_ecture 10-1
Linear Systems Analysis
In the Time Domalin

- Transient Response -
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System Poles and Zeros

Consider a system with T.F. G(s) = N (s)

D(s)
Factor the numerator and G(s) =K (s-72)(5-7,).....(S— Zy,)
denominator polynomials (s—p)(s—P,)--(5—P,)
where P, Py,.-.P,: Roots of D(s), system poles

Z,,Z,,....2,, . Roots of N(s), system zeroes
Note that because the coefficient of N(s) and D(s) are real, (modeling parameters),
the system poles must be either

i) Purely real, or P, Orz =0c +jo
ii) Appear as complex conjugates

System Poles and Zeros completely characterize the transfer function (therefore the
system itself) except for an overall gain of constant K-

G(s)=K = ﬂri]=1(s_ Z;)
“izl(s_ pi)
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Pole Zero Plot

The value of system poles and zeros are shown graphically on the complex s-plane .

Ex) 552 +10s ~ 5Bs(s+10) 5s(s +10)

G(s) =

455 +11s+5  (s+3)(s°+25+5)  (s+3)(s+(L+ j2))(s+(1-j2))
zeros at s=0, s=-2 polesats=-3, -1+j2, s=-1-j2

jo| Imis]
s— plane

T Re{s}

o

You can use Sys=zpk(zeros, poles, gain) in matlab.
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Pole Zero Plot

The characteristic equation of the system:

D(S) — (S_ p1)(s_ pz) ------ (S_ pn)

Poles are the system eigenvalues.
Form of the homogeneous solution:

y,(t) = Zciepit
=)

Ex) 12
G(s) =
(5) $2 +7s+12 jo] Im{s}

Y1 (t) = Cle_St Y, (t) = Cze_4t

Note: The poles do not specify the amplitude. It just indicates the
natural response components.
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Complex Poles and Zeros
In general, S=o+ jw
y(t) =...+CeleHIat L C eIt |

i+1

Celiat L C eI = (a+ jb)e™e' +(a— jb)e” e

=ae” (e +e71") + jhe® (e)' —e74")

Yi 1 (t) = 22" cos(mt) — 2be” sin(mit)

b .
=2+/a® +b%e! cos(mt) = ———sin(ot
(ﬁ e )]
= Ae“'sin(wt + @) AYO
™ \[ Ae
Ae sin( af)
A =2\a*+b’ ¢ :tanl(ﬁj /\
b /\ /\ N TN A

\/\/\/\/V\/~—;’t
///
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<— stable region unstable region —>

1) Poles in the left-half plane - decays with time
2) Poles in the right-half plane - grow with time
3) Pole on the imaginary axis - purely oscillatory
4) Pole at the origin = constant
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Ajo increasing
frequency

N/
e

N

N

Y
increasing

<—— increasing decay rate frequency

5) the oscillatory frequency and decay rate is determined by the distance of the
poles from the origin.

6)The rate of decay/growth is determined by the real part of the pole, and
poles deep in the |hp generate rapidly decaying components

7) For complex conjugate pole pairs, the oscillatory frequency is determined by
the imaginary part of the pole pair.
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System Stability

A system is defined to be unstable if its response from any finite initial
conditions increases without bound.

Y, (t) = Z Ce"
i1

1) System is unstable if any pole has a positive real part
2) For a system to be stabel, all poles must lie in the lhp.
3) System with poles on the imaginary axis is defined to be marginally stable.
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First Order Systems

Vi
+ ) L
R SV
fp O
B i
jo| Im{s}
s— plane
—— {—— Rels)

di )
=L—, =R,
L dt R
L—+Ri=e(t)
1
X=1 X=——X+—¢(t
C (t)

X(s) I(s) 1 1 1

U(s) E(s) Ls+R RlF-{SJrl

ut)=e(t)=1,  i(0)=0

it) =%(1—eftj
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First Order Systems

(1) / -
Y 1 U(S):;’ i) =1 T ‘ 6(0)=(1-¢ T,
U(s) Ts+1 S O [— -

T :time constant

Y et 1.1 g1 :
Ts+1s s Ts+1 2
—Et ) 1 —Et '

yt)=1-e T, y(t)=;eT e

1) Settling Time: The time taken for the response to reach 98% of its final value
T, =4T

2) Rise Time: Commonly taken as time taken for the step response to rise from 10%
to 90% of the steady-state response to a step input.
T,=22T
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First Order Systems

() d R(t) = rt
R(s)=r-i2
S
rl
. Ts+1 s s s s+(/T)

yt)=rt-T +Te_;)

e(t) =R(t)-y(t)=rT (1—e_$)
e(0)=rT
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Second Order Systems

R(s) C(s)
4 G(S) >
2
a
G(s) = n
) s’ + 2w, s+ w?
1 . o’ 1
R(s)=— (stepinput), C(s)= L L=
) s( pinput) ) °+2lw S+a S

s’ +2lw s+w’ =0, s=—Cw + -1,
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Second Order Systems

Underdamped case S=—Cw, + 1—§2wni , (w, = @nvl—gz)

0<¢ <1 o’ 1 1 s+2lw
C(s) = P, Y o o P,
o) +@0-00) s 5 (5+iw) +a
1 S+, S,

s (s+<lw,) +w; B (s+lw)° +w,°

—Ca,t
: e .
- C(t)=1-e" cosm,t —#e“fa’nt sin wyt =1-—=sin(w,t +7)

1-¢° J1-¢2

1-¢7

n=tan™

Critically damped case

2
Q,

()= (s+§r;on)zs

ct)=1-e ™ (L+amt)

"t RE-L
S
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Second Order Systems

Overdamped case ¢ >1
2

C(s) = n
©) (s+<lw, +a)n\/§2 -1)(s+¢w, —a)n\/gz -1)s
1 2 1 2
c(t) =1+ e_(é,"’\/ﬁ)wnt _ e—(é“—\/z)wnt
2% -1(¢ ++¢° 1) 2% -1(¢ -7 -1)
e—(g+\/ﬁ)wnt e—(( —\/z)wnt

Q)
=1+ L -
25t 1| (¢ 1o, (V57 -1)a,
Approximation (After the faster term disappeared)

C(S): é,a)n_a)n\lé/z_l
R(S) s+cw, —wC?-1

so(t) =1—e €I D
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Damping ratio and Pole placement

;) Z>1 :poles are real and distinct
ii)  Z.=1: poles are real and coincident
i) 0 <Z<1:poleare complex conjugates

iv) {. = 0:The pole are purely imaginar
AJo

conjugate poles s-plane

T

coitielpoles

XK

|
l ,e

(|magmary poles

real pole

R
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End of Lecture 10-1
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