
 



 

 



 



 

 



 

 



 



 



 







 





































 



 









 



 



 



 



 

 



 

 



 



 



 



 



Section 1.4 Modeling and Energy Methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Provides an alternative way to determine the equation of 

motion, and an alternative way to calculate the natural 

frequency of a system 

• Useful if the forces or torques acting on the object or 

mechanical part are difficult to determine 

• Very useful for more complicated systems later (MDOF and 

distributed mass systems) 

 

 

 

 

 



Potential and Kinetic Energy 

The potential energy of mechanical systems U is often stored in 

“springs” (remember that for a spring F = kx) 

 

 

 

 

 

The kinetic energy of mechanical systems T is due to the motion of 

the “mass” in the system 



Conservation of Energy 

For a simple, conservative (i.e. no damper), mass spring system the 

energy must be conserved: 

constant

or        ( ) 0

T U

d
T U

dt

 

   

At two different times t1 and t2 the increase in potential energy 

must be equal to a decrease in kinetic energy (or visa-versa). 

1 2 2 1

max max

and

U U T T

U T

  


 

 



Deriving the equation of motion from the energy 

approach 

 

 

2 21 1
( ) 0

2 2

0

Since  cannot be zero for all time, then

0

d d
T U mx kx

dt dt

x mx kx

x

mx kx

 
    

 

  

 

 

 

 

 

  

 

 



Determining the Natural frequency directly from the energy 

If the solution is given by x(t)= Asin(ωt+ϕ) then the maximum 

potential and kinetic energies can be used to calculate the natural 

frequency of the system 

2 2

max max

2 2

2

1 1
( )

2 2

Since these two values must be equal

1 1
( )

2 2

n

n

n n

U kA T m A

kA m A

k
k m

m





 

 



   
 

 



Example 1.4.1 

 

Compute the natural frequency of this roller fixed in place by a 

spring.  Assume it is a conservative system (i.e. no losses) and 

rolls without slipping. 

2 2

rot trans

1 1
   and  

2 2
T J T mx 

 



Solution continued 

2

Rot 2

max

2
2 2 2

max 2 2

max

2

max max max

2 2 2

2

1

2

The max value of  happens at  

( )1 1 1
( )

2 2 2

The max value of  happens at 

1
  Thus 

2

1 1

2 2

n

n
n n

n

x
x r x r T J

r

T v A

A J
T J m A m A

r r

U x A

U kA T U

J
m A kA

r

 




 

 

    



 
     

 



   

 
   

 
2

n

k

J
m

r


 

 
 

Effective mass 



Example 1.4.2  Determine the equation of motion of the 

pendulum using energy 

 

 



Now write down the energy 

2 2 2

0

2 2

1 1

2 2

(1 cos ),   the change in elevation

                               is (1 cos )

1
( ) (1 cos ) 0

2

T J m

U mg

d d
T U m mg

dt dt

 





 

 

 



 
     

 

 

 

 



Using the small angle approximation for sine:  

 

 

2

2

2

(sin ) 0

(sin ) 0

(sin ) 0

( ) sin ( ) 0

( ) ( ) 0     n

m mg

m mg

m mg

g
t t

g g
t t

  

  

 

 

  

 

  

  

  

    
 

 



Example 1.4.4  The effect of including the mass of the 

spring  on the value of the frequency. 

 



2

0

2

2

mass of element :

  assumptions

velocity of element : ( ),

1
  (adds up the KE of each element)

2

1
         =

2 3

1 1 1

2 2 3 2

s

dy

s
spring

s

s
mass tot

m
dy dy

y
dy v x t

m y
T x dy

m
x

m
T mx T m







 
  

 

 
 
 

 
    

 



2 2 2

max

2

max

1

2 3

1
          

2

                                             

3

s
n

n
s

m
x T m A

U kA

k

m
m





   
    

  



 



 

• This provides some 

simple design and 

modeling guides  

 



What about gravity? 

 

 



2 2

0 from static 
equilibiurm

Now use ( ) 0

1 1
( ) 0

2 2

                    ( )

( ) ( ) 0

0

d
T U

dt

d
mx mgx k x

dt

mxx mgx k x x

x mx kx x k mg

mx kx

 

 
      

 

    

     

  

 

• Gravity does not effect the equation of motion or the natural 

frequency of the system for a linear system as shown previously 

with a force balance. 



Lagrange’s Method for deriving equations of motion. 

Again consider a conservative system and its energy. 

It can be shown that if the Lagrangian L is defined as 

 

Then the equations of motion can be calculated from 

0        (1.62)
d L L

dt q q

  
  

  
 

Which becomes 

0        (1.63)
d T T U

dt q q q

   
   

     

Here q is a generalized coordinate 

L = T -U



Example 1.4.7 Derive the equation of motion of a spring 

mass system via the Lagrangian 

2 21 1
  and  

2 2
T mx U kx 

 

Here q  = x,  and and the Lagrangian becomes 

2 21 1

2 2
L T U mx kx   

 

Equation (1.64) becomes 

  0 0

                                 0

d T T U d
mx kx

dt x x x dt

mx kx

   
      

   

  
 



Example

 

2 2

2
2

1 1
(1 cos )

2 2

                      sin (1 cos )
4

U kx kx mg

k
mg



 

   

    



The Kinetic energy term is : 
2 2 2

0

1 1

2 2
T J m  

 

Compute the terms in Lagrange’s equation: 

 2 2

2 2
2

0

sin (1 cos ) sin cos sin
4 2

d T d
m m

dt dt

T

U k k
mg mg

 




    
 

 
  

 






  
     

   

 

Lagrange’s equation (1.64) yields: 

2
2 sin cos sin 0

2

d T T U k
m mg

dt q q q
   

   
      

     

 



Does it make sense: 

2
2

0 if 0

sin cos sin 0
2

k

k
m mg   



  
 

Linearize to get small angle case: 

2
2 0

2

2
        0

2

2
                            

2
n

k
m mg

k mg

m

k mg

m

  

 



  

 
   

 


 

 

What happens if you linearize first? 

 


