Chapter 12B Reactions Involving Pure Condensed Phases and A Gaseous Phase

Carbon forms two gaseous oxides, CO and CO₂, according to $C_{(gr)} + O_{2(g)} = CO_{2(g)} \quad (i) \quad \Delta G^{0}_{(i)} = -394,100 - 0.84TJ$ $2C_{(gr)} + O_{2(g)} = 2CO_{(g)} \quad (ii) \quad \Delta G^{0}_{(ii)} = -223,400 - 175.3TJ$ (i) + (ii) $2CO_{(g)} + O_{2(g)} = 2CO_{2(g)} \quad (iii)$ $\Delta G^{0}_{(iii)} = 2\Delta G^{0}_{(i)} - \Delta G^{0}_{(ii)} = -564,800 + 173.62TJ$

- (iii) a positive slope (2 moles of gas from 3 moles of gas, $\Delta S_{(iii)}^0 = -173.62 J/K$)

- (i) virtually no slope (1 moles of gas from 1 moles of gas, $\Delta S_{(i)}^0 = 0.84 J/K$)
- (ii) negative slope (2 moles of gas from 1 moles of gas, $\Delta S_{(ii)}^0 = 175.3 J/K$)

12. 6 The Oxides of Carbon

Figure 12.13 The Ellingham diagram for selected oxides.

Consider the equilibrium (ii) - (i)

$$C_{(gr)} + CO_{2(g)} = 2CO_{(g)} \quad \text{(iv)}$$
$$\Delta G_{(iv)}^{\circ} = \Delta G_{(ii)}^{\circ} - \Delta G_{(i)}^{\circ} = 170,00 - 174.5T$$
$$\Delta G_{(iv)}^{\circ} = 0 \text{ at } T = 978 \text{ K } (705 \text{ °C})$$

 \Rightarrow the temperature where (i) and (ii).

Carbon forms two gaseous oxides, CO and CO2, at standard state,

$$p_{\rm CO_2} = p_{\rm CO} = 1$$

Thus, total P = 2 atm. Rxn equilibria under $P_{total} = 1$ atm, more practical.

$$C_{(gr)} + CO_{2(g)} = 2CO_{(g)} \quad \text{(iv)}$$

$$\Delta G_{(iv)}^{\circ} = \Delta G_{(ii)}^{\circ} - \Delta G_{(i)}^{\circ} = 170,00 - 174.51$$

(i) If P of the system is decreased to 1 atm,

(ii) Thus, if the decrease in P from 2 to 1 atm, and, at the same time maintain $p_{co} = p_{co2}$, T must be decreased.

12. 6 The Oxides of Carbon

(iii) The T required for $p_{co}=p_{co2}=0.5$ is calculated as follows. For reaction (i)

This line is obtained by rotating the line for reaction (i) clockwise about its point of intersection with the T=0 axis until, at the temperature T_{r} the vertical separation between line (i) and line (vi) is $RT \ln 0.5$.

Figure 12.14 The effect of varying the pressures of the product gases of the reactions $C(gr)+O_2(g)$, p=1 atm)=CO₂(g) and $2C(gr)+O_2(g)$,p=1 atm)=2CO(g) on the variations of ΔG with T for the two reactions.

12. 6 The Oxides of Carbon

Similarly

$$2C_{(gr)} + O_{2(g)} = 2CO_{(g)}$$
 (ii) $\Delta G^{0}_{(ii)} = -223,400 - 175.3TJ$
 $2CO(T,P = 1 \text{ atm}) \rightarrow 2CO(T,P = 0.5 \text{ atm})$ (V')

the Ellingham line for the reaction

$$2C_{(gr)} + O_{2(g,P=1 \text{ atm})} = 2CO_{(g,P=0.5 \text{ atm})}$$
 (vii)

is obtained as the sum of $\Delta G^{\circ}_{(ii)}$ and $\Delta G^{\circ}_{(v')}$ for the change of state i.e.,

$$\Delta G_{(\text{vii})} = -223,400 - 175.3T + 2RT \ln 0.5 \text{ J}$$

This line is obtained by rotating the line for reaction (ii) clockwise about its point of intersection with the T=0 axis until, at any T, the vertical separation between line (ii) and line (vii) is $2RT \ln 0.5$.

Figure 12.14 The effect of varying the pressures of the product gases of the reactions $C(gr)+O_2(g)$, p=1 atm)= $CO_2(g)$ and $2C(gr)+O_2(g)$,p=1 atm)=2CO(g) on the variations of ΔG with T for the two reactions.

Figure 12.14 The effect of varying the pressures of the product gases of the reactions $C(gr)+O_2(g)$, p=1 atm)= $CO_2(g)$ and $2C(gr)+O_2(g)$,p=1 atm)=2CO(g) on the variations of ΔG with T for the two reactions.

12. 6 The Oxides of Carbon

Figure 12.15 The variation, with temperature, of the composition of the CO–CO₂ gas mixture in equilibrium with solid C at P_{total} =1 atm.

Line a-b-c-d-e is the locus of $P_{total} = 1$ atm with varying CO, CO2, pressure.

(1) At T < 600 K, the equilibrium gas is virtually CO_2 at P=1 atm. (a) (2) T>1400 K, the equilibrium gas is virtually CO at at P=1 atm.(e)

At any *T*, the CO–CO₂ mixture in equilibrium with C exerts an equilibrium oxygen pressure, $P_{O_{2(ea,T)}}$, via the equilibrium

$$2CO + O_2 = 2CO_2 \qquad \text{(iii)}$$

$$\Delta G_{\text{(iii)}}^{\circ} = -564,800 + 173.62T \text{ J} = -RT \ln \left(\frac{p_{\text{CO}_2}}{p_{\text{CO}}^2 p_{\text{O}_2}}\right)$$

$$= 2 RT \ln \left(\frac{p_{\text{CO}}}{p_{\text{CO}_2}}\right)_{\text{eq. with C}} + RT \ln p_{\text{O}_2(\text{eq.})}$$

$$\ln p_{\text{O}_2(\text{eq.}T)} = -\frac{564,800}{8.3144T} + \frac{173.62}{8.3144} + 2 \ln \left(\frac{p_{\text{CO}_2}}{p_{\text{CO}}}\right)_{\text{eq. with C}} \qquad (12.12)$$
For M+O₂=MO₂, if solid C is to reduce MO₂ at *T*, then $P_{O_2(T)} < P_{O_2(\text{eq.}T)}$

Figure 12.16 Illustration of the effect of the ratio ${}^{P_{CO_2}}/{}_{P_{CO}}$ in a $CO_2 - CO$ gas mixture on the temperature at which the equilibrium M+CO₂=MO+CO is established.

The Equilibrium $2CO+O_2=2CO_2$

(i) The Ellingham line for the reaction = the line cs.

The variation of ΔG° with T, this line is for the reaction which produces CO₂ at 1 atm from CO at 1 atm and O₂ at 1 atm.

The effect of producing the CO_2 at any pressure, *P*, other the 1 atm (from CO and O_2 each at 1 atm) is the rotation of the line *cs* about the point *c*, clockwise if *P*<1 atm and anticlockwise if *P*>1 atm.

Figure 12.16 Illustration of the effect of the ratio ${}^{P_{CO_2}}/{}_{P_{CO}}$ in a $CO_2 - CO$ gas mixture on the temperature at which the equilibrium M+CO₂=MO+CO is established.

(ii) The Ellingham line for the reaction $M+O_2=MO_2$

This intersects the line *cs* at *Ts*, which is thus the temperature at which $\Delta G_{(iii)}^0$ for the reaction

$$MO_2 + 2CO = M + 2CO_2$$
 (ix)

is zero, i.e.,

$$\Delta G_{(ix)}^{\circ}$$
 at $T_s = 0 = -RT \ln \left(\frac{p_{\rm CO_2}}{p_{\rm CO}}\right)^2$

and thus

$$\frac{p_{\rm CO_2}}{p_{\rm CO}} = 1$$

The Ellingham line for the reaction $M+O_2=MO_2$ intersects the line *cu* at $T_{u'}$ and T_u is thus the temperature at which the reaction

 $MO_2 + 2CO(1 \text{ atm}) = M + 2CO_2(0.1 \text{ atm})$ (x)

is at equilibrium, i.e.,

$$\Delta G_{(x)}$$
 at $T_{\mu} = \Delta G^{\circ}_{(ix)} + 2RT \ln 0.1$

But, by definition,

$$\Delta G_{(ix)}^{\circ} = -RT \ln \left(\frac{p_{\rm CO_2}}{p_{\rm CO}}\right)_{\rm eq}^2$$

and thus

$$\Delta G_{(\mathrm{x})} = 0 = -2RT \ln \left(\frac{p_{\mathrm{CO}_2}}{p_{\mathrm{CO}}}\right)_{\mathrm{eq}} + 2RT \ln 0.1$$

At T_u calculation gives $(P_{CO_2}/P_{CO_2})_{eq.} = 10$. If T is decreased to T_u from $T_{s'}$ the ratio must increase from 1 to 10 to maintain the rxn equilibrium.

At T_q calculation gives $(P_{CO}/P_{CO_2})_{eq.} = 0.01$. If T is increased to T_q from $T_{s'}$ the ratio must decrease from 1 to 0.01 to maintain the rxn equilibrium.

Similarly, the H_2/H_2O nomographic scale is added by considering the effect of the variation of the pressure of H_2O on the reaction equilibrium

$$2H_2 + O_2 = 2H_2O$$

The equilibrium H_2/H_2O ratio at 7 for the reaction

$$MO_2 + 2H_2 = M + 2H_2O$$

is read off the H_2/H_2O scale as the point which is collinear with the points *H* and for the reaction $M+O_2=MO_2$.

Figure 12.17 The relationship between the partial pressure of oxygen in a CO_2 - CO gas mixture and temperature. The broken line is the variation, with temperature, of the composition of the gas which is in equilibrium with graphite at 1 atm pressure. The lines *AB* and *CD* represent, respectively, the equilibria Fe+CO₂=FeO+CO and Co+CO₂=CoO+CO.

As the nomographic scale for the ratio CO/CO₂ in Fig. 12.13 shows that the range of interest of values of ${}^{P_{CO}}/{}_{P_{CO_2}}$ is 10⁻¹⁴ to 10¹⁴, it is convenient to present this ratio on a logarithmic scale. Fig. 12.17, which uses the coordinates log (${}^{P_{CO}}/{}_{P_{CO_2}}$) and *T*, represents a convenient method of clear presentation of reaction equilibrium in the carbon–oxygen and carbon–oxygen–metal systems. From Eq. (iii), for

$$2CO_{(g)} + O_{2(g)} = 2CO_{2(g)}$$
$$\Delta G_{(iii)}^{o} = -546,800 + 173.62T J$$
$$= -RT \ln \left(\frac{p_{CO_2}^2}{p_{CO}^2 p_{O_2}}\right)$$

and thus

$$\log\left(\frac{p_{\rm CO_2}}{p_{\rm CO}}\right) = \frac{1}{2}\log p_{\rm O_2} + \frac{564,800}{2\times2.303\times8.3144T} - \frac{173.62}{2\times2.303\times8.3144T}$$

Figure 12.17 The relationship between the partial pressure of oxygen in a CO_2 - CO gas mixture and temperature. The broken line is the variation, with temperature, of the composition of the gas which is in equilibrium with graphite at 1 atm pressure. The lines *AB* and *CD* represent, respectively, the equilibria Fe+CO₂=FeO+CO and Co+CO₂=CoO+CO.

The equilibrium

$$C_{(gr)} + CO_{2(g)} = 2CO_{(g)}$$

sets a lower limit on the CO2/CO ratio which can be obtained at any temperature,

$$\Delta G_{(iv)}^{o} = 170,700 - 174.5T \,\mathrm{J} = -RT \ln\left(\frac{p_{\rm CO}^2}{p_{\rm CO_2}}\right)$$

and thus, at a total pressure of 1 atm, i.e., when $P_{CO_2} = 1 - P_{CO}$

$$\frac{p_{\rm CO}^2}{1 - p_{\rm CO}} = \exp\left(\frac{-170,700}{8.3144T}\right) \exp\left(\frac{174.5}{8.3144}\right) = x$$

or

$$p_{\rm CO}^2 + p_{\rm CO}x - x = 0$$

$$p_{\rm CO} = \frac{-x + \sqrt{x^2 + 4x}}{2} \qquad \qquad \frac{p_{\rm CO_2}}{p_{\rm CO}} = \frac{2 + x - \sqrt{x^2 + 4x}}{\sqrt{x^2 + 4x} - x}$$

$$p_{\rm CO_2} = \frac{2 + x - \sqrt{x^2 + 4x}}{2}$$

Figure 12.17 The relationship between the partial pressure of oxygen in a CO_2 - CO gas mixture and temperature. The broken line is the variation, with temperature, of the composition of the gas which is in equilibrium with graphite at 1 atm pressure. The lines *AB* and *CD* represent, respectively, the equilibria Fe+CO₂=FeO+CO and Co+CO₂=CoO+CO.

Equilibria such as

$$FeO_{(s)} + CO_{(g)} = Fe_{(s)} + CO_{2(g)}$$

 ΔG° =-22,800+24.26T J and thus the variation of the equilibrium ratio CO₂/CO with temperature is given by

$$\log\left(\frac{p_{\rm CO_2}}{p_{\rm CO}}\right)_{\rm eq.FeO/Fe} = \frac{22,800}{2.303 \times 8.3144T} - \frac{24.26}{2.303 \times 8.3144T}$$

i.e., it is the temperature at which

 $p_{O_2(eq.C/CO/CO_2)} = p_{O_2(eq.Fe/FeO)}$

The line *CD* in Fig. 12.17 represents the variation of log (P_{CO_2}/P_{CO}) with *T* for the equilibrium

$$CoO_{(s)} + CO_{(g)} = Co_{(s)} + CO_{2(g)}$$

for which

$$\Delta G^{\circ} = -48,500 + 14.9T \,\mathrm{J}$$

and

$$\log\left(\frac{p_{\rm CO_2}}{p_{\rm CO}}\right)_{\rm eq.Co/CoO} = \frac{48,500}{2.303 \times 8.3144T} - \frac{14.9}{2.303 \times 8.3144T}$$

With respect to the amount of information which can be obtained from a graphical representation of equilibria in a system, Fig. 12.18 is a better representation than is Fig. 12.17. As

the slope of a tangent to an equilibrium line at the temperature T gives the value of $-\Delta H^0/R$. If $\Delta C_p = 0$, log K is a linear function of 1/T.