
Chapter 4 Multiple Degree of Freedom Systems 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Millennium bridge required 

many degrees of freedom to model 

and design with. 

Extending the first 3 chapters to more 

then one degree of freedom 



The first step in analyzing multiple degrees of freedom (DOF) 

is to look at 2 DOF 

• DOF: Minimum number of coordinates to specify the position of a system 

• Many systems have more than 1 DOF 

• Examples of 2 DOF systems  

– Car with sprung and unsprung mass (both heave)  

– Elastic pendulum (radial and angular) 

– Motions of a ship (roll and pitch) 

– Airplane roll, pitch and yaw 

 

 

 



4.1 Two-Degree-of-Freedom Model (Undamped) 

 

 

 

A 2 degree of freedom system used to base much of the 

analysis and conceptual development of MDOF systems on. 

 

 



Free-Body Diagram of each mass 

 

 

 

 

 

 

 

 

 

  

Figure 4.2 
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Summing forces yields the equations of motion: 
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Note that it is always the case that 

• A 2 Degree-of-Freedom system has  

– Two equations of motion! 

– Two natural frequencies (as we shall see)! 

• Thus some new phenomena arise in going from one to two 

degrees of freedom 

– Look for these as you proceed through the material 

• Two instead of one natural frequency 

– Leading to two possible resonance conditions 

• The concept of a mode shape arises 



The dynamics of a 2 DOF system consists of 2 

homogeneous and coupled equations 

• Free vibrations, so homogeneous eqs. 

• Equations are coupled:  

– Both have x1 and x2.  

– If only one mass moves, the other follows 

– Example: pitch and heave of a car model 

• In this case the coupling is due to k2.  

– Mathematically and Physically 

– If k2 = 0, no coupling occurs and can be solved as two 

independent SDOF systems 



Initial Conditions 

 

• Two coupled, second -order, ordinary differential equations 

with constant coefficients 

• Needs 4 constants of integration to solve 

• Thus 4 initial conditions on positions and velocities 
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Solution by Matrix Methods 

The two equations can be written in the form of a  

single matrix equation (see pages 272-275 if matrices and vectors are a 

struggle for you) :  
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(4.4), (4.5) 

(4.6), (4.9) 



Initial Conditions (two sets needed one for each equation of 

motion) 

 

IC’s can also be written in vector form 
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The approach to a Solution:  

 

For 1DOF we assumed the scalar solution ae
λt 

Similarly, now 

we assume the vector form:  
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This changes the differential equation of motion into 

algebraic vector equation: 
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This is two algebraic equation in 3 uknowns 

( 1 vector of two  elements and 1 scalar):
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The condition for solution of this matrix equation 

requires that the the matrix inverse does not exist: 
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If the inv -   exists :  which is the 

static equilibrium position.  For motion to occur
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The determinant results in 1 equation in one unknown ω 

(called the characteristic equation) 

 



Back to our specific system: the characteristic equation is 

defined as 
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Eq. (4.21) is quadratic in ω
2
 so four solutions result: 
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Once ω is known, use equation (4.17) again to calculate 

the corresponding vectors u1 and u2 

This yields vector equation for each squared frequency: 

2

1 1

2

2 2
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 and
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Each of these matrix equations represents 2 equations in the 2 

unknowns components of the vector, but the coefficient matrix is 

singular so each matrix equation results in only 1 independent 

equation.  The following examples clarify this. 

 



Examples 4.1.5 & 4.1.6:calculating u and ω 

 

• m1=9 kg,m2=1kg, k1=24 N/m and k2=3 N/m 

• The characteristic equation becomes 

 ω4-6ω2+8=(ω2-2)(ω2-4)=0 

    ω2 = 2 and ω2 =4 or 

      

1,3 2,42 rad/s,    2 rad/s      

Each value of ω2 yields an expression for u: 

 



Computing the vectors u 
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2 equations, 2 unknowns but DEPENDENT! 

(the 2nd equation is -3 times the first)  

 



Only the direction of vectors u can be determined, not 

the magnitude as it remains arbitrary 
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Likewise for the second value of ω2 
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Note that the other equation is the same 



What to do about the magnitude! 

Several possibilities, here we just fix one element: 
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Choose: 

Choose: 



Thus the solution to the algebraic matrix equation is: 
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Here we have introduce the name 

mode shape  to describe the vectors 

u1 and u2. The origin of this name comes later  
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Return now to the time response: 

 

 

 

 

 

 

 

 

 

 

 

 

 

(4.24) 

(4.26) 

We have computed four solutions: 

Since linear, we can combine as: 

determined by initial conditions.  



Physical interpretation of all that math! 

 

• Each of the TWO masses is oscillating at TWO natural 

frequencies ω1and ω2 

• The relative magnitude of each sine term, and hence of the 

magnitude of oscillation of m1 and m2 is determined by the 

value of A1u1 and A2u2 

• The vectors u1 and u2 are called mode shapes because the 

describe the relative magnitude of oscillation between the two 

masses 

 



1 11

1 1 1 1 1

2 12

( )
( ) sin sin

( )

x t u
t A t A t

x t u
 

   
     
   

x u

What is a mode shape? 

• First note that A1, A2, Φ1 and Φ2 are determined by 

the initial conditions 

• Choose them so that A2 = Φ1 = Φ2 =0 

• Then:  

 

• Thus each mass oscillates at (one) frequency w1 with 

magnitudes proportional to u1 the 1st mode shape  
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A graphic look at mode shapes: 

If IC’s correspond to mode 1 or 2,  then the response is purely in 

mode 1 or mode 2.  

 

 

 

 

 

 

 

 

 

 

 

Mode 1:  

Mode 2: 
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Example 4.1.7 given the initial conditions compute 

the time response 
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At t = 0 we have 
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4 equations in 4 unknowns:  
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Yields: 



The final solution is: 
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These initial conditions gives a response that is a combination of modes. 

Both harmonic, but their summation is not.  
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Solution as a sum of modes 

 

 

 

 

 

 

 

 

 

 

 

 

 

Determines how the first  

frequency contributes to the 

response 

Determines how the second  

frequency contributes to the 

response 



Things to note 

• Two degrees of freedom implies two natural frequencies 

• Each mass oscillates at with these two frequencies present 

in the response and beats could result 

• Frequencies are not those of two component systems 

1 2
1 2

1 2

2 1.63, 2 1.732
k k

m m
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• The above is not the most efficient way to calculate 

frequencies as the following describes 

 



Some matrix and vector reminders 
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Then M is said to be positive definite 



4.2 Eigenvalues and Natural Frequencies 

 

• Can connect the vibration problem with the algebraic 

eigenvalue problem developed in math 

• This will give us some powerful computational skills 

• And some powerful theory 

• All the codes have eigen-solvers so these painful calculations 

can be automated 

 

 



Some matrix results to help us use available 

computational tools: 

 

TM M  
 

0   for all nonzero vectors  T M x x x  

A symmetric positive definite matrix M can be factored 

TM LL  

Here L is upper triangular, called a Cholesky matrix 

 

A matrix M is defined to be symmetric if  

A symmetric matrix M is positive definite if  



If the matrix L is diagonal, it defines the matrix square 

root 
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A change of coordinates is introduced to capitalize on 

existing mathematics 
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 is called the mass normalized stiffness and is similar to the scalar 

used extensively in single degree of freedom analysis.  The key here is that
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s a SYMMETRIC matrix allowing the use of many nice properties and 

computational tools

 

For a diagonal, positive definite matrix M: 



How the vibration problem relates to the real symmetric 

eigenvalue problem 

2

2

vibration problem     real symmetric 
eigenvalue problem

           (4.40)           (4.41)
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Note that the martrix  contains the same type of information

as does   in the single degree of freedom case.n
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Properties of the n x n Real Symmetric Matrix 

• There are n eigenvalues and they are all real valued 

• There are n eigenvectors and they are all real valued 

• The eigenvalues are all positive if and only if the matrix is 

positive definite 

• The set of eigenvectors can be chosen to be orthogonal 

• The set of eigenvectors are linearly independent 

• The matrix is similar to a diagonal matrix 

• Numerical schemes to compute the eigenvalues and 

eigenvectors of symmetric matrix are faster and more efficient 

 



Square n x n Matrix Review 

• Let aik be the ik
th

 element of A then A is symmetric if aik = 

aki denoted A
T
=A 

• A is positive definite if x
T
Ax > 0 for all nonzero x (also 

implies each λi > 0) 

• The stiffness matrix is usually symmetric and positive 

semi definite (could have a zero eigenvalue) 

• The mass matrix is positive definite and symmetric (and 

so far, its diagonal) 

 

 



Normal and orthogonal vectors 
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Normalizing any vector can be done by dividing it by its 

norm: 

    has norm of 1
T

x

x x  

 

1
T T

TT T T
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x x x x x

x xx x x x x x  
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To see this compute 



Examples 4.2.2 through 4.2.4 
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( )

3 2 1 0

1 3 2 0

1
0

1

(1 1) 1  

11

12

K I

v

v

v v





 

  

      
     

     

 
     

 

    

 
  

 

v 0

v

v

v

 

 

The first normalized eigenvector 



Likewise the second normalized eigenvector is computed 

and shown to be orthogonal to the first, so that the set is 

orthonormal 

2 1 2

1 1

2 2

11 1
,    (1 1) 0

1 22

1
(1 1) 1

2

1
(1 ( 1)( 1)) 1

2

            are orthonormal

T

T

T

i

 
    

 

  

    



v v v

v v

v v

v

 



Modes u and Eigenvectors v are different but related: 

 

1 1 2 2

1/2 1/2

1/2

1 1

 and  

Note

13 0 1
3

0 1 11

M M

M

 

 

  

    
      

     

u v u v

x q u v

u v  

 

(4.37) 



This orthonormal set of vectors is used to form an 

Orthogonal Matrix 

 

 

1 2

1 1 1 2

2 1 2 2

1 2 1 1 2 2

1 2 21 1 1 2 1 2

1 2

21 2 1 2 2 2

1 0

0 1

0
diag( , )

0

T T

T

T T

T T T

T T

T T

P

P P I

P KP P K K P  

 
 

 



   
     

  

   

   
       

  

v v

v v v v

v v v v

v v v v

v v v v

v v v v

 

 

called a matrix of eigenvectors (normalized) 

P is called an orthogonal matrix 

P is also called a modal matrix 



Example 4.2.4 compute P and show that it is an 

orthogonal matrix 

 

 1 1

1 11

1 12

1 1 1 11 1

1 1 1 12 2

1 1 1 1 2 01 1
      

1 1 1 1 0 22 2

T

P

P P

I

 
   

 

   
    

    

    
     

    

v v

 

From the previous example: 



Example 4.2.5 Compute the square of the frequencies by 

matrix manipulation 

2

1

2

2

1 1 3 1 1 11 1

1 1 1 3 1 12 2

1 1 2 41
          

1 1 2 42

4 0 2 0 01
           

0 8 0 42 0

TP KP





     
      

       

   
    

    

    
         

     

 

1 22 rad/s  and  2 rad/s     

 

  2diag diag( )     (4.48)T

i iP KP       

In general: 



Example 4.2.6 

 

 

1 1 1 2 1 2 2

2 2 2 1 2 3 2

( ) 0
      (4.49)

( ) 0

m x k k x k x

m x k x k k x

   

     

 

1 2 21

2 2 32

0
0       (4.50)

0

k k km

k k km

   
   

    
x x

 

 

Figure 4.4 The equations of motion: 

In matrix form these become: 



Next substitute numerical values and compute P and Λ 

1 2 1 3 21 kg, 4 kg,  10 N/m  and =2 N/mm m k k k     

 

1/2 1/2

2

1 2

1 2

1 0 12 2
,   

0 4 2 12

12 1

1 12

12 1
det det 15 35 0

1 12

                                2.8902  and  12.1098

1.7  rad/s  and   12.1098  ra

M K

K M KM

K I


  


 

 

 

   
     

   

 
    

 

  
       

  

  

   d/s 

 

 



Next compute the eigenvectors 

1

11

21

11 21

1

2 2 2 2 2

1 11 21 11 11

11

For  equation (4.41 ) becomes:

12 - 2.8902 1
                     0

1 3- 2.8902

                  9.1089

Normalizing  yields

1 (9.1089)

             0.

v

v

v v

v v v v

v



   
  

   

 

    

 

v

v

21

1 2

1091,  and 0.9940

0.1091 0.9940
,     likewise  

0.9940 0.1091

v 

   
    
   

v v

 



Next check the value of P to see if it behaves as its 

suppose to: 

 1 2

0.1091 0.9940

0.9940 0.1091

0.1091 0.9940 12 1 0.1091 0.9940 2.8402 0

0.9940 0.1091 1 3 0.9940 0.1091 0 12.1098

0.1091 0.9940 0.1091 0.9940

0.9940 0.1091 0.9940 0.109

T

T

P

P KP

P P

 
   

 

        
        

        

 
  

 

v v

1 0

1 0 1

   
   

   

 

 
Yes! 



A note on eigenvectors 

 

2

2 2

In the previous section, we could have chosed  to be

0.9940 -0.9940
   instead of 

0.1091 0.1091

because one can always multiple an eigenvector by a constant

and if the constant is -1 th

   
    

   

v

v v

e result is still a normalized vector.

 

 

 

 

Does this make any difference? 

No! Try it in the previous example 



All of the previous examples can and should be solved by 

“hand” to learn the methods 

 

However, they can also be solved on calculators with matrix 

functions and with the codes listed in the last section 

In fact, for more then two DOF one must use a code to solve 

for the natural frequencies and mode shapes. 

Next we examine 3 other formulations for solving for modal 

data 

 

 



Matlab commands 

 

• To compute the inverse of the square matrix A: inv(A) or 

use A\eye(n) where n is the size of the matrix 

• [P,D]=eig(A) computes the eigenvalues and normalized 

eigenvectors (watch the order). Stores them in the 

eigenvector matrix P and the diagonal matrix D (D=L)   

 

 

 



More commands 

 

• To compute the matrix square root use sqrtm(A) 

• To compute the Cholesky factor: L= chol(M) 

• To compute the norm:  norm(x) 

• To compute the determinant det(A) 

• To enter a matrix: 

   K=[27 -3;-3 3]; M=[9 0;0 1]; 

• To multiply: K*inv(chol(M)) 

 



 2 0,        0M K   u u

An alternate approach to normalizing mode shapes 

 

 

   

Now scale the mode shapes by computing  such that

1
                  1

T

i i i i i
T

i i

M



    u u
u u

 

2 2

  is called   and it satisfies:

0 ,  1,2

i i i

T

i i i i i i

mass normalized

M K K i



 



     

w u

w w w w  

 

 

From equation (4.17) 

(4.53) 



1 1
2 22 2 1 2(i)  (ii)    (iii)  M K M K M KM  

   u u u u v v

There are 3 approaches to computing mode shapes and 

frequencies 

 

(i) Is the Generalized Symmetric Eigenvalue Problem 

 easy for hand computations, inefficient for computers 

(ii) Is the Asymmetric Eigenvalue Problem 

 very expensive computationally 

(iii) Is the Symmetric Eigenvalue Problem 

 the cheapest computationally  

 



Some Review: Window 4.3 

Orthonormal Vectors 

similar to the unit vectors of statics and dynamics 

 

. and  of values all for
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4.3 - Modal Analysis 

• Physical coordinates are not always the easiest to work in 

• Eigenvectors provide a convenient transformation to 

modal coordinates 

– Modal coordinates are linear combination of physical 

coordinates 

– Say we have physical coordinates x and want to 

transform to some other coordinates u 

212

211

3

3

xxu

xxu




1 1

2 2

1 3

1 3

u x

u x

    
     

      



Review of the Eigenvalue Problem 
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#1) trans. (coord. 

 let and 

as Rewrite  . and  conditions initial
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


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Eigenproblem (cont) 

0qqqq 








K

KK

MKM

I

MM

M

T

~

~~

get to  by yPremultipl

2
1

2
1

2
1

2
1

2
1





 

• Now we have a symmetric, real matrix 

• Guarantees real eigenvalues and distinct, mutually 

orthogonal eigenvectors 

 

 

(4.55) 



Eigenvectors = Mode Shapes? 

 

.synonymous not are they but

 tion,transforma simple a by related

 are two The  matrices. of sticscharacteri

are sEigenvetor  s.coordinate physical in

=  to solutions are shapes Mode 2 uu KM

 

 

 

 



Eigenvectors vs. Mode Shapes 
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The Matrix of eigenvectors can be used to decouple the 

equations of motion 

1If  orthonormal (unitary), T TP P P I P P  
 

Thus, diagonal matrix of eigenvalues.

Back to 0. Make the additional coordinate

transformation  and premultiply by 

Pr Pr 0    (4.59)

T

T

r

T T

P KP

q Kq

q P P

P P K Ir r

  

 



   
 

 

• Now we have decoupled the EOM i.e., we have n 

independent 2nd-order systems in modal coordinates r(t) 



Writing out equation (4.59) yields 

2
1 11

2
2 22

2

1 1 1

2

2 2 2

( ) ( )1 0 00
     (4.60)

( ) ( )0 1 00

( ) ( ) 0    (4.62)
     

( ) ( ) 0    (4.63)

r t r t

r t r t

r t r t

r t r t









       
        

       

 


 

 

We must also transform the initial conditions 

101 1/2

0

202

101 1/2

0

202

(0)
(0) (0)    (4.64)

(0)

(0)
(0) (0)    (4.65)

(0)

T T

T T

rr
P P M

rr

rr
P P M

rr

  
     
   

  
     
   

r q x

r q x  



rx PM 2
1



This transformation takes the problem from couple 

equations in the physical coordinate system in to 

decoupled equations in the modal coordinates 
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Physical Coordinates. 
Coupled equations Modal Coordinates. 

Uncoupled equations 



2
1

MPT

Modal Transforms to SDOF 

 

• The modal transformation 

 transforms our 2 DOF into 2 SDOF systems 

• This allows us to solve the two decoupled SDOF systems 

independently using the methods of chapter 1 

• Then we can recombine using the inverse transformation 

to obtain the solution in terms of the physical coordinates.  

 

 

 

 



The free response is calculated for each mode 

independently using the formulas from chapter 1: 

0
0

2
2 10 0
0 2

0

( ) sin cos ,     1,2

or (see Window 4.3 for a reminder)

( ) sin( tan ),     1,2

i
i i i i

i

i i i
i i i

i i

r
r t t r t i

r r
r t r t i

r

 









  

     

Note, the above assumes neither frequency is zero 

 

 



Once the solution in modal coordinates is determined (ri) 

then the response in Physical Coordinates is computed: 

 

• With n DOFs these transformations are: 

1
2

  

1 1

where         
nxn

(t) S (t)

n nn n

S M P

nxnn n





 





x r

 

(where n  = 2 in the previous slides) 

 



Steps in solving via modal analysis (Window 4.5) 

 

 

 

 

 



Example 4.3.1 via MATLAB (see text for hand 

calculations) 

9 0 27 3 0 0
, , (0) , (0)

0 1 3 3 1 0
M K

       
          

       
x x

 

• Follow steps in Window 4.5 (page 337) 

2
1

 Calculate 1)


M 2
1

2
1~

  Calculate 2)


 MKMK
 

 

 

 

 

 

» Minv2 = inv(sqrt(M)) 

Minv2 = 

    0.3333         0 

         0    1.0000 

»Kt =Minv2*K*Minv2 

Kt = 

    3    -1 

    -1     3 



Example 4.3.1 solved using MATLAB as a calcuator 

 

% 3) Calculate the symmetric eigenvalue problem for K tilde [P,D] = eig(Kt); 

[lambda,I]=sort(diag(D)); % just sorts smallest to largest 

P=P(:,I); % reorder eigenvectors to match eigenvalues 

»lambda = 

     2 

     4 

P = 

   -0.7071   -0.7071 

   -0.7071    0.7071 

 



Example 4.3.1 (cont) 

 

% 4) Calculate S = M^(-1/2) * P and Sinv = P^T * M^(1/2)  

S = Minv2 * P; 

Sinv = inv(S); 

% 5) Calculate the modal initial conditions 

r0 = Sinv * x0; 

rdot0 = Sinv * v0; 

 

 

 

 

 

 

 

 



Example 4.3.1 (cont) 

 

% 6) Find the free response in modal coordinates 

tmax = 10; 

numt = 1000; 

t = linspace(0,tmax,numt); 

[T,W]=meshgrid(t,lambda.^(1/2)); 

% Use Tony's trick 

R0 = r0(:,ones(numt,1)); 

RDOT0 = rdot0(:,ones(numt,1)); 

r = RDOT0./W.*sin(W.*T) + R0.*cos(W.*T); 

% 7) Transform back to physical space 

x = S*r; 



Example 4.3.1 (cont) 
% Plot results 

figure 

subplot(2,1,1) 

plot(t,r(1,:),'-',t,r(2,:),'--') 

title('free response in modal coordinates') 

xlabel('time (sec)') 

legend('r_1','r_2') 

subplot(2,1,2) 

plot(t,x(1,:),'-',t,x(2,:),'--') 

title('free response in physical coordinates') 

xlabel('time (sec)') 

legend('x_1','x_2') 
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Modal and Physical Responses 

 

 

 

 

 

 

 

 

 

 

 

 

 

Modal Coordinates: 

Independent 

oscillators 

Physical 

Coordinates: 

Coupled oscillators 

 

Note IC 

Free response in modal coordinates 

Free response in physical coordinates 
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x 
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0 1 2 3 4 5 6 7 8 9 10 
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r 
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r 
2 

 sec  sec 



Section 4.4 More then 2 Degrees of Freedom 

 

 

 

 

 

 

 

 

 

 

Fig 4.8 

Extending previous section to 

any number of degrees of 

freedom 

Fig 4.7 



A FBD of the system of figure 4.8 yields the n equations 

of motion o the form: 

 

   1 1 1 0,    1,2,3     (4.83)i i i i i i i im x k x x k x x i n       
 

Writing all n of these equations and casting them in matrix 

form yields: 

( ) ( ) ,          (4.80)M t K t x x 0
 

 

 

 

 

 

where: 



the relevant matrices and vectors are: 

 

1 2 2

1

2 2 3 3

2

3

1

0 0
0 0

0
0 0

,    0   (4.83)

0 0
0 0

n n n
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k k k
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   
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    
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For such systems as figure 4.7 and 4.8 the process stays 

the same…just more modal equations result: 
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0)()(

0)()(

0)()(

4.3 section as same the stays Process

2

3
2
33

2
2
22

1
2
11









trtr

trtr

trtr

trtr

nnn 

















 

 

 

 

 

Just get more modal  

equations, one for each 

degree of freedom (n is  

the number of dof) 

See example 4.4.2 for details 



The Mode Summation Approach 

 

• Based on the idea that any possible time response is just a 

linear combination of the eigenvectors 

 

 

1 1

1

Starting with ( ) ( )     (4.88)

let ( )= ( )

two linearly independent solutions for each term.

can also write this as  ( ) sin     (4.92)

i i

n n
j t j t

i i i i

i i

n

i i i i

i

t K t

t t a e b e

t d t

 

 



 



 

 



 

 



q q 0

q q v

q v
 

 



Mode Summation Approach (cont) 

 

 

jjj
T
j

jj

n

i
i

T
jii

n

i
iii

T
j

T
j

iji
T
j

n

i
iiii

n

i
iii

ii

d

ddd

dd

d











cos=)0(  ,velocities initial the for Similarly

sinsin=sin=)0(

 that such normalized rseigenvecto Assuming

cos)0( and sin)0(  

I.C. the from  and  constants the Find

11

11

qv

vvvvqv

vv

vqvq



















 

 

 

 



Mode Summation Approach (cont) 

 

1

Solve for  and  from the two IC equations

(0) (0)
  and   tan

sin  (0)

 about (0)=

if you just crank it through the above expressions

you might conclude that 0,

i i

T T

i i i
i i T

i i

i

d

d

d








 



v q v q

v q

IMPORTANT NOTE q 0

 i.e., the trivial soln.

Be careful with (0) = 0 as well. q

 

 

 



Mode Summation Approach for zero initial displacement 

 

1

If (0) = 0, the return to 

(0) sin   

and realize that 0 instead of 0.  

The compute  from the velocity expression 

(0)= cos

n

i i i

i

i i

i

T

i i i i

d

d

d

d





 





 



q

q v

v q
 

 



Mode Summation Approach with rigid body modes (ω1 = 

0) 

1

0 0

1 1 1 1 1

if 0,

( ) ( )v ( )v

does not give two linearly independent solutions.

Now we must use the expansion

j t j t

i iq t a e b e a b







   

 

1 1 1

2

( ) ( )v ( )v

and adjust calculation of the constants from the

initial conditions accordingly.

i i

n
j t j t

i i i

i

q t a b t a e b e
 



   

 

Note that the underline term is a translational motion 



Example 4.3.1 solved by the mode summation method 

 

1/2

1/2 1/2

0 0 0 0

11 1

2

3 0 1 11
From before, we have  and =

0 1 1 12

3 0
Appropriate IC are = = ,  = =

0 0

(0) (0) 2
tan tan

 (0)  0

2

(0)

T T

i i i i
i T

i

T

i
i

M V

M M

d


 


 

 

    
    

   

   
   
   

 
  

      
   

  



q x q v

v q v q

v q

v q 1

2

3 2
2

sin 3 2
2

i

d

d

 
   

    
    

 



Example 4.3.1 constructing the summation of modes 

1

2

the first mode the second mode

( ) 1 13 2 1 3 2 1
sin 2 sin 2

( ) 1 12 2 2 22 2

q t
t t

q t

          
           

         

 

Transforming back to the physical coordinates yields: 

 

1/2
1 10 01 13 2 1 3 2 13 3( ) sin 2 sin 2

1 12 2 2 22 20 1 0 1

1 13 2 1 3 2 1
      sin 2 sin 2

1 12 2 2 23 2 3 2

t M t t

t t


           

             
            

        
         

      

x q

 



Example 4.3.1 a comparison of the two solution 

methods shows they yield identical results 

 



2
1

2
1~ 

 KMMK

Steps for Computing the Response By Mode Summation 

1. Write the equations of motion in matrix form, identify M 

and K 

2. Calculate M 
-1/2

 (or L) 

3. Calculate  

4. Compute the eigenvalue problem for the matrix 

iiK v and   get and  
~ 2  

5. Transform the initial conditions to q(t)  

1 1
2 2(0) (0)  and  (0) (0)M M q x q x  



Summary of Mode Summation Continued 

6. Calculate the modal expansion coefficients and  phase 

constants 

i

T
i

iT
i

T
ii

i d





sin

)0(
    ,

)0(

)0(
tan 1 qv

qv

qv














 

  

7. Assemble the time response for q 

 



n

i
iiii tdt

1

sin)( vq   

8. Transform the solution to physical coordinates  

 
1

2

1

( ) ( ) sin
n

i i i i

i

t M t d t 



  x q u  



Nodes of a Mode Shape 

 

• Examination of the mode shapes in Example 4.4.3 shows 

that the third entry of the second mode shape is zero! 

• Zero elements in a mode shape are called nodes. 

• A node of a mode means there is no motion of the mass or 

(coordinate) corresponding to that entry at the frequency 

associated with that mode. 

 

 



2

0.2887

0.2887

0

0.2887

 
 
 
 
 
 

u

The second mode shape of Example 4.4.3 has a node 

• Note that for more then 2 DOF, a mode shape may have a 

zero valued entry 

• This is called a node of a mode. 

 

 

 

 

 

 

node 

They make great mounting points in machines 



A rigid body mode is the mode associated with a zero 

frequency 

 

• Note that the system in Fig 4.12 is not constrained and can 

move as a rigid body 

• Physically if this system is displaced we would expect it to move 

off the page whilst the two masses oscillate back and forth 

Fig 4.11 



Example 4.4.4 Rigid body motion 

 

1 1 2 1 2 2 2 1

1 1 1

2 2 2

( )   and   ( )

0 1 1 0

0 1 1 0

m x k x x m x k x x

m x x
k

m x x

    

        
          

        
 

 

1 2

0 0

1 kg,  4 kg,  400 N  subject to

0.01
  m  and 0

0

m m k  

 
  
 

x v
 

The free body diagram of figure 4.11 yields 

Solve for the free response given: 



Following the steps of Window 4.5 

   

1/2

1/2 1/2

2

1 2 1 2

1 0

1.  1
0

2

1 0 1 0
1 1 400 200

2.  400 1 1
1 1 200 1000 0

2 2

4 2
3.  det 100det 100 5 0

2 1

0  and  5   0,   2.236 rad/s

M

K M KM

K I


  


   



 

 
 
 
 

   
                   

   

    
      

   

     

 

 

 
Indicates a rigid body motion 



Now calculate the eigenvectors and note in particular that 

they cannot be zero even if the eigenvalue is zero 

11

11 21

21

1 1

2

4 0 2 0
0 100 4 2 0

2 1 0 0

1 0.4472
  or after normalizing  

2 0.8944

0.8944 0.4472 0.8944
Likewise:    

0.4472 0.8944 0.4472

v
v v

v

P


      

         
     

   
     

   

    
     
   

v v

v
 

 

   and  diag 0 5T TP P I P KP   

As a check note that 



5. Calculate the matrix of mode shapes 

 

1/2

1

1

0

1 0 0.4472 0.8944 0.4472 0.8944
  

0 1/ 2 0.8944 0.4472 0.4472 0.2236

0.4472 1.7889

0.8944 0.8944

7.  Calculate the modal initial conditions:

0.4472 1.7889
(0)

0.8944 0.894

S M P

S

S







      
       

     

 
   

 

 


r x

1

0

0.01 0.004472

4 0 0.008944

(0) 0S 

     
     

     

 r x

 

 



1 1

1

(0) 0

( )

r r

r t a bt

 

  

2 2

2 2

( ) 5 ( ) 0

( ) cos 5

r t r t

r t a t

 

 

7. Now compute the solution in modal coordinates and 

note what happens to the first mode. 

 

 

 

 

 

 

 

 

Since ω
1
 = 0 the first modal equation is 

Rigid body translation 

And the second modal equation is 

Oscillation  



Applying the modal initial conditions to these two 

solution forms yields: 

1

1

1

2

2

(0) 0.004472

(0) 0.0

( ) 0.0042

as in the past problems the initial conditions for  yield

( ) 0.0089cos 5

0.0042
( )

0.0089cos 5

r a

r b

r t

r

r t t

t
t

 

 

 

 

 
   

 
r

 



8. Transform the modal solution to the physical 

coordinate system 

1 3

2

0.00450.4472 0.8944
( ) ( )

0.4472 0.2236 0.0089cos 5

( ) 2.012 7.60cos 5
       ( ) 10  m

( ) 2.012 1.990cos 5

t S t
t

x t t
t

x t t



  
    

   

  
     

    

x r

x  

 

 

 

 

Each mass is moved a constant distance and then oscillates at a single 

frequency. 



Order the frequencies 

• It is convention to call the lowest frequency ω1 so that ω1 < ω2 < 

ω3 < … 

• Order the modes (or eigenvectors) accordingly 

• It really does not make a difference in computing the time 

response 

• However:  

– When we measuring frequencies, they appear lowest to highest 

– Physically the frequencies respond with the highest energy in 

the lowest mode (important in flutter calculations, run up in 

rotating machines, etc.)  



The system of Example 4.1.5 solved by Mode Summation 

 

1 1 2 2

1 1
3 32,  ,    2,  

1 1
 

   
      

      

u u
 

 

 

1 0
3(0) ,     (0)

01

   
    
    

x x
 

 

 

From Example 4.1.6 we have: 

Use the following initial conditions and note that only one mode 

 should be excited (why?) 



Transform coordinates 

1 1
2 2

9 0 3 0 1/ 3 0
   and  

0 1 0 1 0 1
M M M

     
        
       

 

 

1
2

1
2

13 0 1
3(0) (0)

0 1 11

3 0 0 0
(0) (0)

0 1 0 0

M

M

    
      

     

     
       

     

q x

q x  

 

Thus the initial conditions become 



1 2

1 11 1
  and  

1 12 2

   
    

   
v v

Transform Mode Shapes to Eigenvectors 

1
2

1 1

1
2

2 2

13 0 1
3

0 1 11

13 0 1
3

0 1 11

M

M

    
      

     

     
      

     

v u

v u  

 

 1 2 1 2

11 21 3 Note that 1 1 0,  but  1 0
31 31

T T
  

              

v v u u
 

 

eigenvectors 

Note that unlike the mode shapes, the eigenvectors are orthogonal: 

Normalizing yields: 



From Equation (4.92): 

iiii
i

iiii
i

i tdttdt vqvq )cos()()sin()(
2

1

2

1

  



 

 
































1

1

2

1
cos2

1

1

2

1
cos2

0

0

cos)0(

1221111

2

1

TTT

iii
i

i

dd

d

vvv

vq





 

1 1 10 cos / 2d        

 

Set t=0 and multiply by v
1
: 

Or directly from Eq. (4.97) 



2

1

( ) sin( )

1 11
      2 cos( 2 ) cos( 2 )

1 12

i i i i

i

t d t

t t

 


 

   
    

   

q v

From the initial displacement: 

 

 

1
1

2
2

1(0) 1 2
1 1

1sin( / 2) 2 2

1(0) 1
1 1 0

1sin( / 2) 2

T

T

d

d





 
   

 

 
    

 

v q

v q  

 

 

 

 

 

(4.98) 

Eigenvector 2 

Eigenvector 1 

thus 



Transforming Back to Physical Coordinates: 

1
2

1 0 1
3( ) ( ) cos( 2 )

10 1

1
cos 2

3       

cos 2

t M t t

t

t

    
     

    

 
 
 
  

x q

 

1 2

1
( ) cos 2   and  ( ) cos 2  

3
x t t x t t  

 

 

 

So, the initial conditions generated motion only in the 

first mode (as expected) 



Alternate Path to Symmetric Single-Matrix Eigenproblem 

 

• Square root of matrix conceptually easy, but 

computationally expensive 

0qqqq 


KMKMMM
~2

1
2
1

2
1

2
1


 

 

• More efficient to decompose M into product of upper and 

lower triangular matrices (Cholesky decomposition) 

 

 



Cholesky Decomposition 

 

1

1

1

1 1

Let  where  is upper triangular

Introduce the coordinate transformation

 0

premultiply by  to get

note that: 

T

T

T

T

T T T
T T T

M U U U

U U U U K

U

U

I U K U K

U K U U K U U







 

    



     

   

           

x q x q x x

qq

q q q q 0

1T K U 

 



Cholesky (cont) 

 

1 1
2 2 M M M                                   

TM U U  

 

 

 

• sqrtm requires a singular value decomposition (SVD), 

whereas Cholesky requires only simple operations 

1
2 Note that =  for diagonal M U M  

• Is this really faster?  Let’s ask MATLAB 
 
 
 

• sqrtm requires a singular value decomposition 

(SVD), whereas Cholesky requires only simple 

operations 

»M = [9  0 ; 0  1]; 

»flops(0); sqrtm(M); flops 

ans = 65 

»M = [9  0 ; 0  1]; 

»flops(0); chol(M); flops 

ans = 5 



Section 4.5 Systems with Viscous Damping 

 

 

 

 

 

 

Extending the first 4 sections to included 

the effects of viscous damping (dashpots) 



Viscous Damping in MDOF Systems 

• Two basic choices for including damping 

– Modal Damping 

• Attribute some amount to each mode based on 

experience, i.e., an artful guess or 

• Estimate damping due to viscoelasticity using some 

approximation method 

– Model the damping mechanism directly (hard and still 

an area of research-good for physicists but engineers 

need models that are correct enough). 

 



Modal Damping Method 

 

Solve the undamped vibration problem following Window 4.5 

0rr0xx  )()()()( ttItKtM   

Here the mode shapes and eigenvectors are real valued and 

form orthonormal sets, even for repeated natural frequencies  

 (known because 2
1

2
1~ 

 KMMK  is symmetric) 
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Modal Damping (cont) 

• Decouple system based on M and K, i.e., use the 

“undamped” modes 

• Attribute some zi (zeta) to each mode of the decoupled 

system (a guess. Not known beforehand. Can be tested 

with gross data like x):  
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Alternately: 

here 

(4.106) 

(4.107) 



Transform Back to Get Physical Solution 

• Use modal transform to obtain modal initial conditions and 

compute Ai and Fi: 
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• With r(t) known, use the inverse transform to recover the 

physical solution: 

)()()()( 2
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2
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Modal Damping by Mode Summation 

• Can also use mode summation approach 

• Again, modes are from undamped system 

• The higher the frequency, the smaller the effect (because of the 

exponential term). So just few first modes are enough.  
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Compute q(t), Transform back 

• To get the proper initial conditions use: 

)0()0( and  ),0()0( 2
1

2
1

xqxq  MM   

• Use the above to compute q(t) and then: 
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the response in physical coordinates. 
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Example 

 

 

 

 

 

 

 

1 20.01  and  0.1    

 

Consider:  

Subject to initial conditions: 

Experiments do not give C. They provide zeta (in modal 

coordinates) by the half power method.  

Compute the solution assuming modal damping of: 



Compute the modal decomposition 
L =sqrt(M) 
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Compute the modal initial conditions: 



Compute the modal solutions: 
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( ) 4.208 sin(0.49 1.561)

( ) 3.346 sin(0.958 1.471)
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Using eq (4.108) and (4.109) yields 

Then use x(t)=Sr(t) 
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2
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So, first separate solutions in the modal coordinates were 

found and then the modes were assembled by the use of S. 

The response in the physical coordinates is therefore a 

combination of the modal responses just as in the undamped 

case. See page 357 for an additional example. 

 



Lumped Damping models 

• In some cases (FEM, machine modeling), the damping 

matrix is determined directly from the equations of motion. 

• Then our analysis must start with: 
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Generic Example: 

  

 

 

 

Fig 4.15 

• If the damping 

mechanisms are 

known then 

• Sum forces to find 

the equations of 

motion 

Free Body Diagram: 



Matrix form of Equations of Motion: 
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The C and K matrices have the same form.  

It follows from the system itself that consisted damping and stiffness 

elements in a similar manner. 



A Question of matrix decoupling 

 

• Can we decouple the system with the same coordinate 

transformations as before? 

0

? diagonal
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2
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• In general, these can not be decoupled since K and C can 

not be diagonalized simultaneously 

 



A Little Matrix Theory 

• Two symmetric matrices have the same eigenvectors 

  if and only if the matrices commute 

• Define  
1 / 2 1 / 2C M C M   

• Transform the damped equations of motion into:  

0qqq  )(ˆ)(
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)( tKtCtI   

• Let P be the matrix of eigenvectors vi of   and  TK P KP   

Then PCPT ~
 will be diagonal if and only if transformed  

K and C have same eigenvectors, i.e. 

 for all ,  so  i i iC i CK KC v v  



More Matrix Stuff and Normal Mode Systems 
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• This does not require a matrix square root to check 

• This informs us explicitly whether or not the equations of motion 

can be decoupled 

• If true, such systems are called “normal mode” systems or said 

to possess “classical normal modes” 

Happens if and only if CM
-1

K is symmetric 



Proportional Damping 

• It turns out that CM
-1

K = symmetric is a necessary and 

sufficient condition for C to be diagonalizable by the 

eigenvectors of the “undamped” system, i.e., those based on 

M,K 

• Best known example is “proportional”damping.  

• The coefficients are obtained through experiments or just 

by guess. 

 1 1 1
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Proportional Damping (cont) 
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Write the system as 

diagonal!

Thus, the damping ratios in the decoupled system are
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(4.124) 



Generalized Proportional Damping 

 

For any value of n up to the number of degrees of freedom: 
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For example for n = 2 we get the previous proportional 

damping formulation: 



Section 4.6 Modal Analysis of the Forced 

Response 

 

 

Extending the chapters 2 and 3 to more then one degree of 

freedom 

 

 

 

 



Forced Response: the response of an mdof system to a 

forcing term 
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Assume  diagonalizable for now, i.e., 
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If the system of equations decouple then the methods of 

Chapters 2 and 3 can be applied 

1
2

th 2

Decouple the system with the eigenvalues of 

2  

so the  equation would be  2 ( )
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• Responses to harmonic, periodic, or general forces as in 

Chapters 2 and 3 

• Note that the modal forcing function is a linear combination of 

many physical forces 

 

(4.129) 

(4.130) 



With the modal equation in hand the general solution is 

given 
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The applied force is distributed across the all of the 

modes except in a special case. 

1
2( ) ( ) for the decoupled EOM.Tt P M B t



f F  

• An excitation on a single physical DOF may “spread” to all modal DOFs 

(one F generates many f’s) 

• It is actually possible to drive a MDOF system at one of its natural 

frequencies and not experience resonant response  (an unusual 

circumstance) 

th

Let ( ) ( ),  where  is some spatial vector 

and ( ) is any fuction of time.  What if  happens

to be related to the  mode shape by  u ?i

t f t
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F b b
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Example 4.6.1  

A 2-dof system 
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Figure 4.16 



Compute the mass normalized stiffness matrix and its 

eigen solution 
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From before: 



Transform the damping matrix, the forcing function and 

write down the modal equations 
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From the above coefficients the modal equations 

 become (note that the force is distributed to each mode) 
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Compute the modal values using the single degree of 

freedom formulas 

 

 

 

 

 

 

 

 

 

• The modal damping 

ratios and damped 

natural frequencies are 

computed using the usual 

formulas and the 

coefficients from the 

terms in the modal 

equations: 



Use SDOF formula for the particular solution given in 

equation (2.36) 
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Now transform back to physical coordinates 

 

Note that the force effects both degrees of freedom even though it is applied to one. 



The Frequency Response of each mode is plotted: 

 

 

 

 

 

 

 

 

 

• This graph shows 
the amplitude of 
each mode due 
to an input modal 
force f

1
 and f

2
. 

• A force applied to 
mass # 2 F

2 
will 

contribute to both 
modal forces! 
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The frequency response of each degree of freedom is 

plotted 

 

 

 

 

 

 

 

 

• This graph shows 

the amplitude of 

each mass due to 

an input force on 

mass #2. 

• Each mass is 

excited by the 

force on mass #2 

• Both masses are 

effected by both 

modes 
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Resonance for multiple degree of freedom systems can 

occur at each of the systems natural frequencies 

• Note that the frequency response of the previous example 

shows two peaks 

 

• If in the odd case that b is orthogonal to one of the mode 

shapes then resonance in that mode may not occur (see 

example 4.6.2) 

• If the modes are strongly coupled the resonant peaks may 

combine  (see X1/F2 in the previous slide) and be hard to 

notice 

Special cases: 
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Example: Illustrating the effect of the input force 

allocation 
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Consider: 

Compute the modal equations and discuss resonance. 

Solution: 
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The mass normalized eigenvectors are: 



Transform and compute the modal equations: 
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No resonance even though 



An example with three masses 
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Solving a system with 3 masses is best done using a code. 

Using Matlab we can calculate the eigenvectors and eigenvalues and 

hence the mode shapes and natural frequencies. 
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The frequency response of each mode computed 

separately: 
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A comparison of the Frequency response between driving 

mass #1 and driving mass #2 
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Computing the forced response via the mode summation 

technique 
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Consider  

Transform: 

From eq. (4.92) the homogeneous solution in mode 

summation form is 



The total solution in mode summation form is: 
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But  



Next use the initial conditions and orthogonality to 

evaluate the constants 
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Substitution of the constants into Equation (4.136) and 

multiplying by M-1/2 yields 
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Decoupled Forced EOM 

 

 

 

 

 

 

 

 

 

 

 

 

 

Physical Co-ordinates. 
Coupled equations 

Modal Co-ordinates. 
Uncoupled equations 
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4.7 Lagrange’s Equations 

 

 

 

 

 

 

 

 

 

Defining work, energy and 

virtual displacements and 

work we will learn an 

alternate method of deriving 

equations of motion 

Generalized coordinates: 2 not 4! 

Recall equations (1.63) and (1.64) 



Definitions (from Dynamics) 
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Strain Energy in a Spring 
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Strain energy in an elastic material 

 

 

 

 

 

The variation of , denoted ( ) is given by
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Example of a bar of cross section 

A(x) elongated by force P(x,t) 
Stress σ 

Strain ε 

Slope E  

so P=EAε 



Strain energy continued 
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in a bar element:
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r

Virtual Reality (actually: virtual displacement) 

 

 

 

 

 

 

 

 

 

A virtual displacement 

Based on variational math 

Small or infinitesimal 

changes compatible with 

constraints 

No time associated with 

change 

Variation or 

Change  in: 



Consequence of satisfying the constraint: 
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Virtual work 
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the principle of virtual work:

                         0

which states that if a system is in equi

i

i i i

n

i i

i

i

W 




    

 

f

f r

F r

librium, the

work done by externally applied forces through a

virtual displacement is zero:  0

     has an critical value

V

V

 



 



Dynamic Equilibrium 

 

D'Alembert's Principle move inertia force to left side and

treat dynamics as statics.  From Newton's law in terms of

change in momentum:
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Hamilton’s Principle 
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Integrate this last expression 
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Lagrange’s Equation 

 

1 2 3Let ( , , ... , ),    called generalized coordinates

Let  a generalized force (or moment)

The Lagrange formulation, derived from Hamilton's principle

for determining the equations of moti
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(4.143) 

(4.144) 



The Lagrangian, L 
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Let L = (T - U), called the Lagrangian 

Then (4.145) becomes: 

For the (common) case that the potential  

 energy does not depend on the velocity:  

0
i

U

q




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Advantages 

• Equations contain only scalar quantities 

• One equation for each degree of freedom 

• Independent of the choice of coordinate system since the 

energy does not depend on coordinates 

• See examples in Section 4.7 pages 369-377 

• Useful in situations where F = ma is not obvious 
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Example of Generalize Coordinates 
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How many dof? 

What are they? 

Are there constraints? 
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There are only 2 DOF and one choice is: 



Example 4.7.3 (also illustrates linear approximation method) 
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Here G is mass center and e is 

the distance to the elastic axis. 

Let m denote the mass of the 

wing and J the rotational inertia 

about G. 

Take the generalized coordinates to be: 

Called the pitch and plunge model 
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Computing the Energies 
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The Kinetic Energy is 

The relationship between x
G
 and x is 

So the kinetic energy is 
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Potential Energy and the Lagrangian 
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The potential energy is: 

The Lagrangian is: 



2

1cos sin 0mx me em k x      

2 2 2 2

2cos cos sin cos 0J me x me me k          

Computing Derivatives for Equation (1.146) 
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Now use the Lagrange equation to get: 

Likewise differentiation with respect to q
2
 = θ yields: 



Next Linearize and write in matrix form 
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Using the small angle approximations: 

In matrix form this becomes: 

Note that this is a dynamically coupled system 



Next consider the Single Spring-Mass System and 

compute the equation of motion using the Largranian 

approach 
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