Chapter 3 DB models & data modeling

1. Introduction

development of DB sys starts w/ a modeling phase – seeks user requirements – turn into tech specifications for implementation

2. Definition & concepts

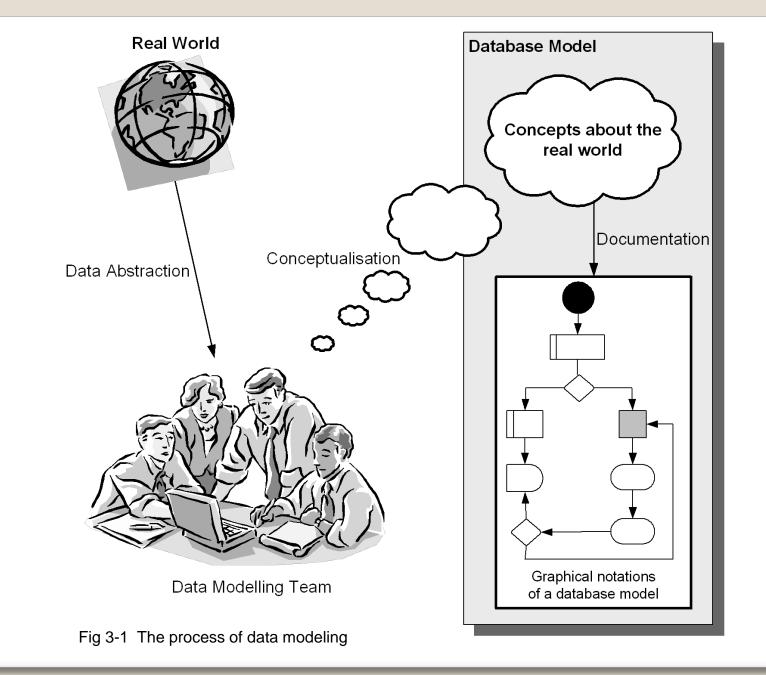
2.1 Definition of a DB model

model : a collection of concepts, language, graphics to describe the data structure & data processing operations

DB model – describes the design of DB (not the ways of constructing it)

like an architectural plan

serve as the means of communication between sponsor, DB designer, DB developer, users


modeling process

: real world \rightarrow data abstraction \rightarrow conceptualization \rightarrow documentation

* concept : entity (relational DB model), object (OO DB model)

various DB model - hierarchical, network, relational, OO DB model

development stage - conceptual, logical, physical

2.2 DB model, schema, instance

DB model : vocabulary & linguistic/graphic rules to describe DB – high level description schema : collection of linguistic & graphical representations to describe the data structure instance : an occurrence of a data object

* in this lecture, DB model + schema = DB model / schema

characteristics

schema – can contain multiple instances

instance - dynamic & time-variant as values of instances can be changed by transactions

cf. schema is static & time-invariant

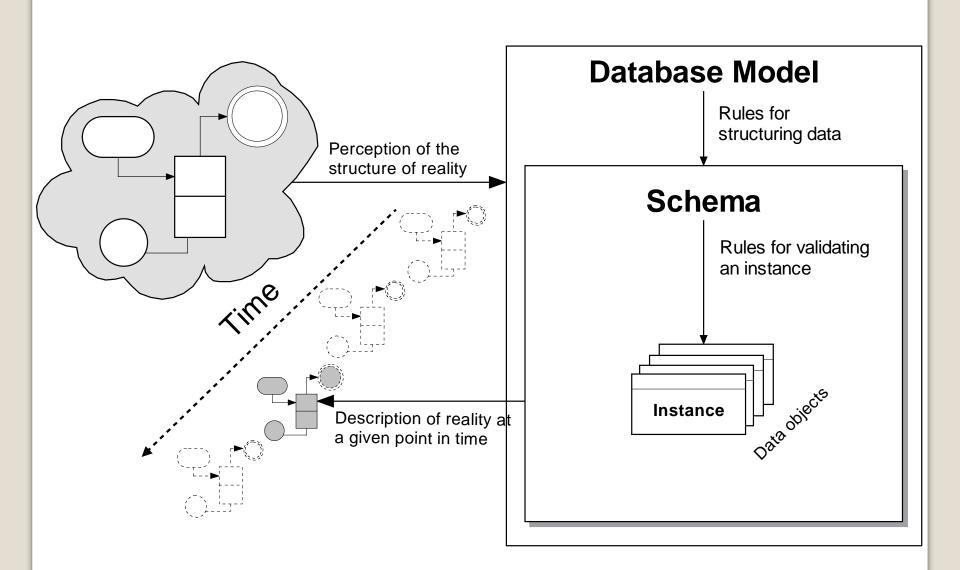


Fig 3-2 Relationship between a DB model, a DB schema, an instance of a data object

2.3 Conceptual, logical, physical data modeling

1) conceptual modeling (including schema)

a process to abstract the characteristics & properties of real world entities

HW & SW independent high-level abstraction

three types of data abstraction

- a. classification abstraction : defining classes of real world features
- b. aggregation abstraction : defining a new class from one / more sets of other classes

ex. residential subdivision = land parcel + road + land use zone

c. generalization abstraction : defining a set-to-subset relationship between the elements of two /

more classes

ex. administrative boundary : country b., city b., provincial b.

modeling results - graphics / verbal descriptions / both

ex. Entity-Relationship (ER) diagram - conceptual schema

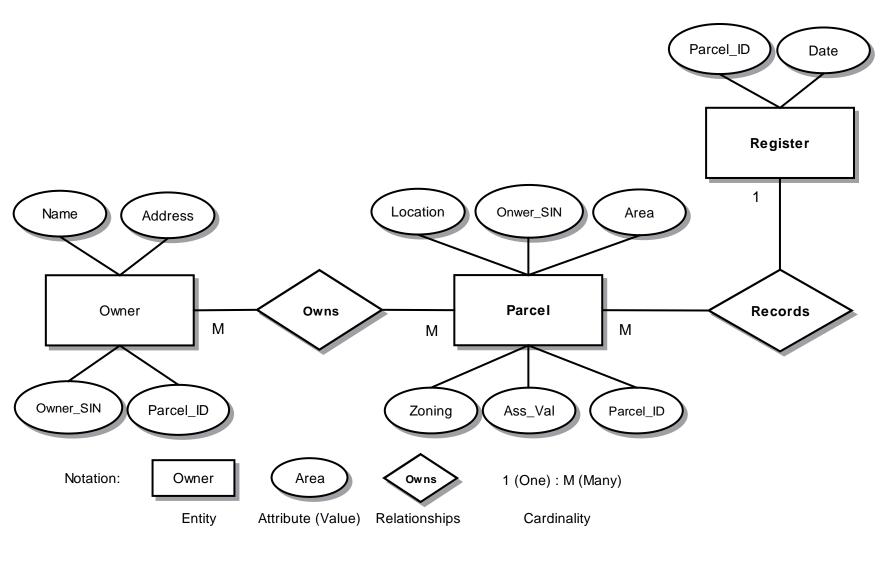
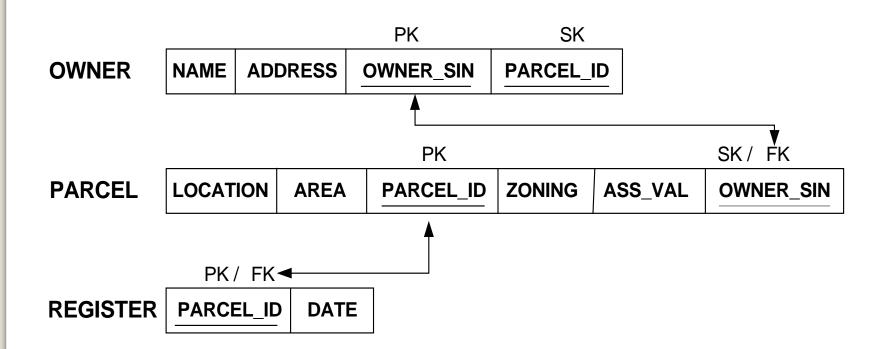


Fig 3-3 An entity-relationship (ER) diagram


2.3 Conceptual, logical, physical data modeling

2) logical modeling (including schema)

DB implementation specification

translating a conceptual schema according to the linguistic syntax & diagrammatic notation

SW / DBMS dependent (ex. relational, OO, O-relational)

Notation: PK - Primary key; SK - Secondary key; FK - Foreign key

Fig 3-4 A relational logical schema developed from the conceptual schema in Fig 3-3

2.3 Conceptual, logical, physical data modeling

3) physical modeling

detailed specifications of the data structure of a DB considering HW requirements

* HW requirements in data modeling – computer & system arch of the DB system, physical location of data files, specific allocation of storage space to data objects

PARCEL

Definition: A taxable unit of land within city limits. Feature type: Polygon Implemented as layer: Cadastral_fabric Business table: LAND_PARCEL

ATTRIBUTE DEFINITION

Name	Туре	Size	Optional	Unique	Indexed	Key
LOCATION	Char	100	Μ	Y	Ν	
AREA	Num	10.2	М	Ν	Ν	
PARCEL_ID	Char	15	М	Υ	Y	Р
ZONING	Char	5	0	Υ	Ν	
ASS_VAL	Num	5.2	М	Ν	Ν	
OWNER_SIN	Char	9	М	Y	Y	S/F

ATTRIBUTE DESCRIPTION

Municipal address of parcel, including Street Number, Stre Name, Street Type, County Name, Province Name, Posta	
Size of parcel, as obtained from survey plan, in sq. m. to 2 places	2 decimal
Unique identification number assigned by Property Assess Department for a PARCEL, used as priamry key	sor's
Zoning code, assigned by planning department (Refer to Appendix D for Zoning Codes)	
Assessed value as determined by the Property Assessor a Department	ᆋ
Parcel owner key and foreign key for OWNER table.	뭩 socia
	Name, Street Type, County Name, Province Name, Posta Size of parcel, as obtained from survey plan, in sq. m. to 2 places Unique identification number assigned by Property Assess Department for a PARCEL, used as priamry key Zoning code, assigned by planning department (Refer to Appendix D for Zoning Codes) Assessed value as determined by the Property Assessor Department Parcel owner

DATA LOAD / STORAGE

Initial volumn: 10000 Growth: 10% per year Space: 25 Blocks, 50206 bytes Initial allocation: 600k Next: 60k

Fig 3-5 A portion of the physical model developed from the logical schema in Fig 3-4

3. Common DB models

3.1 Entity-relationship (ER) model

conceptual DB model describing at a high-level of abstraction characterized by the use of diagrams to express & describe its concepts objective is to identify the entities, relationships, attributes

terms - entity (=data object, object) : a real world feature / phenomenon of independent existence

ex. temperature, land value, contour lines

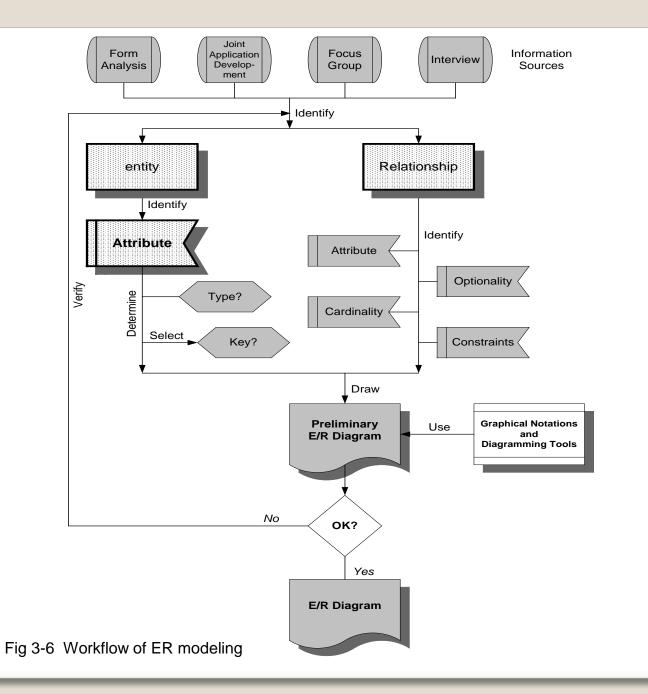
entity type (=entity class) : entities sharing common properties

relationship : association between entities

ex. belongs_to, managed_by, has

four properties

cardinality : number of occurrances of the entities participating in a relationship ex. many-to-many optionality : whether the relationship is optional / mandatory


constraints : business rules governing a relationship ex. no one under 18 is allowed to register

attribute classification

simple / composite attributes : cannot be subdivided (ex. id) / subdivided (ex. name = first+m+last) single-valued & multi-valued attributes : each occurrence has one value / multi value derived attributes : computed one from another attribute

keys : index to search a DB ex. PK, SK, FK

no standardized notation for E/R - growing trend to use UML (unified modeling language)

3.2 Relational model

data are logically structured within tables (=formally called relation)

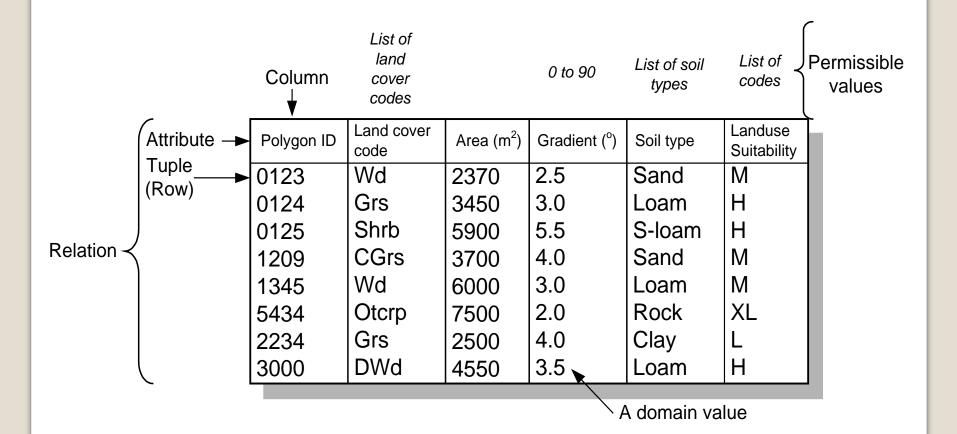
table characteristics

unique name – distinguishes it from other tables column (=field) – represents one of its attributes key – work as an index ex. PK(primary key), S(secondary)K, F(foreign)K row (=tuple / record) – represents an instance / occurrence of an entity domain – type of values stored in the cells

integrity constraints - a relational table must conform

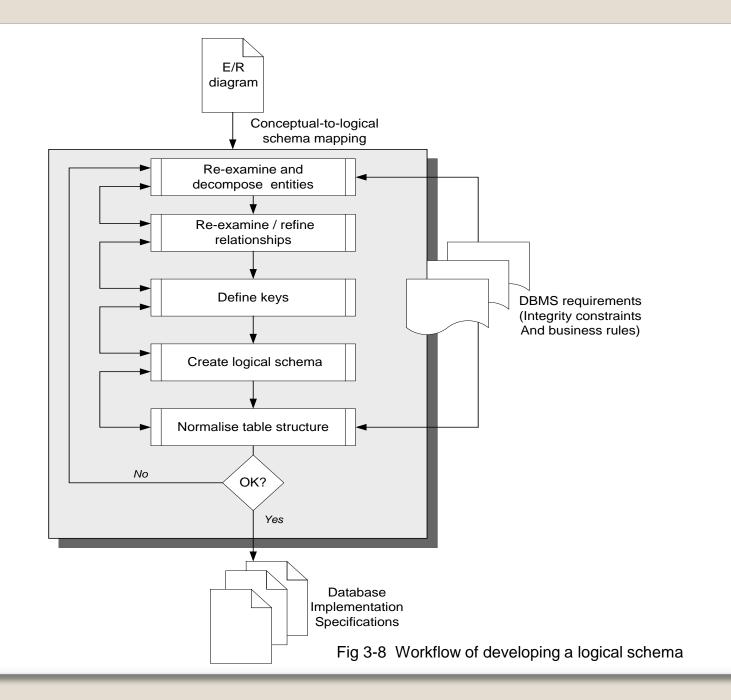
domain constraint : limit what values can be permissible values

entity constraint : a primary key cannot be null (*null : missing value case)


referential constraint : insertion of a new row w/ particular value whenever it is in another table FK

business rules – a condition that the use of a relational table must satisfy

ex. land parcel DB - registered only when a document is verified & a fee is paid


another rules governing the structure – called normal form

1NF(normal form), 2NF, 3NF

Table 3-1. First, second and third normal forms

Normal Forms	Rules			
First (INF)	 There are no repeating attributes in the table (that is, no two columns are allowed to store identical attributes, for example, the land use status of a parcel at different points in time) 			
Second (2NF)	o Thetableis in 1NF, and			
88 (813) 	 All non-key attributes are functionally dependent on the primary key 			
Third (3NF)	o The table is in 1NF and 2NF, as well as			
	 There is no transitive dependency of attributes on the primary key 			
	("transitive" in this context means indirect)			

3.3 Object-oriented (OO) model

current DB requires to store & process text + graphics + video + sound + maps → leads to OODB

need to understand object

conceptually autonomous data item representing a real world entity can include tasks it performs - act upon itself & interact w/ other objects

important components & characteristics of objects

name : assigned by DB designer

unique identity : object ID (OID)

attributes : instance variables

object state : set of values for an object's attribute at a given point in time base data type : conventional data types – string, real, integer – use predefined arithmetic operators abstract data type : user defined data type – has user defined operations (methods) method : a program to perform a specific operation (also called *service*) message : used to invoke a method by specifying object • method (and parameters) type : specification of an interface that an object will support control & business rules : govern the use of an object (i.e. its behavior)

3.3 Object-oriented (OO) model

class is a major building block in OODB

all classes are organized into a class hierarchy (Fig 3-9) - super class vs sub class

 \rightarrow inheritance is possible & overriding, polymorphism

OO model describes data + DB operations + processes within a single object

OO model is a more complete & meaningful description of a DB than relational models

OMG (object management group)

produces & maintains vendor-independent standards & specifications for OO models, systems, DBs ex. OMA (object management arch) : standards for interoperation of objects across different sys UML (unified modeling language) : diagrammatic language for modeling, designing, visualizing CORBA (common object request broker arch) : standard of the OMA for client/server DB sys

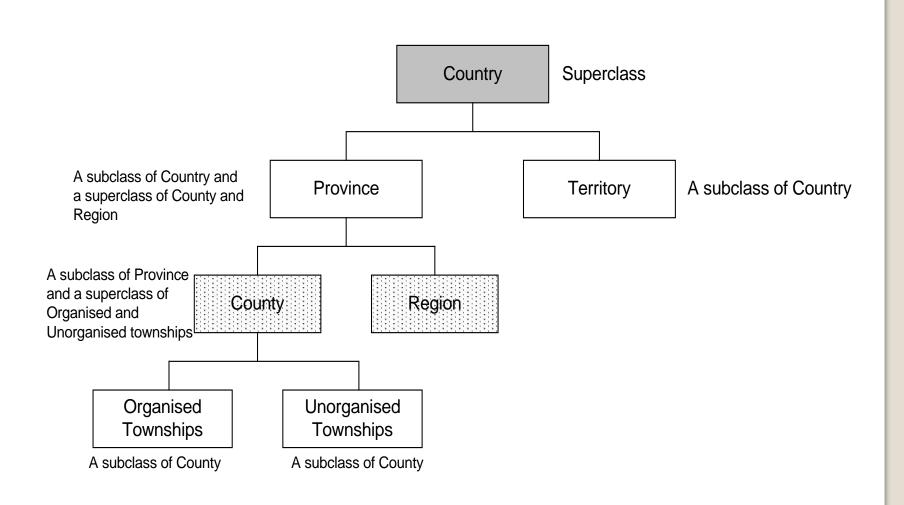


Fig 3-9 The concept of class hierarchy in OO

3.3 Object-oriented (OO) model

OO modeling processes

structural modeling : to identify all the things for an application ex. Land parcel – owner, registrar to identify attributes, operations, associations, interdependencies bet things output – object diagram, class d., component d., deployment d. → conceptual modeling process similar to ER modeling

behavioral modeling : to identify the dynamic aspects of the sys

defining roles of objects (classes), interactions among them, flows of control concerned w/ methods, messages associated w/ objects
 output – activity diagram, sequence d., interaction d., collaboration d.
 → logical modeling process

arch modeling : model implementation aspect of the sys

divide the sys into physical parts (called components of HW & SW) cover a wide spectrum of modeling tasks user interfaces, data files, tables, executables, code libraries output – component diagrams, deployment d.

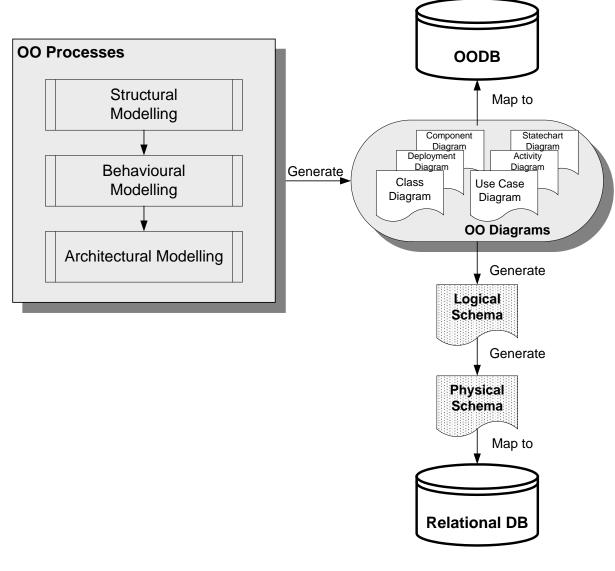


Fig 3-10 Workflow of OO modeling

3.4 Object-relational model

developed to overcome the limitations of relational sys to handle complex data

introduce many of the concepts of OO sys

: object storage, user-defined data types, inheritance, encapsulation

main characteristics :

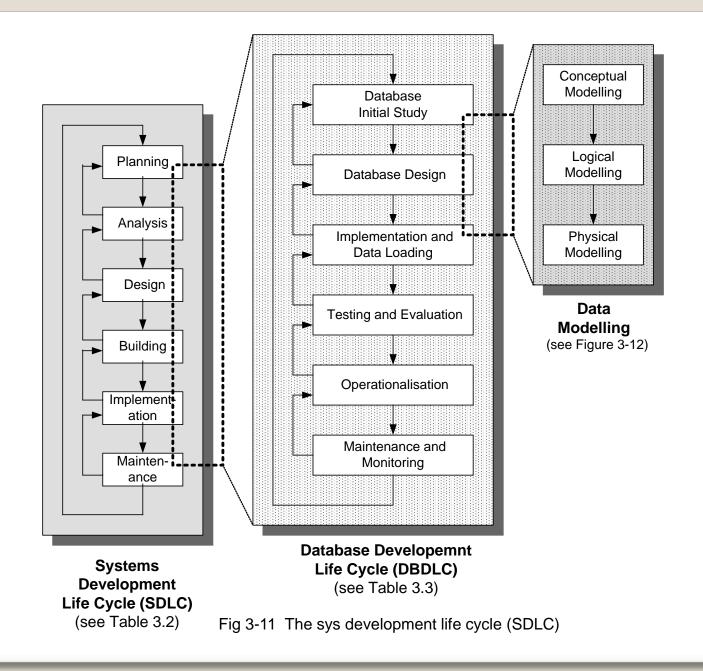
user-defined data types - manage complex data types encapsulating data structure & attributes user-defined functions – create, manipulate, access data stored as user-defined data types extensible optimizer – help the DBMS determine the best way to access data

inherited robust transaction management capability + flexibility of data storage, access (relational sys) (OO sys)

4. Principles & tech of data modeling

4.1 The four principles of data modeling

choice of a model has a profound influence on how a problem is approached & how a solution is formed every model may be expressed at different levels of precision

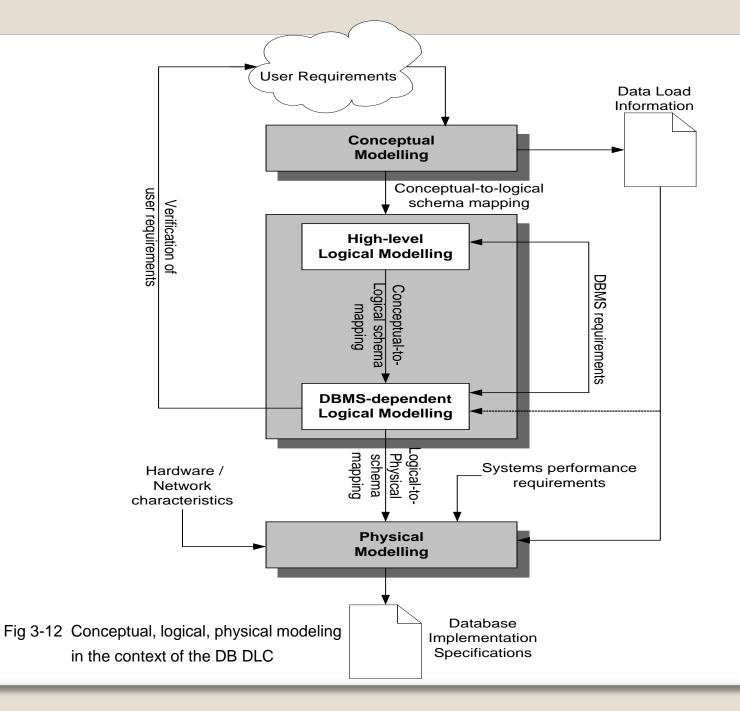

best models are connected to reality

no single model is sufficient & every non-trivial sys is best approached thru a small set of nearly independent models

4.2 The sys & DB development life cycle

SDLC is a generic description of the process of developing a DB sys six phases – planning, analysis, design, building, implementation, maintenance

DB DLC is a generic description of the process of developing a DB six phases – DB initial study, DB design, implementation& data loading, testing& evaluation, operationalization, maintenance& monitoring



SDLC Phases	Activities			
Planning	 Initial understanding of business functions 			
	 Initial assessment of user requirements 			
	 Feasibility study to implement the database 			
Analysis	o Systematic assessment of user requirements			
	 Evaluation of existing business practices and operations 			
	 Evaluation of existing data resources 			
Design	 Development of hardware/software architecture 			
	 Development of systems performance standards 			
	 Development of data structure 			
Build	 Application programming (on a development computer) 			
	 Database programming (on a development computer) 			
Implementation	o Hardware/software installation of the production computer/server			
	 Data loading to the production computer/server 			
	 Systems testing and fine tuning 			
	o User education and training			
Maintenance	 Performance monitoring and evaluation 			
	 Regular maintenance including database backup 			
	 Continuing user education and training 			

Table 3-2. Activities of the systems development life cycle (SDLC)

DBDLC Phases	Activities		
Initial Database Study	 Analysis of business functions and information needs 		
	 Identifying problems and constraints 		
	 Defining goals and objectives of the database project 		
	 Defining scope and database performance standards 		
Database Design	 Conceptual database modelling 		
	 Hardware and software (DBMS) selection 		
	 Logical database modelling 		
	o Physical database modelling		
Implementation and data load	 Hardware and software (DBMS) installation 		
	 Creating data structure 		
	 Data loading, including any data conversion 		
Testing and evaluation	 Testing and fine-tuning database 		
	 Testing and fine-tuning application programs 		
Operationalisation	 Putting the database into production mode 		
	 User education and training 		
Maintenance and monitoring	o Regular maintenance of hardware and software, including		
	change management in hardware and software upgrades		
	 Database backup and replication 		
	o Continuing user education and training		

Table 3-3. The database development life cycle (DBDLC)

4.3 Case tools (CASE : computer aided SW engineering)

used to automate the sys development activities in a SDLC, DB DLC

typical CASE tool components

sys development environment – a set of drawing tools (describe & document DB schema, flows of data, application processes, user interface)

repository - stores & integrate all sys development decisions & results of sys & design activities

data dictionary – keeps track of all objects created (ex. entity descriptions, attribute definitions, data store, screen interface formats)

also records the relationships among these objects, rules

three classes of CASE tools

front-end tools – support planning, analysis, design phase back-end tools – support building & implementation phase cross life cycle tools – support all the activities across the entire SDLC

4.4 User-centric DB design

traditional sys developments – technology centered, application driven thus, user centered design (UCD) methodology is developed

UDC is driven by a) clearly specified task-oriented business objectives b) recognition of user needs, preferences, constraints

merits of UDC

providing a well-structured framework compatible w/ the concepts of the SDLC user participation in the modeling process high-level of user-designer interaction during the modeling process iterative approach to data modeling

4.5 Data modeling documentation

documentation is the only tangible outcome of data modeling

general guidelines for documentations - expressiveness, simplicity, minimalism, formality

UML – now emerged as de facto industry standard for documentation non proprietary standard that is open to all users created by fusing OMT (object modeling tech)+OOSE (object oriented SW engineering)

UML meta model : a set of definitions to describe the meaning of each element used has four layer architecture

user object : object diagrams populated w/ the facts from problem space of the DB (Fig 3-13 b)

model : explains the classes (Fig 3-13 c)

meta model : define class & attribute definitions

(ex. class name, data type, default value, constraints) meta meta model : abstract definitions to serve as templates

UML Layer	Description	Example
Metametamodel	Defines the language for speficying metamodels	Meta-class, Meta-attribute Meta-operation, etc.
Metamodel	Defines the language for specifying models	Class, Attribute, Operation
Model	Defines the language for describing subject domains	Parcel, Owner, Registers
User object	Defines specific subject domain information	Parcel (id, location, area, zoning) Owner (name, address, SIN) Registers (sin, pid, date)

(a) The Four-layer Metamodel Architecture of UML

300 : Parcel
-parcelld:PID = REG1234567890KK -location: Address = 1185 THORNLEY ST, LONDON, ON N6K 4V5 -area: Size = 10000.00 -zoning: Code = RES-3

(b) An object diagram of PARCEL

Owner -name: Name = john doe -adress: Address = NOT NULL -sin: SIN = NOT NULL	Registers─►		Parcel -parcelld:PID = NOT NULL -location: Address = NOT NULL	
+register (register_date) +rec. Tax Invoice (invoice_date) +pay Tax (pay_date)	01	1*	-area: Size = NOT NULL -zoning: Code = NULL +registered (register_date) +assessed (assess_date)	

(c) A Class Diagram

Fig 3-13 UML layers & features