type is obviously independent of the 



dissipative and gyroscopic forces and hence also occurs in the given 

system. In the second case it is easy to see that the given system also 

has at least one root with a positive real part. If this were not the case, 

the originally positive root would cross or at least touch the imaginary 

axis when the velocity-dependent forces were reintroduced, since the 

roots of (4.2) are continuous functions of the coefficients. This 

reintroduction can be realized by a proportional increase of the 

elements of ( ikg ). Now, a purely imaginary root i   would correspond, 

together with i , to a periodic motion. However, periodic motions are 

not possible in a completely dissipative system, since the total energy 

decreases as long as the system moves. The only alternative is a 

vanishing root. However, a root 0i   is independent of ( ikg ) and hence 

cannot appear as a consequence of the reintroduction of the velocity-

dependent forces. Thus, we have proved the following theorem: 

 

THEOREM 7. A purely and, at the same time, completely dissipative 



linear system behaves exactly as the corresponding system with 

dissipative and gyroscopic forces. 

 

In other words, Theorem 1 (Section 2.1) also applies for purely and 

completely dissipative linear systems. As a consequence, the 

considerations contained in Section 2.1 concerning simple systems 

remain valid. In particular, the stability of the simple system is still 

illustrated by Figure 2.2, and we have : 

 

THEOREM 8. Theorems 1 and 2 remain valid for purely and, at the 

same time, completely dissipative systems. 

 

In order to generalize the foregoing results, let us consider a nonlinear 

system which can be linearized. So long as the quadratic 

approximation (2.10) of its potential energy is positive definite, so is 

the exact expressions, and it follows from Lagrange's theorem (Section 



1.6) that the equilibrium is stable. When the quadratic approximation 

admits negative values in an arbitrarily small vicinity of the 

equilibrium configuration, the characteristic equation (4.2) has at least 

one root with a positive real part, provided that gyroscopic forces and 

damping are absent. It has been shown above that this remains true 

while the velocity-dependent forces are reintroduced, and it follows 

from Theorem D of Section 1.8 that the nonlinear system is unstable. 

We thus have : 

 

THEOREM 9. Theorem 3 remains valid for purely and, at the same 

time, completely dissipative systems. 

 

4.2. Destabilization by Damping Forces 

 

The results of Section 4.1 show that damping forces, provided that the 

dissipation is complete, do not affect the stability of a nongyroscopic 



conservative system. With respect to gyroscopic conservative systems, 

however, the situation is different. Comparing the results of Sections 

3.1 and 4.1, we arrive at the unexpected conclusion that such systems, 

provided that they are stabilized by the gyroscopic terms, are again 

destabilized by the addition of dissipative forces. We thus have : 

 

THEOREM 10. Dissipative forces, applied to other than 

nongyroscopic conservative systems, may have a destabilizing effect. If 

they are added to a gyroscopic conservative system and if the 

dissipation is complete, they cancel the stabilizing effect of the 

gyroscopic forces.  

 

In view of this result, gyroscopic stabilization loses some of its 

importance. However, there are cases where the destabilizing effect of 

the dissipative forces manifests itself rather slowly or is again 

suspended by other influences. The sleeping top, e.g., is stabilized by 



the gyroscopic moment so long as the spin is sufficiently large. It may 

take a long time until the spin is sufficiently decreased by friction to 

make the top unstable.  

It is interesting to discuss the various effects (Figure 4.1) in terms of 

the roots i  of (4.2). So long as velocity-dependent forces are absent, 

these roots are either purely imaginary, as in Figure 2.1, or real. 

Instability sets in when, in the course of an increase of the loading, a 

pair of conjugate imaginary roots meet at the origin and leave it as a 

pair of equal and opposite real roots. When at least two roots are 

positive, the appearance and subsequent increase of velocity-

dependent terms may cause two positive roots to merge and to part 

again as a conjugate complex pair. In the case of complete dissipation, 

the pair stays in the open half-plane of positive real parts; in the 

absence of dissipative forces it may reach the imaginary axis. 

As an example, let us reconsider a problem of critical speed. In Section 

1.3 the particle of Figure 1.11 was considered as the model of a disk 



mounted on a shaft rotating with angular velocity  . The case 1 2c c  

corresponds to a shaft with a single flexural rigidity and is 

characterized by a single critical angular velocity 1 . In order to study 

the influence of internal damping, it is convenient to treat the problem 

in a coordinate system rotating with the shaft. In a first approximation, 

we will represent the damping effect (Figure 4.2) by the force 2 ( , )mb x y  , 

where b is the damping constant. The differential equations of motion 

then are 
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Figure 4.2 

They are straightforward modifications of (1.56). By means of (1.57) 

we readily obtain the characteristic equation  
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or 
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Let 
1,2  be the two roots corresponding to the minus sign in (4.5), and 

let 
3,4  correspond to the plus sign.  

If there is no friction, (4.5) reduces to  
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Hence,  

                                                    1,2 3,4( ),     ( ),i w c m i w c m                (4.7) 

These roots are purely imaginary; they also are distinct, provided 
2 /c m  . The result confirms the stability of the shaft for 2 /c m  . Figure 

4.3 shows 
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 the distribution of the roots 1,2  for 2 /c m   ; the roots 3,4  are obtained 

by reflection as the real axis.  



If friction occurs, b is positive and the position of the roots in Figure 

4.3 is modified. It follows from (4.5) that 
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and, therefore, that neither of the two roots now lies on the imaginary 

axis. Because of the second equation (4.8), the center of the section 

connecting the points 1  and 2  is the point b i   marked by a triangle; 

thus, at least one of the two points lies in the open half-plane of 

negative real parts. Because of the first equation, the sum of the 

arguments of 1  and 2  is 2  or   according as 2 /c m  . It is 

immediately obvious that, for 2 /c m   , both points 1  and 2  lie on the 

left-hand side of the imaginary axis, since otherwise the sum of the 

arguments would be less or more than 2 . On the other hand, for 2 /c m  , 

one of the two points must lie on the right-hand side of the imaginary 

axis, since otherwise the sum of the arguments would exceed  . 

We have thus confirmed that the shaft is stable for 2 /c m   and unstable 

for 2 /c m  . Without velocity-dependent forces the region 2 /c m   would 



be unstable. It has been pointed out in Section 1.3 and confirmed in 

Section 3.1 that it is stabilized by the Coriolis forces. Now it turns out 

that it is again destabilized by damping. 

In contrast to the results obtained here, experiments show that, at least 

within the domain of practically occurring angular velocities, 1 ( / )c m   

is the only critical value. We conclude that there exist additional 

influences which again suspend the destabilizing effect of friction. 

According to Dimentberg [14], a more realistic representation of 

internal friction, taking account of hysteresis effects, is apt to remove 

the discrepancy between theory and experiment. Another possibility 

will be discussed in Section 4.3; it will be shown that external friction 

has a stabilizing tendency which may prevail over the destabilization 

by internal friction, at least in a certain domain of angular velocities. 

At any rate, this simple example clearly shows that stability is very 

sensitive to secondary effects and that one should be very careful in the 

interpretation of results obtained by means of a simplified analysis. 



 

Problem 

1. In the problem of Figure 1.11 the centrifugal and Coriolis forces can 

be distinguished by writing 1  and 2 , respectively, for the angular 

velocity  . The characteristic equation (1.59) then takes the form 
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and the stabilizing effect of the Coriolis force can be studied by 

increasing 2  from 0 to 1 . 

Analyze the corresponding motion of the roots of (4.9) in the plane   

for 1 2c c c   and 2 2 /c m  . 

 

4.3. The Routh-Hurwitz Criteria 

 

The characteristic equations encountered in the preceding sections 

have been quadratic or biquadratic. Accordingly, the discussion of their 

roots has been straightforward. In cases where the characteristic 



equation is more complicated, the discussion of the roots becomes 

more involved and the need for general criteria concerning the nature 

of the roots arises. Such criteria have been provided independently by 

Routh [57] and by Hurwitz [27]. They are not restricted to dissipative 

systems. However, since we will need them in the following sections, 

it is convenient to introduce them here. For the proofs, we refer to the 

original literature. 

So far, we have been dealing with systems of differential equations of 

the type 
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where n was the degree of freedom of the mechanical system and the 

matrices ( ikm ), ( ikg ), and ( ikc ) had certain properties depending on the type 

of system. In this section we disregard the particular properties of 

these matrices, assuming merely that they are real and constant. This 

implies that we admit a rather general class of mechanical systems, 

including even nonholonomic cases, but excluding systems of the 



instationary type. In other words, we admit all kinds of linear 

autonomous systems. The differential equations considered here also 

occur in control mechanisms and in the theory of electrical networks. 

Setting 
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we obtain, from (4.10), 
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and by exclusion of the trivial solution we finally obtain the 

characteristic equation 
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The coefficients are real, and the degree m does not exceed 2n. It may 

be less, since ( ikm ) is not assumed to be positive definite. Moreover, 

since nonholonomic systems have not been excluded, m is not 

necessarily even. In Section 4.4 we will deal with a case where m=3 

since one of the equations (4.10) represents a nonholonomic constraint 



and hence does not contain an acceleration. 

Inserting an arbitrary root of the characteristic equation in (4.12), we 

obtain a set 1 2, , , nA A A  of amplitudes of which at least one is free. It 

represents a fundamental solution. So long as all the roots are different, 

superposition of these fundamental solutions yields the general integral, 

containing m free constants which can be chosen so as to satisfy the 

initial conditions. It has been shown in connection with (1.117) and 

(1.121) that this general solution is limited exactly as long as none of 

the roots has a positive real part. It follows that in the   -plane (Figure 

4.4) the imaginary axis divides the stable domain from the unstable 

one, and it would seem that  
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the imaginary axis itself belongs to the stable region. However, if 0mp   

and hence 0   is a root of the characteristic equation, the system is 



statically unstable. Thus the origin in Figure 4.4 belongs to the 

unstable domain. Moreover, it has been noted in Section 1.7 that 

multiple roots are apt to change the picture, insofar as a purely 

imaginary multiple root may render the system unstable. Therefore, the 

imaginary axis, with the exception of the origin, cannot be attributed 

unambiguously to the stable or the unstable domain. 

The situation is exactly the same with respect to nonlinear systems, 

provided that they can be linearized. According to Theorems C and D 

(Section 1.8), the half-planes divided by the imaginary axis are stable 

and unstable, respectively. The origin marks a static instability, and the 

remainder of the imaginary axis contains the critical cases where the 

system may be stable or unstable. We will content ourselves, therefore, 

with sufficient stability conditions, ensuring that (Figure 4.4) all the 

roots of the characteristic equation have negative real parts. From a 

practical point of view this procedure is perfectly acceptable so long as 

we keep in mind that it supplies the whole interior of the stable domain 



and that the only stable cases not obtained in this way correspond to 

points on the boundary. 

The roots i  of the characteristic equation (4.13) are completely 

determined by the coefficients 0 1, , , mp p p . Our problem is therefore 

reduced to the question : What are the restrictions on these coefficients 

which ensure that all the i  have negative real parts? The answer, 

supplied by Routh and Hurwitz may be formulated as follows: 

Write the characteristic equation (4.13) so that 0 0p  . Form the m-row 

determinant 
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starting with the element 1p  in the upper left-hand corner, completing 

the rows by successively decreasing the subscripts by 1, completing 

the columns by raising the subscripts by 2, and replacing all elements 



with subscripts 0k   or k m  by zeros. Consider the test functions 

1 2, , , mD D D  forming the so-called chain of principal minors of mD , that is, 

the successive minors having the upper left-hand corner in common. 

The sufficient stability conditions we have been asking for then are 

                                                 1 20,    0,    ,    0mD D D                (4.15) 

In the case of a characteristic equation of degree m = 4, for example, 

the test functions are the determinant  
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and the remainder of its chain of principal minors, i.e., the functions 
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The calculation of the successive test functions and the discussion of 

the corresponding stability conditions are simplified if each one of the 



determinants is obtained by expansion with respect to its last row. In 

this way the previously calculated test functions can be used and 

appear in the result. Moreover, the last test function mD  can be 

replaced by the last coefficient mp , since 1m m mD p D   . For m=4 , for 

example, the stability conditions turn out to be 
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As an application, let us reconsider the problem of Figure 1.11 which, 

with 1 2c c c  , corresponds to a shaft with a single flexural rigidity, 

rotating with the angular velocity  . It was found in Section 4.2 that, 

because of internal damping, the entire domain 2 /c m   ought to be 

critical beside the experimentally verified critical value 2 /c m  . It has 

been conjectured that external damping might rectify this result, at 

least to a certain extent. 



If we treat the problem in a coordinate system at rest, the elastic force 

is given by ( , )c x y   , and the external damping (air drag, friction in the 

bearings, etc.) may be represented by 12 ( , )mb x y  . Since the transport 

velocity of m is ( , )y x  , the velocity relative to a coordinate system 

rotating with   is given by ( , )x y y x   , and the internal damping can be 

represented by 22 ( , )mb x y y x     . Thus, the differential equations of motion 

become 
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The coefficients of x and y show that the problem now is not only 

dissipative but also circulatory. By means of (1.57) we obtain the 

characteristic equation  
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with the coefficients 
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The stability conditions (4.18) are 
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The first two and the last one are satisfied as long as c , 1b , and 2b  are 

positive.  

The remaining one may be written  
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If internal damping is small compared with external friction, the term 



in parentheses is large compared with 1. This may explain why the 

shaft is stable for 2 /c m  , at any rate within the domain of practically 

occurring angular velocities. That (4.23) does not yield the critical 

value 2

1 /c m   is not surprising. It was shown in Section 3.2 that in a 

coordinate system at rest this value is due to resonance under the 

influence of imperfections which have been excluded here. 

 

Problems 

 

1. Formulate sufficient stability criteria for a characteristic equation of 

degree 5. 

2. The characteristic equation (4.4) of a rotating shaft subjected to 

linear internal damping has been discussed in Section 4.2 by reducing 

it to a quadratic equation with complex coefficients. Treat it as a 

fourth-degree equation with real coefficients and show that the 

stability conditions (4.18) confirm the result obtained in Section 4.2. 



 

4.4 Shimmy of Trailers 

 

It has been mentioned that the problem treated at the end of Section 

4.3 is not purely dissipative. In this section we will treat another 

problem which is an instructive application of the criteria developed in 

Section 4.3 but differs considerably from the problems to which most 

of this book is devoted.  

It sometimes happens that a trailer, being towed by a vehicle running 

smoothly on a perfectly straight and horizontal road, shows instability 

and starts to carry out dangerous lateral oscillations [77,78]. Similar 

phenomena have been observed in airplanes rolling on a runaway [13]. 

The problem, besides being not purely dissipative, is nonholonomic. 

The system exhibits negative dissipation since the constraints supply 

energy and thus give rise to self-excited oscillations.  

Figure 4.5 shows a simplified version of a trailer with a single axle. 



The two wheels are replaced by a single one, and the trailer by a rigid 

body hinged  
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at O and with centroid C. The compliance of the suspension is 

represented by a spring of stiffness c. The friction at O and at the hub 

H are neglected ; dry friction is assumed to act between the wheel and 

the ground. Initially, the wheel does not glide on the road; this is what 

makes the problem nonholonomic. Ina reference frame moving with 

the towing vehicle in a uniform rectilinear translation of velocity v, the 

coordinates of the trailer are x and  , provided the mass of the wheel is 

neglected. The mass of the trailer will be denoted by m, its radii of 

gyration with respect to C and O by Ci  and Oi , respectively. The external 

forces acting on the trailer are the traction Z, the spring force cx, and 

the friction F. 



If we linearize for small values of x and  , the momentum of the trailer, 

referred to the frame described above, has only a lateral component, 

given by ( )m x r . The angular momentum, referred to the equilibrium 

position of the hinge O, is 2 ( )Cmi mr x r   . The theorems of linear and 

angular momentum yield Z=0 and  
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Eliminating F from (4.24), we obtain a first differential equation of 

motion,  
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In order to obtain a second differential equation, we have to express 

the fact that the wheel does not glide on the road. The absolute velocity 

of the hub H, referred to the ground and obtained by adding v and the 

contributions of x  and  , has the direction HO. Therefore, in our 

approximation, 

                                                              0x l v                    (4.26) 



This second relation represents the nonholonomic constraint and is of 

the first order. The characteristic equation of the system (4.25)-(4.26) 

is 

                                                     

2
2 2 3[(1 ) ]( ) ( ) 0,

ir
l v r

l l

                   (4.27) 

where 
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It is of the third degree and may be written 
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We note that 
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Thus, the stability criteria (4.15) can be applied. They require 
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Inserting (4.30) and (4.31) in (4.32) and observing that 2 0l  , we obtain 
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The third inequality (4.33) confirms the well-known fact that the trailer 

is unstable when moving backwards. When 0v  , that is, in forward 

motion, the first condition requires that the centroid C be situated 

ahead of the hub H. 

Moreover, the second inequality may be written 

                                           
2 2 20       or      ( )C Clr r i l r r i                  (4.34) 

It includes the first condition and is satisfied by concentrating the mass 

of the trailer as much as possible in the vicinity of the center of the 

distance OH. 

The stability conditions obtained by this simplified approach are 

independent of the magnitude of v. If damping in the hinge O and other 

effects, such as the lateral motion of the rear of the truck, are taken into 

account, one finds that there exists a critical speed 1v  beyond which 

instability is to be expected. The author [77,78] has considered the 



problem in detail, including an analysis of the trailer with two axles. 

He has proposed a number of rules which are to be observed in order 

to obtain a trailer that is stable up to sufficiently high velocities. Slibar 

and Paslay [60] have approached the same problem, taking the 

characteristic of the tires into account. 

 

Problem 

 

1. Treat the shimmy problem for a trailer with a single axle, including 

a damping moment of magnitude b  at the hinge O. Show that the 

critical speed in forward motion is 2

1 ( / )( )Ov bl m i rl   . 

 

4.5. A Theorem Concerning the Constraints 

 

The results obtained so far for simple linear systems have been 

represented by Figures 2.2 and 3.1. They are compounded in Figure 



4.6 Diagonal lines indicate that the behavior of the system is uncertain; 

crosshatching indicates instability. Purely dissipative systems behave 

as those of the nongyroscopic  

 

Figure 4.6 

 

conservative type provided that the dissipation is complete. We 

observe that in the three cases represented in Figure 4.6 the system is 

stable for 1P P  and at least statically unstable for 1P . In all these cases 

1P  may be obtained by the energy method since it is the smallest load 

for which V is not positive definite. 

Let us consider two systems A and B of the type just discussed. We 

assume that they differ merely in their constraints: in addition to all the 

constraints of A, system B is supposed to have certain additional 

constraints which are nonworking and consistent with the presence of 

the equilibrium configuration 1 2 0nq q q    . In configuration space 



1 2, , , nq q q  (Figure 4.7) 

 

Refer to Figure 4.7 

 

the admissible configurations of the two systems are represented by 

the two domains A and B. Because of the assumptions made, either of 

them contains the point O corresponding to the common equilibrium 

configuration; moreover, B is contained in A. This means that any 

admissible configuration of the system B is also admissible for system 

A while, on account of the additional constraints of B, the reverse is 

not true. It immediately follows that V, if positive definite in A, is also 

positive definite in B. As a consequence, we have: 

 

THEOREM 11. If, in a simple linear system containing neither 

instationary nor circulatory forces, nonworking constraints are added 

which do not alter the equilibrium configuration, the smallest critical 



load does not decrease. 

 

In general, the smallest critical load is increased by the additional 

constraints. The theorem is particularly useful for nongyroscopic 

systems, since here 1P  marks the transition between the stable and 

unstable regions. 

In the nonlinear case the information contained in Figure 4.6 remains 

correct if V is interpreted as the quadratic approximation and if we 

remember that static instabilities do not necessarily occur under the 

loads 1 2, ,P P   

For nongyroscopic conservative systems and for those of the purely 

and completely dissipative type, 1P  still marks the transition between 

the stable and the unstable domains. We thus have: 

 

THEOREM 12. Theorem 11 remains valid for kinetic instability of 

simple nonlinear systems belonging to the nongyroscopic conservative 



and to the purely and completely dissipative types. 

 

Problem 

 

1. Show that the buckling loads (1.10) in Euler's cases (Table 1.1, 

Section 1.2) are consistent with Theorem 11. 

 

 


