기계시스템해석 System Dynamics/System Analysis

Spring 2015

Professor Kyongsu Yi ©2015 VDCL

Vehicle Dynamics Control Laboratory Department of Mechanical Engineering Seoul National University

Introduction

Instructor: Professor Kyongsu Yi

301-1502

Tel: 880-1941 Email:kyi@snu.ac.kr

http://vdcl.snu.ac.kr

Lectures: Tu/Th 09:30-10:45 @301-306

Office hours: Th 11:00 to 12:00 or by appointment

References:

- 1. System Dynamics, 4th Ed., K. Ogata, Pearson/Prentice Hall, 2004.
- 2. System Dynamics, 2nd Ed., William J. Palm III, McGraw Hill, 2010.
- Objective: To provide basic concepts, an overview of dynamic system, modeling, analysis methods and applications to engineering systems Mathematical model, analysis in the frequency and time domains and prediction of the dynamics of systems

Grading: Midterm Exam 30%, Final exam 45% Homework 15%, Class attendance 10%

Students absent in a class without instructor's permission prior to the class would be failed.

Homework: Students will turn in before the end of the class on the due date.

Late homework will not be accepted.

All homework assignments are to be completed on your own.

You are allowed to consult with other students during

the conceptualization of a problem but all written and

programming work are to be generated by yourself.

Week	Lecture	Remarks
1	Introduction, Concepts, Terminology	
2	Laplace Transformation	
3	Mathematical modeling of dynamic systems	
4	Transfer Function Approach to Modeling Dynamic Systems	
5	State space Approach to Modeling Dynamic Systems	
6	Fluid Systems and Thermal Systems	
7	Electrical Systems	
8	Midterm exam	Exam
9	Time Domain Analysis of Dynamic Systems	
10	first order/second order systems	
11	transient analysis	
12	analysis with MATLAB	Design exercise with matlab
13	Frequency Domain Analyses of Dynamic Systems	Design exercise with matlab
14	Introduction to control systems Review autonomous vehicle and automated driving	Design exercise with matlab
15	Final Exam	Exam

Exam : 75-minute midterm exam

on April 23 (Th) 9:30-10:45

120-minute final exam

on June 11 (Th) 9:30-11:30 (or 18:00-20:00)

Major Course Contents

Part 1: Introduction

Introduction, Concepts, Terminology

Part 2: Laplace Transform

Laplace Transform

Part 3: *Modeling*

Mathematical Model of Dynamic Systems

Transfer Function Approach to Modeling Dynamic Systems

State space Approach to Modeling Dynamic Systems

Electrical Systems

hydraulic systems, Fluid Systems and Thermal Systems

Major Course Contents (contd.)

Part 4: Analysis

Time Domain Analysis of Dynamic Systems

First Order / Second Order Systems

Transient Analysis

Analysis with MATLAB

Frequency Domain Analysis of Dynamic Systems

Understanding the underlying physics and being able to construct models of dynamic systems to analyze (and,) predict (and control) engineering systems

Elevator Systems

Conveyor systems

Robot

Vehicle Systems

Vehicle Suspension Systems

Water Tank

Antenna azimuth position control system

Aircraft

NASA x-29 forward swept wing aircraft

Airbus A320

Unstable

Figure 1. Gripen JAS39 prototype accident on 2 February 1989. The pilot received only minor injuries.

Fluid power systems : excavators

Wheel loader

MAGLEV (Magnetic Levitation) Vehicle

MAGLEV (Magnetic Levitation) Vehicle

Automated Driving Worldwide

"Future Truck 2025"

λロ

The UK Oks Self-Driving

GM To Pour All Resources Into Single Car That Can Be Safely Driven Down Street And

Tesla produces selfdriving vehicles

Aims to "90% Autopilot" By 2015

Self-driving Audi RS7 aims for 149 mph in driver-free race lap

University of Michigan Robo Car Urban Test Track

Real life cars

Status Today

Internet is available in nearly all places

*Source: 17th ITS World Congress,Busan2010, Emergence of the 'iCar', Brian Droessler, Continental 24

Driver Distraction

Driver distraction is Not New, but temptation has Increased → Common Factor in Driver Distraction is the Driver!

*Source: ITS America, View on driver distraction, Roderick MacKenzie, Chief Technology Officer,ITS America

Trends of Road Traffic Fatalities (Korea)

Source: KOROAD(2011)	Road Fatalities	5,229
Korea Key Road Safety	Injury Accidents	341,391
Data for 2011	Killed per 100,000 inhabitants	10.7

Not a good idea to drive in Korea?

Road fatalities in Germany

Despite the unlimited speeds of parts of German roadways, deaths there rank toward the middle of comparable nations.

New Mercedes S Class

▲ Radar, stereo camera and ultrasonic systems

More sensors - more protection

Driver Assistance Systems

Adaptive Cruise Control and Traffic-Jam

Autonomous Emergency Braking

IEEE Spectrum newsletter July 23, 2014

Automated Driving with x-by-wire and LiDAR/Radar/Vision

Automated Driving with x-by-wire and LiDAR/Radar/Vision

Automated Driving System

Environment

Sensor

Control

Integrated Perception	Dynamic Task Decision	Vehicle Control
Surrounding Environment Road Geometry Estimation Ali-around target vehicle state estimation/recognition Multi-target vehicle tracking	Risk Assessment - Collision Risks - Late Departure - Which Sublity	Self-Adaptive Throttie/Brake Control - Throttie Gain Adaptation
Vehicle State Estimation Road Friction Estimation	Mode Decision - Narmal Mode - Emergency Mode - Mode Control / Mode	Road Disturbance Estimation
ystem Health Monitoring Operation condition check Sensor system check	Motion Planning	Self-Adaptive Sciencing Control - Yaw-rate Gain Adaptation - Lateral Ointurbance Estimation

Radar Measurement Characteristics

Vehicle

Test Data based Simulation / Normal Section

- Drivable Area Decision & Motion Planning with IRM
- Preceding Vehicle State Estimation

Test Data based Simulation / Tunnel Section

- Global Pose Estimation w/o GPS (with Vehicle Chassis Sensor)
- Drivable Area Decision with Road Structure

Test Data based Simulation / Toll-gate Section

- Drivable Corridor Estimation w/o Lane Information
- Static Obstacle Recognition & Safe Envelope Decision

Test Data based Simulation / Repairing Section

- Unexpected Static Obstacle Recognition
- Safe Envelope Decision & Motion Planning

Level 4 Automated Driving

Automated Driving on Urban Roadways (SNU Campus)

- Total Travel Length : 1.2 km
- Center for advanced materials research institute → Engineering Education & Research Bldg.

- **Highly Extreme Condition**
- Low Visibility of Lane
- Parked Vehicles

Non-vehicle Obstacles

- Pedestrian
- Guardrail

Other traffic Participants

- Preceding Vehicle
- Oncoming Vehicle

SNU VDCL

Automated Driving on Urban Roadways / Vehicle Test

Automated Driving with Risk Management

Systems

An aircraft

A head positioner for a computer hard disk

A vehicle

An engine/transmission/brake/ steering/ suspension systems

An electric rice cooker

An excavator

A room air conditioner

A refrigerator

Electric power plant

Robots

Chemical and Manufacturing Process Control: temperature; pressure; flow rate; concentration of a chemical; moisture contents; thickness.

.

End of Course overview