Chapter 10

Gibbs Free Energy Composition and Phase
Diagrams of Binary Systems
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10.2 Gibbs Free Energy and Thermodynamic Activity

The Gibbs free energy of mixing of the components A and B to form a mole of solution:

AGY = RTiX, Ina, + Xzlnag)

If it is ideal, i.e., if a;=X, then the molar Gibbs free energy of mixing,

AGYY = RT(X, In X, + Xz In Xp)
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Figure 10.1 The molar Gibbs free energies of
mixing in binary systems exhibiting ideal behavior
(1), positive deviation from ideal behavior (II), and
negative deviation from ideal behavior (IlI).
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Figure 10.2 The activities of component 8
obtained from lines 1, II, and IIl in Fig. 10.1.

|Bb = AGY = RTInag(insystem I)| < |Ba = AGY = RTIn X!
< | Be = AGY = RTIn ag (in system I11)|

YpIn system Il = 1 = g in system 111



10.3 The Gibbs Free Energy of Formation of Regular Solutions
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For curve II, |AGM| < |AGM*4|, and thus AHM is a positive quantity
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Figure 10.3 The effect of the magnitude of a on the
integral molar heats and integral molar Gibbs free
energies of formation of a binary regular solution.
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Figure 10.4 (3) The molar Gibbs free energies of mixing of
binary components which form a complete range of solutions.
(b) The molar Gibbs free energies of mixing of binary

components in a system which exhibits a miscibility gap.



10.4 Criteria for Phase Stability in Regular Solutions
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Figure 10.5 The effect of the magnitude of a
on the first, second, and third derivatives of
the integral Gibbs free energy of mixing with

respect to composition.
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«  Figure 10.6 (a) The effect of temperature on the
molar Gibbs free energy of mixing a binary regular
solution for which Q=16,630 joules, (b) The loci of the
double tangent points in () which generate the
phase diagram for the system, (¢). The activities of
component B derived from (a).
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10.4 Criteria for Phase Stability in Regular Solutions

1.2 F .
The derived activity curve between b and ¢ and, consequently,
— ,"//" the Gibbs free energy of mixing curve between the spinodal
e ] compositions, have no physical significance. The horizontal line

drawn between g and din Fig. 10.7 represents the actual
constant activity of B in the two-phase region, and the
compositions @ and d are those of the double tangents to the
Gibbs free energy of mixing curve.
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Figure 10.7 The activity of B at 800 K derived from Fig. 10.6a.



10.5 Liquid and Solid Standard States
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Consider the binary system A-B at a temperature 7 which is below 7_(B), the melting
temperature of B, and above 7,(4) the melting temperature of A. Consider, further, that this
system forms Raoultian ideal liquid solutions and Raoultian ideal solid solutions. The phase
diagram for the system and the temperature of interest, 7, are shown in Fig. 10.8a. Fig. 10.86
shows the two Gibbs free energy of mixing curves of interest, curve I drawn for liquid
solutions and curve II drawn for solid solutions. At the temperature 7, the stable states of pure
A and B are located at AGM=0, with pure liquid A located at X,=1 (the point a) and pure solid
B located at X;=1 (the point b). The point ¢ represents the molar Gibbs free energy of solid A
relative to that of liquid A at the temperature 7 and 7>7,(4) then GJy — G2 is a positive

quantity which is equal to the negative of the molar Gibbs free energy of melting of A at the
temperature 7. That is,

G.:-;I*I - G.:.';'.I':- = iG.’ill'."ll = _[jH:;II.".I = T'l'j:-:i-:.h}
and if ¢, acs) = cpaythat is, if AHy, ,yand ASy) ,y are independent of temperature, then

Toiay — T
lf}:ﬂ__“ = ".:I""r'f:;ll-:.-"l.:l (-1—) (104)

milAl

Figure 10.8 (3) The phase diagram for the system A-B. (b) The Gibbs free energies of mixing in the
system A-B at the temperature 7. (¢) The activities of B at the temperature 7and comparison of the
solid and liquid standard states, (d) The activities of A at the temperature 7, and comparison of the
solid and liquid standard states.
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At any composition the formation of a homogeneous liquid solution from pure liquid
A and pure solid B can be considered as being a two-step process involving

1. The melting of X; moles of B, which involves the change in Gibbs free energy AG =
XpAGp,(z), and

2. The mixing of Xz moles of liquid B and X, moles of liquid A to form an ideal liquid
solution, which involves the change in Gibbs free energy,

Thus, the molar Gibbs free energy of formation of an ideal liquid solution, AGE‘{’), from
liquid A and solid B is give by

AGH, = RTIX, In Xy + Xgln Xg) + XpAG, (10.5)

Similarly

AGY = RTIX, InX, + XgInXg) — X AGE,, (10.6)

Figure 10.8 (3) The phase diagram for the system A-B. (b) The Gibbs free energies of mixing in the
system A-B at the temperature 7. (¢) The activities of B at the temperature 7and comparison of the
solid and liquid standard states, (d) The activities of A at the temperature 7, and comparison of the
solid and liquid standard states.



10.5 Liquid and Solid Standard States
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/‘./.' -.*.Gf (in the solid solution) = AGY (in the liquid solution) (10.7)
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s 2 - . At any temperature 7 these two conditions fix the solidus and liquidus compositions, i.e.,
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| the position of the points of double tangency. From Eq. (10.5)
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10.5 Liquid and Solid Standard States
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Oz Comparison among the three shows that, because of the logarithmic
nature of the Gibbs free energy curves, the positions of the points of
double tangency are not influenced by the choice of standard
state; they are determined only by the temperature 7 and by the
magnitude of the difference between G}, and Gy, for both

components at the temperature T.
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Figure 10.10 The Gibbs free energy of mixing curves for a binary system A-B8 which forms ideal solid
solutions and ideal liquid solutions, at a temperature which is higher than 7m¢A) and lower than
TM(B). (a) Liquid A and solid B chosen as standard states located at AGM=0. (b) Liquid A and liquid B
chosen as standard states located at AGM=0. (¢) Solid A and solid B chosen as standard states
located at AGM=0. The positions of the points of double tangency are not influenced by the choice
[ i) of standard state.
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equilibrium, AGm(A) = 0 and the points p and v coincide. Similarly,

Figure 10.10 The Gibbs free energy of mixing curves for a binary system A-B8 which forms ideal solid
solutions and ideal liquid solutions, at a temperature which is higher than 7m¢A) and lower than
TM(B). (a) Liquid A and solid B chosen as standard states located at AGM=0. (b) Liquid A and liquid B
chosen as standard states located at AGM=0. (¢) Solid A and solid B chosen as standard states
located at AGM=0. The positions of the points of double tangency are not influenced by the choice
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Figures 10.11-10.14 The effect of temperature on
the molar Gibbs free energies of mixing and the
activities of the components of the system A-5.
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The Gibbs free energy of formation of the liquid solutions in the system A-B at the
temperature 7is shown in Fig. 10.1556. The “double tangent” to the a solid solution and
liquid solution curves is reduced to a tangent drawn from the point on the X,=1 axis
which represents pure solid A to the liquid solutions curve. The corresponding activity-
composition relations are shown in Fig. 10.15¢ Again these are drawn in accordance with
the supposition the the liquid solutions are ideal. In Fig. 10.15(¢) pgris the activity of A
with respect to pure solid A at p, sis the activity of pure liquid A with respect to solid A
at p, stris the activity of A with respect to liquid A having unit activity at s, and Auvw is
the activity of B with respect to liquid B having unit activity at w.

In a binary system which exhibits complete miscibility in the liquid state and virtually
complete immiscibility in the solid state, e.g., Fig. 10.154, the variations of the activities of
the components of the liquid solutions can be obtained from consideration of the
liquidus curves. At any temperature 7 (Fig. 10.154), the system with a composition
between pure A and the liquidus composition exists as virtually pure solid A in
equilibrium with a liquid solution of the liquidus composition.

Figure 10.15 The molar Gibbs free energy of mixing and the
activities in a binary eutectic system that exhibits complete
liquid miscibility and vitually complete solid immiscibility.
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Figure 10.16 The effect of decreasing solid solubility on the molar Gibbs free energy of mixing curve.

At any temperature 7 (Fig. 10.154), the system with a composition between pure A and the liquidus composition exists
as virtually pure solid A in equilibrium with a liquid solution of the liquidus composition. Thus, at 7

=i — ':rlu
G Aisy — f-h.n

= Uin ¥+ Rl Ina,

in which ay4 is with respect to liquid A as the standard state. Thus

o S

mlA) T —RTIna, (10.23)
or, if the liquid solutions are Raoultian,

o —

oAy — _RTIH X_,.‘ (1024)
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AH g, = 10,900 1 at T, 5, = 554 K, and thus

10,900

ASqigin = = 20.0 VK at 544 K

The molar constant pressure heat capacities of solid and liquid
bismuth vary with temperature as

Copiy = 18.8 + 22.6 X 107 TIK
Copitn = 20 4 6.15 % 10 °T + 21.1 % 10°T " ° J/K

Thus
Comith — Cpmicy = A = 1.2 = 1645 X 107°T + 21.1 X 10°T "2 J/K

and

! T Ae.si
AGp @i = AHygiysaa + { Ac, i dT — T(&Sﬁ;mn,su + [ i dT)

554 saa T

= 16560 —23.79T — 1.2TInT + 8225 X 107°T* — 1055 X 10°T "'

= —RT In Xgigiquidus) (10.25)

or
- 1992 s
In Xaunquids ™ + 2860 + 0144 In T — 9.892 % 1077 + 1.269 = =
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Figure 10.17 The phase diagram for the system Bi-Cd. The full
lines are the measured liquidus lines, and the broken lines are
calculated assuming no solid solution and ideal mixing in the

liquid solutions.

if the small solid solubility of Bi in Cd is ignored,

'lf":::u'l:,'l:ll = = KT In xf'dl lrgquiiclus b

AHD, cay= 6400] at T,,,=594K and thus AS, cqy= =2 = 10.77]/K at
594K. The constant pressure molar heat capacities are
CpCaisy = 2224 123 % 07T VK
and
{:.,ﬂ.'lfdlfj = 297 JIK
Thus
Cpcah — Cocdtny = DEpca = 7.5 — 123 X 10 TIK
o ¥ x T Ac p.Cd
—"‘Gﬁr:(‘dl = lH;n(‘dr.:‘w*M + -lfp_f__'d dr — T '}"S;;n{_'ulr,ﬁ*u + ] - dar
“594 “594 r
= 4155 + 37.32T — 75T InT + 6.15 X 107°T"] (10.26)
= R Xcmhqu.dw
or

495

- 4489 + 0901 T — 7.397 = 10T

i|'|. -xt'l.h'll.uuulu.u =
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Figure 10.17 The phase diagram for the system Bi-Cd. The full
lines are the measured liquidus lines, and the broken lines are
calculated assuming no solid solution and ideal mixing in the

liquid solutions.

From Eq. (10.25), AGy,(g;)410x= 2482J, and from Eq. (10.26),
AGy,caya1ox= 1898). Thus, from Eq. (10.23), in the actual eutectic melt,

— 2442 0.49
. = aw = _4‘.
@i = CP L g 3744 x 419 '

and

il —cx( — kE98 )—f]ﬁx
o Pls314d x 419 -

The actual eutectic composition is X-4=0.55, X;;=0.45, and thus
the activity co-efficients are

0.49
=——=1.09
YBI T 045 0
and
0.58
=" = 1.05
Yea = 555

Thus, positive deviations from Raoultian ideality cause an increase
in the liquidus temperatures.
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Assuming regular solution behavior, Eq. (10.23), written in the form

2000 T T T T T T
a- 50k ~AGZ,,, = RTInX, + RTIn+,
| - ~AGE ., = RTInX, + RTa(l — X,
1800 | ) - from Eqg. (9.90),
o L — —AGL ., = RTInX, + (1 — X,)° (10.27)
1600 | - Consider a hypothetical system A-8in which AH® = 10k at T,,, 4 = 2000K.
oo | ekt Thus, for this system
~10,000 + 5T = RTIn X, + (1 — X,)°

020k where X, is the composition of the A liquidus at the temperature 7. The
1500 1 A liquidus lines, drawn for Q=0, 10, 20, 25.3, 30, 40, and 50 kJ, are shown
a0 L 1 in Fig. 10.18. As Q exceeds some critical value (which is 25.3 kJ in this

2=10K case), the form of the liquidus line changes from a monotonic decrease
e | 1 in liquidus temperature with decreasing X, to a form which contains a
1000 -0 maximum and a minimum. At the critical value of Q the maximum and

1.0 0.8 0.8 0.7 0.6 0.5, 04, 03

minimum coincide at X,=0.5 to produce a horizontal inflexion in the

liquidus curve. It is apparent that, when Q exceeds the critical value,

Figure 10.18 Calculated liquidus lines assuming regular iIsothermal tie-lines cannot be drawn between pure solid A and all points

zg:zgﬁiﬁy?ehav'or in the liquid solutions and no solid on the liquidus lines, which, necessarily, means that the calculated
liquidus lines are impossible.
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2000 T T T T T T
1= 50kJ From Eq (1021)

1600 1 1 —AHL . AHGL,

A Ina, = + —
1g00 b RT ETJm.-H

Thus
1700 n-30k | o
{ In day _ Ay
. ‘ g = —= = —————
1o YT an  RT?
f1=252Kk)
1500 | or
-
1400 } . d'T RT™ dﬂ'l,q
— = (10.28)
1300 F fm2oW d}:ﬂ III:"l";r-jr.rrri.ﬂ|]-":I.-ﬂ. dx.d
1200 gm0k | and also
1100 |- &
=0 B = = e 3
1000 . i ; : . : a-T 2RT  day ol K dag - RT" ¥ v I
14 0% 08 07 06 05, 04, 03 — = —_— - — -1 - “4 — - (1029)
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Figure 10.18 Calculated liquidus lines assuming regular
solution behavior in the liquid solutions and no solid
solubility.
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Figure 10.19 The monotectic equilibrium in a binary system in which
the liquid solutions exhibit regular solution behavior with Q=30,000 J.
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The phase equilibria generated when Q>Q_, are shown in Fig. 10.19
which shows the immiscibility in regular liquid solutions with
(2=30,000 J and the A-liquidus for Q=30,000 J shown in Fig. 10.18.

The liquid immiscibility curve and the A-liquidus curve intersect at
1620 K to produce a three-phase monotectic equilibrium between
A and liquidus 1 and /2. The liquid immiscibility curve is
metastable at temperatures less than 1620 K, and the calculated A-
liquidus is physically impossible between the compositions of /1
and /2 at 1620 K.
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Figure 10.20 The Gibbs free energy of mixing curves
at various temperatures, and the phase diagram for a
binary system which forms regular solid solutions in
Which Q¢=0 and regular liquid solutions in which
(2;=-20,000 J.
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Figure 10.21 The Gibbs free energy of mixing
curves at various temperatures, and the phase
diagram for a binary system which forms regular
solid solutions in which Q;=10,000 J and regular
liquid solutions in which Q;=-2000 J.

Figure 10.22 The Gibbs free energ);’of mixing
curves at various temperatures, and the phase
diagram for a binary system which forms regular
solid solutions in which Qg=30,000 J and regular
liquid solutions in which Q;=20,000 J.



10.7 The Phase Diagrams of Binary Systems That Exhibit Regular
Solution Behavior in The Liquid and Solid States
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Figure 10.23 Topological changes in the phase diagram for a system A-8 with regular solid and liquid
solutions, brought about by systematic changes in the values of Qg and Q;. The melting temperatures of A and
B are, respectively, 800 and 1200 K, and the molar entropies of melting of both components are 10 J/K. (From
A.D.Peltonand W.T.Thompson, Prog. Solid State Chem. (1975), vol. 10, part 3, p. 119).
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