Chapter 9

The Behavior of Solutions



9.7 Nonideal Solutions
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Figure 9.8 Activities in the system iron-nickel at 1600°C. (From
G.R.Zellars, S.L.Payne, J.P.Momis, and R.L.Kipp, “The Ac-
tivities of Iron and Nickel in Liquid Fe-Ni Alloys,” Trans.
AIME (1959), vol. 215, p. 181.)
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Figure 9.9 Activiies in the system iron-copper at 1550°C. (From
1P Morris and G.R. Zellars, “Vapor Pressure of Liquid Cop-
per and Activiies 1n Liqud Fe-Cu Alloys,” Trams. AIME
{1956), vol. 206, p. 1086.)
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Figure 9.11 Activity coefficients in the system iron-copper at 1550°C.



9.8 Application of the Gibbs-Duhem Relation to the
Determination of Activity

(A) Method 1




9.8 Application of the Gibbs-Duhem Relation to the

Determination of Activity

(9.51)

Log ap at Xp = X3 is given by
the shaded area.
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Figure 9.12 A schematic representation of the variation of log a, with

X/X ina binary solution, and illustration of the application of the

Gibbs-Duhem equation to calculation of the activity of component 4.




9.8 Application of the Gibbs-Duhem Relation to the
Determination of Activity

(B) Method 2

Log ya at Xp = Xp is given by
the shaded area.
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Figure 9.13 A schematic representation of the variation of log y, with A/X, ina binary

solution, and illustration of the application of the Gibbs-Duhem equation to
calculation of the activity coefficient of component 4.



9.8 Application of the Gibbs-Duhem Relation to the
Determination of Activity

(C) Method 3
<The a-Function>
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dnvyg = 2uX,dX, + X dog (9.58)
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9.8 Application of the Gibbs-Duhem Relation to the
Determination of Activity
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9.8 Application of the Gibbs-Duhem Relation to the
Determination of Activity

<The a-Function>
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Figure 9.14 Application of the Gibbs-Duhem equation to determination Figure 9.15 Application of the Gibbs-Duhem equation to determination
of the activity of iron in the system iron-nickel. of the activity of iron in the system iron-copper.
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9.8 Application of the Gibbs-Duhem Relation to the
Determination of Activity

<The a-Function>
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Figure 9.16 The vanation of o, with composition in the system ron-nickel.



9.8 Application of the Gibbs-Duhem Relation to the
Determination of Activity

<The Relationship between Henry’s and Raoult’s Laws>
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Figure 9.17 The vanation of a_ with composition in the system iron-copper.
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9.8 Application of the Gibbs-Duhem Relation to the
Determination of Activity

(D) Method 4

<Direct calculation of the integral molar Gibbs free energy of mixing>

(9.62)

(9.63)
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9.8 Application of the Gibbs-Duhem Relation to the

Determination of Activity

<Direct calculation of the integral molar Gibbs free energy of mixing>
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Figure 9.18 llustration of the direct calculation of the integral molar Gibbs freé §nergies
of mixing in the systems iron-copper at 1550°C and iron-nickel at 1600°C.



9.8 Application of the Gibbs-Duhem Relation to the
Determination of Activity

<Direct calculation of the integral molar Gibbs free energy of mixing>
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Figure 9.19 The integral molar Gibbs free energies of mixing in the
systems iron-copper at 15350°C and iron-nickel at 1600°C.



9.9 Reqgular Solutions

AHY 0 and ASY = ASMY = —RInX,
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9.9 Reqgular Solutions

<The properties of a regular solution>
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9.9 Regular Solutions
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9.9 Regular Solutions
2. GXS =AHM # f(T)

It is thus seen that G*S for a regular solution is
Independent of T
dG™> s
( oI )ﬂmmp N >

SXS for a regular solution is zero,
then G*S, and hence AHM, are independent of T




9.9 Regular Solutions

3. Application of RS
ﬁ:'ﬁ = RT, In vy, Ty Kisln Yacry = ﬂrxff

For a regular solution

In +, at the temperature 7> T
ot . o (9.77)
In +y, at the temperature T I,

Eq. (9.77) is of considerable practical use in
converting activity data for a regular solution at one
temperature to activity data at another temperature



9.9 Regular Solutions
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Figure 9.20 Activities in the system thallium-tin. {(From J.H.Hildebrand and

JLN. Sharma, “The Activiies of Molten Alloys of Thallium with Tin and
Lead,” J. Am. Chem. Soc. (1929), vol. 51, p. 462.)
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9.9 Regular Solutions
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Figure 9.21 Activities coefficients in the system thallium-tin. {From Figure 9.22 Log vy %'S.X;n in the system thallium-tin. {From J.H.Hildebrand
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Thallium with Tin and Lead,” . 4m. Chem Soc. (1929), vol. 51, p. 462.) and J.N.Sharma, “The Activities of Molten Alloys of Thallium with

Tin and Lead,” J. Am. Chem. Soc (1929), vol. 51, p. 462.)
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9.9 Regular Solutions

4. What can we use R.S?

AHY = X, Xy or G =b'X, Xy
where b and b’ are unequal
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Figure 9.23 The vanation of the product aT"with Tin the system T1-Sn.
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9.9 Regular Solutions
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Figure 9.24 The molar enthalpy, entropy, and Gibbs free energy of
mixing of thallium and tin at 414°C.
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9.10 A Statistical Model of Solutions

» Application of the statistical mixing model to two components which
have equal molar volumes

* In solution the interatomic forces exist only between neighboring
atoms

* The energy of the solution is the sum of the interatomic bond
energies

« Consider 1 mole of a mixed crystal containing N, atoms of A and Ng
atoms of B

N N N
X, e —2 and Xg=- rH

=2 - N, is Avogadro’s number
Na+Npg Ny No

1. A-ADbonds the energy of each of which is E,,
2. B-B bonds the energy of each of which is Egg
3. A-B bonds the energy of each of which is E,g



9.10 A Statistical Model of Solutions

<Quasi-Chemical Model>




9.10 A Statistical Model of Solutions

« N, atoms in pure A

2 the number of A—A bonds
= the number of atoms X the number of bonds per atom

-

Py =

’h"f:l

1
2
I
Pry = 5
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9.10 A Statistical Model of Solutions
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9.10 A Statistical Model of Solutions

e If AHM =0, then the mixing of the N, atoms with the Nz atoms of B is
random < random mixing

ASY = ASMM = —R(X, InX, + Xpln Xp)
o |AHM|SRT
The mixing of the atoms is also approximately random

« Consider two neighboring lattice sites in the crystal
The probability that site 1 is occupied by an A atom is

the number of A atoms in the crystal N,

the number of lattice sites in the crystal Ny

A

« The probability that site 2 is occupied by a B atom is Xg
« Thus the probability of A-B pair is 2X,Xg,A-A pair is X,?,
B-B pair is Xg?
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A Statistical Model of Solutions
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9.10 A Statistical Model of Solutions

 Henry’s law requires that y,, and hence Iny,, approach
a constant value as Xg approaches unity
Thus,

ya = Inyy = LURT

 The applicability of the statistical model to real
solutions decreases as the magnitude of Q increases,
l.e., If the magnitude of EAB is significantly greater or
less than the average of EAA and EBB then random
mixing of the A and B atoms cannot be assumed



9.10 A Statistical Model of Solutions

Clustered ndom Clustered Rand
m:?s?:gle} E‘I?xigg Ordered Erﬁri?s?:igie} M?xingm Ordered
v N
4S AS
+ + w ‘
2 0K
7 |
(a) |46 (b) |
0 0.5 1 0 0.5 1
probability of an A-B pair probability of an A-B pair

Figure 9.25 lllustration of the origins of deviation from regular solution behavior



9.11 Subregular Solutions

Q=a+bXg+cXp+ dXy+ (9.92)
G = (a + bXp)X Xp (9.93)
GXS = aXi + bXi(Xg — X,) (9.94a)
Gr¥ = aX3 + 2bX3X, (9.94b)
dGIS
Xy

G™® = aXy + 2b — a)X3 — bX3

dG™ .
_-:JTI__ =a+ 2k - a)lXy - 36Xy =10
B

_Ab-a) VB + ab + a
g 6b




9.10 Subregular Solutions
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Figure %.26 Excess molar Gibbs free energy curves generated; by the

subregular solution model.
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