Vibrations are Everywhere




Modeling and Degrees of Freedom

The examples on the previous slide many degrees of freedom
and many parts, we will start with one degree of freedom and
work towards many.

« Recall from your study of statics and
physics that a degree of freedom is the
independent parameter needed to describe
the configuration of a physical system

* So single degree of freedom system, which
IS where we start, is a system whose
position in time and space can be defined
by one coordinate, here a displacement or
position.



Degrees of Freedom: The Minimum

Number of coordinates to specify a
configuration

« For a single particle confined to a line, one

coordinate suffices so 1t has one degree of
freedom

» For a single particle i a plane two
coordinates define 1its location so it has two
degrees of freedom

» A single particle in space requires three
coordinates so it has three degrees of
freedom




Example 1.1.1 The Pendulum

+ Sketch the structure or

] — 5 F:
part of interest T o 2 —l ?
— A
. T EN 8
* Write down all the A% [
( e
forces and make a N
“free body diagram” (

* Use Newton’s Law ®. / ?;,
and/or Euler’s Law to _
find the equations of
motion

YM,=Joo, Jy=ml



The problem is one dimensional,
hence a scalar equation results
J,ot) = —mglsinB(t) = m(*6(t) + mg(sinB(1)=0

restoring
force

Here the over dots denote differentiation with respect to time ¢

This is a second order, nonlinear ordinary differential equation

We can linearize the equation by using the approximation sinf = 6
= m(zé{r)+ mgll(t)y=0= é(r)+ %9(@*) =0

Requires knowledge of 6(0) and 6(0)

the initial position and velocity.



Next consider a spring mass system
and perform a static experiment:

» From strength of % o é ______________ g ____________ é _

materials recall: mmk .
h = A3
FBD: LLLLLL Ve ' R
fe
A fi
om 0 nonlinear
' m 13N [-===========s f
mg - '
linear
A plot of force versus displacement:
l l l X

0 20mm

experiment = f, = kx 43




Free-body diagram and equation

of motion
= X y
0 X
//; ot Friction-free
Nk surface _
/JVA\/\/\/A— m kv ~a— r”g
7 ﬁV//l/
yd /;"f TN
Rest
position

*Newton’s LLaw:

mx(t)=—kx(t) = mx(t)+ kx(t)=0
X(0)=x,,X(0)=v, (1.2)

Again a 2nd order ordinary differential equation




Stiffness and Mass

Vibration is cause by the interaction of two different forces
one related to position (stiffness) and one related to

acceleration (mass).

Stiffness (k)

e

Je =—kx(1)

statics

Mass (m)

Jn = ma(t) = mx(t)

\dynamics

Proportional to displacement

Displacement
X
k

m

Mass Spring

Proportional to acceleration



Examples of Single-Degree-of-
Freedom Systems

Pendulum Shaft and Disk
NN \ NN NN
: Torsional
[ =length Stiffness
k
Moment
Gravity g of inertia
_/"F_—" —_ J
|
‘-______.-""

6 +20(1)=0
; JO() + k6(1) =0




Solution of 2nd order DEs

Lets assume a solution: _r{.f]

x(1)=Asin(w,t+0) (1.3) /’\ /\

Differentiating twice gives: \_/ \

X(t)=wm, Acos(a,t+ ) (1.4)
¥(1)=-w’Asin(@ 1 +0)=-w x(t) (1.5)
Substituting back into the equations of motion gives:

—m’Asin(o [+ @)+ kAsin(w [+ @) =0

[k
-mw.+k=0 or @, =,— « Natural
m frequency

rad/s




Summary of simple harmonic
motion

x(t) 4 : Period

; Amplitude
2
_=r \ A
o, “

----------- -'——-_,\
v [ Slope
.fD 1
here is v,
" a
: Maximum
*—gﬁ Velocity
w A
w, !
@ rad/s @ cvycles
fom g = T = T Hy

B 2w rad/cycle 2w 2




Initial Conditions

If a system is vibrating then we must assume that something
must have (in the past) transferred energy into to the system
and caused it to move. For example the mass could have
been:

‘moved a distance x, and then released at 7 =0 (i.e. given
Potential energy) or

given an initial velocity v, (i.e. given some kinetic energy) or
Some combination of the two above cases

From our earlier solution we know that:

X, =x(0)=Asin(w, 0+ ¢) = Asin(¢)
Vv, =X(0)=m,Acos(w,0+¢) = Acos(9)




Initial Conditions Determine the
Constants of Integration

Solving these two simultaneous equations for A and ¢ gives:

M w x
—\/wx +v; . —tanl[ ”D}

Vo

Amplltude Ph:;me

Slope
x ! here is

w/“( AN
£

(U




Thus the total solution for the
spring mass system becomes:

2.2 2
\/CO X, TV M X
0 0 _- - -
x(r)y=-"+-" sin| @ 1+ tan™ —2 (1.10)
Called the solution to a simple harmonic oscillator
and describes oscillatory motion, or simple harmonic motion.

Note (Example 1.1.2)
JOIZ £ wx,
xX(0)= . — == X,
n \/ﬂ% Xy + vy

as it should



A note on arctangents

Note that calculating arctangent from a |
calculator requires some attention. First, all |
machines work in radians. I

The argument atan(-/+) is in a different quadrant 7 a
then atan(+/-), and usual machine calculations A=lxd + | @y
will return an arctangent in between -m/2 and '
+11/2, reading only the atan(-) for these two
different cases.

In MATLAB, use the atan2(x,y) function to get
the correct phase.




Example 1.1.3 wheel, tire suspension
m = 30 kg, f,= 10 hz, what is k?

cylce 27 rad

k=maw! =(30 kg){l@ ]: 1.184 x 10> N/m

sec  cylce

There are of course more complex models of suspension systems
and these appear latter in the course as our tools develope



Section 1.2 Harmonic Motion

The period is the time elapsed to complete one complete cylce

2m rad 2

@, rad/s ©

S (1.11)

mn

The natural frequency in the commonly used units of hertz:

- ®, o, rad/s _ o, cycles _ O (1.12)
" 2m 2mrad/cycle 21 s 2r

(
ﬂ'}n = \/E rad/ls, T = 2?1'\/: S
{ g

For the disk and shaft:

k
o, = \/; rad/s, T =2m,|— s

For the pendulum:

=



Relationship between Displacement,
Velocity and Acceleration

A=1, ©,=12
1

Displacement \ // /

x(f)=Asin(w,f +¢) =0 A\ /
_1 P4 NV

]
0 01 02 03 04 05 06 07 08 09 1
Velocity 2 [ =
l[f} — fUnA CDS[(UHI + {,b) = 0 // \W // \
-2(
) 0 01 02 03 04 05 06 07 08 09 1
Acceleration 20 ]
X(t)=—w.Asin(wt+0) s g v \\ ,/ \\
-200
0O 01 02 03 04 05 06 07 08 09 1

Time (sec)
MNote how the relative magnitude of each increases for w1




Exam ple 1 2 . 1 Hardware store spring, bolt: m= 49.2x10-3

kg, k=857.8 N/m and x; =10 mm. Compute w, and the max amplitude
of vibration.

Note: common

. «~ Units are Hertz
W, = \]I :\] 578 N/m__ 132 rad/s
m

49.2x107 ke

0] To avoid Costly errors use f|
f =_" =91 Hz « when working in Hertz and w,,
n 2T when in rad/s
2 | 1
T 0.0476 s

- wﬂ - fH - 2 l [?"!-’F'E-’%EC

0
x(t),  =A= WL\/ﬂ)ixé %= X, =10 mm

Units depend on system



Compute the solution and max velocity and
acceleration:

V(1) =0 A=1320 mm/s=1.32 m/s 292mpn
(1) e =" A=174.24 10" mm/s’
=174.24 m/s* = 17.8g!

¢ = tan”’ Outo |7 1 %0°
x(r)=10sin(132r+m/2)=10cos(132¢) mm

~0.4 in max

g = 9.8 m/s?




Does gravity matter in spring

problems? —]—Z %

Let A be the deflection caused ¢
hanging a mass on a spring
(4 = X4-X, in the figure)

Then from static equilibrium: 72¢ = KA

Next sum the forces in the vertical for some point x > x, measured
from A

mx = —k(.x + A) + mg =—kx+ mg— kA
=0
= mx(t)+ kx(t)=0

So no, gravity does not have an effect on the vibration

{note that this is not the case if the spring is nonlinear)




Example 1.2.2 Pendulums and
measuring g

* A 2 mpendulum 2 (
| . . I'=—=2r1 |-
swings with a period o, g
of 2.893 s
« What 1s the 4r’ Am
g (= 2m

T T 2803
= ¢ =9.796 m/s’

acceleration due to
gravity at that
location?

This is g in Denver, CO USA, at 1638m
and a latitude of 40°



Review of Complex Numbers and Complex
Exponential (See Appendix A)
A complex number can be written with a real and imaginary
part or as a complex exponential
c=a+ jb=Ae”
Where S

a=Acos0,b=Asin6 1 a

Multiplying two complex numbers:
(6, +6,
c,c, =A A b
Dividing two complex numbers: R

(<Y A

1 Eu’"ffh —6;)

c, A,




Equivalent Solutions to 2nd order
Differential Equations (see window 1.4)

All of the following solutions are equivalent:
x(r)=A Si]’l((x)nf + (P) Called the magnitude and phase form
xX(r)= AI SIN lft]'”f + Az cosm, 1t Sometimes called the Cartesian form

X(f)= ﬂli?jm"r + .‘.‘“.T,,13?—}“;"’F Called the polar form

The relationships between A and ¢, A, and A,, and a, and a,
can be found in Window 1.4 of the text, page 19..

*Each is useful in different situations
*Each represents the same information
*Each solves the equation of motion



Derivation of the solution

Substitute x(7)=ae™ into mi+kikxr=0=
mA*ae™ + kae™ =0 =
mA +k=0=

Sy

x(f)=a,e®" and x()=a,e " =

x(t)=a,e On 1 +a,e” O Jt (1.18)

This approach will be used again for more complicated problems




Is frequency always positive?

From the preceding analysis, A = + w, then

®, jt —, jt

x(t)y=a,e™" +a,e

Using the Euler relations* for trigonometric functions, the
above solution can be written as (recall Window 1.4)

x(t)y=Asin(w,r+0)  (1.19)

It is in this form that we identify as the natural frequency
w, and this is positive, because the * sign being used up
in the transformation from exponentials to the sine
function.

* http://en.wikipedia.org/wiki/Euler's formula

e” =cosx+isinx




Calculating root mean square
(RMS) values

May need to be limited due
to physical constraints

Not very useful since for
a sine function the
/ average value is zero

I
X = lim ?jx(r)a’r = average value
0

A = peak value

T —eo
I T
—2 . 2
X = llm—j,r (1)dt = mean-square value  (1.21)
T —ee T 0 \ . . I
roportiona
— =2 _ . P
x_ =+/X" =root mean square value to energy

N

Also useful when the vibration is random




The Decibel or dB scale

It is often useful to use a logarithmic scale to plot vibration
levels (or noise levels). One such scale is called the decibel or
dB scale. The dB scale is always relative to some reference

value x,. It is define as:
X ’ X
dB =101log,, [—] =20log,, (—] (1.22)

X, X,

For example: if an acceleration value was 19.6m/s2 then relative
to 1g (or 9.8m/s?) the level would be 6dB,

-y 2
10log,, (1;—86) =20log,,(2)=6dB

Or for Example 1.2.1: The Acceleration Magnitude
is 20log,,(17.8)=25dB relative to 1g.




1.3 Viscous Damping

All real systems dissipate energy when they vibrate. To
account for this we must consider damping. The most simple
form of damping (from a mathematical point of view) is called
viscous damping. A viscous damper (or dashpot) produces a
force that is proportional to velocity.

Mostly a mathematically motivated form, allowing
a solution to the resulting equations of motion that predicts
reasonable (observed) amounts of energy dissipation.

Damper (c)

f. = —cv(t) = —ci(1) |

Beloumniding
pomt

Mo u.nl:ilq.- I'. .
poink Ohrifice XL}




Differential Equation Including
Damping

For this damped single degree of freedom system the force acting
on the mass is due to the spring and the dashpoti.e. f,=- f; - f-

Displacement
- X

fiy—-——|

k

fo -

mx(t)=—kx(t)—cx(t)
N or
mx(t)+cx(t)+ kx(t)=0 (1.25)

M

—--'-'-—,_.%I

To solve this for of the equation it is useful to assume a
solution of the form (again):

x(t) = ae™



Solution to DE with damping
included (dates to 1743 by Euler)

The velocity and acceleration can then be calculated as:
. At
X(t) = Aae
. 2 M
i(t)=Aae
If this is substituted into the equation of motion we get:

ae®(mA* +cA+k)=0 (1.26)

Divide equation by m, substitute for natural frequency and
assume a non-trivial solution

~ C
ac” 20 = (A+—2A+w0.)=0
m



Solution to our differential
equation with damping included:

For convenience we will define a term known as the
damping ratio as:

C

= ' 1.30 Lower case Greek zeta
g e {km ( ) NOT § as some like to use

The equation of motion then becomes:
2 2
(X +20w A+w)=0

Solving for A then gives,

dy==Co, tw -1 (131



Possibility 1. Critically damped motion

Critical damping occurs when { =1. The damping coefficient
c in this case is given by:
(=l=c=c,=2Vkm =2mo,

o
definition of critical
damping coefficient

Solving for A then gives,

A, =—1w,to N’ -1=-0,

i A repeated, real root
The solution then takes the form

- —w,
x(t)=a,e™ ™" +a,te”™

|

Needs two independent solutions, hence the t
in the second term



Critically damped motion

a, and a,can be calculated from initial conditions (t=0),

x=(a, +a,t)e ™
—m,f
V=(—w,a, —a,t + a,)e
» No oscillation occurs

» Useful in door
mechanisms, analog
gauges

Displacement (mm)

0.6

05

04

0.2

0.1

k=225N/m m=100kg and { =1

—_— xﬂ={}_4mm vﬂ:1mma’5
_— xﬂ={}.4mm vﬂ=0mma’5
. xﬂ={}_4mm vﬂ:-1 mm/s | |

03}

- -
-
~
hall
e
2 3
Time (sec)




Possibility 2: Overdamped motion

An overdamped case occurs when { >1. Both of the roots of the

equation are again real.
k=225N/m m=100kg and =2

3 0.6 I I
’:1’[.2 = —Cfdn iﬂ)n NI'C _l — Xp=0.4mm p=1mm/s
0.5 — . xo=0.4mm w=Omm/s []
‘ I o Jo 0=0-4mm \6=Ommy/s
X(1) :E'_bm”r{f]’l{? @uiNE I-l—(i'zt’?m”! : ]) £ o4l \\ weee Xp=0.4mm y=-1mm/s ||
E L 0w \
= R S
a, and a,can again be calculated £ 03r% =
! . 2 g s E %, ~ - 1\\
from initial conditions (t=0), 2 ol ~ .
@ - e, ~ - I~
ﬂ ".t """ - - —
—v+(=C+ -Daw,x, 7 [T
nl f— D n" D D .I’, )
2 7
20,/ -1 /
o 2 3
_ Vo +( g+ \ CL — U[DHJ.'D I,l'fl Time (sec)

,

2
250,, C —1 Slower to respond than

critically damped case



Possibility 3: Underdamped motion

An underdamped case occurs when {<1. The roots of the
equation are complex conjugate pairs. This is the most
common case and the only one that yields oscillation.

A, =—C0,x®,j\1-{

1‘(?) —e —La,t (ﬂ (ij”r\) ;m”r-dl—g‘)

+a,e

= Ae™* sin( @, + ¢)

The frequency of oscillation w, is called the damped natural
frequency is given by.

w,=mJ1-C  (1.37)



Constants of integration for the

underdamped motion case
As before A and ¢ can be calculated from initial conditions (t=0),

1
A= g'\j”’{} + gft)ﬂ.l'ﬂ )+ ('}‘.ﬂwﬁ)z

d
¢ =tan 1{ Y04 ]
Vo +0M, X, ;
AS
» Gives an oscillating R *
response with exponential 0-5

decay

+ Most natural systems vibrate
with and underdamped

Displacement
]
———;’,
— ,
/
-~

&
response 057
+ See Window 1.5 for details 1 ’
and other representations 0 1 2 3 4

Time (sec)



E)(am ple 1 31 . consider the spring of 1.2.1, if ¢ = 0.11

kg/s, determine the damping ratio of the spring-bolt system.

m=49.2x10" kg, k =857.8 N/m

¢. =2~Jkm =2449.2x 107 x857.8
=12.993 kg/s

. 0.11ke/
[ =—= 2 —0.0085 =

¢ 12.993 kg/s

or

the motion is underdamped

and the bolt will oscillate




Example 1.3.2

The human leg has a measured natural
frequency of around 20 Hz when in its rigid (knee
locked) position, in the longitudinal direction (i.e.,
along the length of the bone) with a damping
ratio of ( = 0.224. Calculate the response of the
tip if the leg bone to an initial velocity of v, = 0.6
m/s and zero initial displacement (this would
correspond to the vibration induced while landing
on your feet, with your knees locked form a
height of 18 mm) and plot the response. What is
the maximum acceleration experienced by the
leg assuming no damping?




Solution:

20 cveles 2mrs: o
o = 20 cycles 27 rad = 125.66 rad/s

" i
] s cycles

0, =125.6641 - (224)° =122.467 rad/s

| ‘/[(},6 +(0.224)(125.66)(0))” + (0)(122.467)’
a 122.467

=0.005 m

O = tan"[ {‘U)[‘md] ) = ()
| vy + ¢, (0)

= x(1)=0.005¢7*"*"sin(122.467r)




Use the undamped formula to get maximum
acceleration:

A= \/x;’; +["’—GJ L@, =125.66, v, =0.6, x, =0
(0]

fl

v 0.6
A=—Lm=—"m
()] )]

n n

max( i) = ‘—m;‘:ﬂ

= —mj[%] =(0.6)(125.66 m/s*) = 75.396 m/s”
()

n

75.396 m/s’
9.81 m/s’

maximuin acceleration =

g="7.68¢'s



Here is a plot of the displacement
response versus time

=3 T T T T T T T Time (s)
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14



Exa m p I = 1 .3 B 3 Compute the form of the response of an

underdamped system using the Cartesian form of the solution given in
Window L.5.
sin(x+ y)=sinxsiny+cosxcosy =
x(t) = Ae™ ™ sin(w,t + @) = e ' (A, sinw,t + A, cos,t)
x(0)=x, =¢€"(A,sin(0)+ A, cos(0)) = A, = x,

x=—-{w,e”" (A sinw,t + A, cosw,t)
+ e " (A cosm t — A, sinw,t)
v, =—Cm, (A, sin0+ x,cos0)+ @, (A, cos0— x,sin0)
v, +{w, x,

= A=-12r0o
0)
d

_tat| Vo +E0,X, .
x(t) = e~ Msmwdr+xo cos@,t

o,



Section 1.4 Modeling and Energy Methods

* Provides an alternative way to determine the equation of
motion, and an alternative way to calculate the natural
frequency of a system

» Useful if the forces or torques acting on the object or
mechanical part are difficult to determine

* Very useful for more complicated systems later (MDOF and
distributed mass systems)



Potential and Kinetic Energy

The potential energy of mechanical systems U is often stored In
“springs” (remember that for a spring F = kx)

| | k §

L

: 1 /' § o o 1
o By [Fac= [kede= ke
Mass Sprlng Spring U 0 2 0

The Kkinetic energy of mechanical systems T is due to the motion of
the “mass” in the system

1 |
T =—mx, T

ramns 1ot — _ng
2 2



Conservation of Energy

For a simple, conservative (i.e. no damper), mass spring system the
energy must be conserved:

T +U = constant

d
or —(T+U)=0
i URE)

At two different times t; and t, the increase in potential energy
must be equal to a decrease in kinetic energy (or visa-versa).

Ul _Uz :Tz _Tl
and



Deriving the equation of motion from the energy
approach

x=0 Xx

k

/

Mass  Spring

M

2
— Xx(MX+kx)=0

9 +U)=i[1mx2+lkx2j=o
dt dt 2

Since X cannot be zero for all time, then
mX + kx =0



Determining the Natural frequency directly from the energy

If the solution is given by x(t)= Asin(ot+¢) then the maximum
potential and kinetic energies can be used to calculate the natural

frequency of the system

U NETCEE :1m(a)nA)2

max 9 max — A
Since these two values must be equal

1 kA® = 1 m(w, A)°
2 2

, Kk
=k=mo' =0, =,—
m



Example 1.4.1

AR

FHErrrrrrrrrrrarriy

Compute the natural frequency of this roller fixed in place by a
spring. Assume it Is a conservative system (i.e. no losses) and
rolls without slipping.

T ~136% and T :%mx2

ot — A trans



Solution continued

1. X°

X=r0=xX=r0 =T, ==J =
2 r’

The max value of T happens at v.. =w A
1 (o, A)

r’

The max value of U happens atx . =A

=1

+— m(a)A) ;(m+l:]—2ja)§A2

=U__ :%kA2 Thus T =U__ =

Effective mass
%(m+i2ja)fA2:%kA2:>a)n= K /
r




Example 1.4.2 Determine the equation of motion of the
pendulum using energy
LLL L

4

O
J =ml* m

mg



Now write down the energy

T = 1Joé’z = lmﬁzé’2
2 2

U =mg/{(1-cos®d), the change in elevation
IS {(1—cos &)
d(1

%(T +U) = E(E me20? + mg{(1—cos «9)) =0



m(266 + mgl(sin 8)6 =0
— 9(m£26‘+ mg £ (sin 6?)) =0
— me?60 + mgl(sin @) =0

— d(t) +%sin o(t) = 0

Using the small angle approximation for sine:

= dM+20M=0 ==

\

~ @



Example 1.4.4 The effect of including the mass of the
spring on the value of the frequency.




m
mass of element dy : 75 dy
> assumptions

velocity of element dy: v, = X )'((t),

Tepring = = j [ } dy (adds up the KE of each element)

1[%).2
==| —= |X
2\ 3

Tmass_lmxzj-rmt_ 1(&j+1m X :>T l(m_i_ﬂja)sp\z
2 3 2 3
U, =~=KA?
2
k - -
= @, = m  This provides some
m+—3s simple  design  and

modeling guides



What about gravity?

v ; k.} e T
':; '~‘;E‘Yv ;!;J &5":}‘6;3 :A’:(;L'*""!

A ka Mg - kA =0, fromFBD,
and static equilibrium

m
kK v
— 0 v +X()
- T A mg Usprmg '~ k(A + X)
"'X( Z‘) Ugrav = —mgx
1
T = —mx*

2



Now use %(T +U)=0

d| 1 1
mx® —max + — K (A + X
dt[Z gx+ 5 k( )}

= MXX —mgX + K(A + X)X
= X(MmX+kx) + X(kKA-mg) =0

0 from static
equilibiurm

= mX+kx=0

» Gravity does not effect the equation of motion or the natural
frequency of the system for a linear system as shown previously
with a force balance.



Lagrange’s Method for deriving equations of motion.

Again consider a conservative system and its energy.

It can be shown that if the Lagrangian L is defined as

L=T-U
Then the equations of motion can be calculated from
d [@Fj_% —0  (1.62)
dt \ oqg oq

Which becomes

d 8T _6T+8U:O (1.63)
dt{ &g oqg Oq

Here g Is a generalized coordinate



Example 1.4.7 Derive the equation of motion of a spring
mass system via the Lagrangian

T :mez and U :Ekx2
2 2

Hereq =X, andand the Lagrangian becomes

L=T—-U=2mx -k
2 2

Equation (1.64) becomes
i(gj_fﬂ +aU . d
dt\ox ) ox ox dt

= mX+kx=0

(mx)—0+kx=0



Example

h=46(1—cosB)
¥

U= % kx* +%kx2 +mg/l(1—cos 6)

kez .,
2 sin“ 8+ mg/(1—cosé)




_ 1 12 _ 1 2 )2
The Kinetic energy termis: | _530‘9 —Emf o

Compute the terms in Lagrange’s equation:

%(%j — %(mézé) — me20
aT _,

ol

U o (ke
o0 06\ 4

2
sindcosé@ +mg/lsing

sin® & + mg{(1—cos 6’)) = kﬁ

Lagrange’s equation (1.64) yields:

2
d ﬂ _or M =m€2é+kisin6?cos(9+mg£sin0=0
aq) oq g

dt



Does It make sense:

2
m£2é+%sin gcosd+mg/lsingd =0

. J/
Vo

0 ifk=0

Linearize to get small angle case:

2

m€2[9'+k%0+mg€9:0

What happens if you linearize first?



