#### Chapter 4 Spatial data & spatial DB sys

## 1. Introduction

spatial DB sys is different from conventional DB sys stores complex data types – points, lines, polygons needs sophisticated spatial operators

- 2. Definition & classification of spatial data
- 2.1 Spatial data & pseudo-spatial data
  - 1) spatial data : data of spatial attributes that denote a location / near the surface

two important properties : reference to a geographic space

represent at a variety of geographic scales

two fundamental forms - vector & raster

- vector basic unit is the geographic object, represented by points, lines, polygons ex. Land use, transportation, forest inventories, land cover
- raster basic spatial unit is a grid cell / pixel, serve as a data store & geographical referencing size of a single pixel resolution
- pseudo-spatial data : describe / related to the characteristics of real world features
  ex. street address, demographic characteristics
  conversion of pseudo-spatial data into spatial data is a very time consuming & resource intensive



## Fig 4-1 Types of spatial data

### 2.2 A functional perspective of spatial data

four categories of spatial data in a functional classification base map data : geodetic control + various types of topographic base data framework data : parcel layer + facilities layer + address layer application data : spatial datasets for different DB applications business solution : support many operations & decision making functions



#### 3. Spatial data structure & DB models

two key aspect of spatial data - geometry + topology

#### 3.1 The concept of a "geometry" of spatial data

geometry is to represent a spatial feature as an object

OGC geometry object model (Open GIS Simple Feature Specification for SQL) geometry : non-instantiable construct four subclasses (point, curve, surface, geometry collection) : instantiable construct there are many geometric types – so called graphical primitives geometries sharing the same attributes form a layer (/ feature class)



## Spatial Hierarchy

Examples



Fig 4-4 The concept of geometry and its relationship w/ other elements as representations of spatial features

#### 3.2 The concept of topology & topological data structures

topology : a field of mathematics studying the properties of geometric figures & their relationships typically studying adjacency, connectivity, containment relationship can be defined by 3 primitives – nodes(0cell), edges(1cell), polygons(2cell) one & two dimensional topology : 1D - network topology by nodes + edges 2D – planar topology by closed polygons

terms definition

node : 0D, one / more edges (ex. arcs, chains, lines) connect to form a topological junction edge : 1D, formed by a directed, non-branching line segments bounded by a from & to node polygon : 2D, closed by connected & directed edges

usually, arc-node topology is built to enforce the topological relationship ex. geo-relational data model of an Arc/Info coverage – AAT, PAT tables

advantage of topological data structure

automatic detection & correction of digitizing & editing errors, artifacts reduction of storage requirements (ex. boundaries shared by adjacent polygons are stored once) enables sophisticated spatial analysis & applications



| Polygon File |      | Arc File     |        |          |
|--------------|------|--------------|--------|----------|
| Pol          | y_ID | Arcs         | Arc_ID | Vertices |
| AB           |      | 1, 2<br>2, 3 | 1<br>2 | b,c<br>- |
|              |      |              | <br>3  | e,f      |

#### Node File

| Node_ID | Х      | Y      |
|---------|--------|--------|
| a       | 403600 | 275700 |
| d       | 403300 | 275000 |

#### **Coordinate File**

| Vertice_ID | Х      | Y      |
|------------|--------|--------|
| b          | 403000 | 275700 |
| С          | 403000 | 275000 |
| e          | 404000 | 270500 |
| f          | 404000 | 275700 |

#### Network Topology File

| Arc_ID | F_node | T_node |
|--------|--------|--------|
| 1      | a<br>d | da     |
| 3      | d      | a      |

|  | Pol | vaon | Topo | loav | File |
|--|-----|------|------|------|------|
|--|-----|------|------|------|------|

| <br>   |        |            |
|--------|--------|------------|
| Arc_ID | L_Poly | R_Poly     |
| 1<br>2 | AA     | World<br>B |
| 3      | В      | World      |

(a) Non-topological (cartographic) data structure

#### (b) Topological data structure



Polygon A = (403600, 275700), (403000, 275700), (403000, 275000), (403300, 275000), (403600, 275700)

Polygon B = (403600, 275700), (403300, 275000), (404000, 275700), (404000, 275700)

10

## 3.3 Non-topological data structure

shapefile - non topological data structure, by ESRI

open data model w/ full-polygon data structure

## limitations

- limited cartographic rendering capability
- incompatibility w/ relational DB management principles & techniques
- not efficient spatial analysis
- lack of support for transferring metadata

#### 3.4 The geo-relational model

conventional data model for spatial data

spatial data are abstracted into a series of independently defined layers each layer represents a selected set of associated spatial features (ex. road, soil type) spatial features on each layer are the same type of graphical primitives – points, lines, polygons

attributes are stored in separate relational tables – attribute tables

attribute tables are logically linked by the unique feature identifiers (FID)

best example - arc node model (of ESRI coverage)



#### 3.5 The geodatabase model

allows a user to define spatial data as specific abstract data types

 $\rightarrow$  making it possible to store spatial data w/ their associated attribute data in a single DB

advantages (compare to geo-relational model)

take full advantage of the available indexing, transaction management DB constraint mechanisms to maintain the integrity of the spatial data cost effective

best example – geodatabase (of ESRI) – from personal geoDB to enterprise geoDB spatial data that share the same attributes are stored in a single table table has two sets of fields – predefined fields : FID, geometry, area custom fields : attribute data associated w/ spatial data values can be updated by transaction processing

topology is implemented by using integrity rules stored in a topology tables enforce topological relationship to feature class in a single table ex. adjacency, connectivity, containment



Fig 4-7 Structure of a spatial DB using a DBMS for the storage of spatial data & topological relationships



Fig 4-8 Table structure of a geodatabase



# **Topology File**

| Feature Class                                                                                                      | Rule                                                                                                                                                                                       | Feature Class                                                       |
|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Lot_lines<br>Lots<br>Owner_parcel<br>Lot_lines<br>Buildings<br>Buildings<br>Buildings<br>Lots<br>Lots<br>Lot_lines | Must not have dangles<br>Must not overlap<br>Must be closed<br>Must be covered by<br>Must be covered by<br>Must be covered by<br>Must not overlap<br>Must be formed by<br>Must not overlap | Lots<br>Owner-parcel<br>Lots<br>Lot_lines<br>Lot-lines<br>Buildings |

Fig 4-9 Storing topological relationships using an integrity rule

#### 4. Spatial DB systems

4.1 Definition & classification of spatial DB systems

three characteristics : a sort of DB sys

offers spatial data type (SDT) & query language

provides at least spatial indexing & efficient algorithms for spatial joins

spatial DB sys works as the underlying technology of GIS

many spatial DBs are now developed as spatial data warehouse

 $\rightarrow$  supply GIS users w/ timely & relevant spatial data

spatial DB sys vs. GIS  $\rightarrow$  Table 4-1



(a) Data file-based spatial data processing using a GIS before the mid-1990s



(b) DBMS-based spatial data processing using a GIS in the late 1990s



Fig 4-10 Evolution of spatial data processing

| Systems                        | Primary Tasks                                             |  |  |
|--------------------------------|-----------------------------------------------------------|--|--|
| Geographic Information Systems | o Data Collection and Editing                             |  |  |
|                                | o Data Analysis                                           |  |  |
|                                | o Generation of Maps and Cartographic Information Product |  |  |
| Spatial Database Systems       | o Data Storage and Management                             |  |  |
|                                | o Spatial Indexing                                        |  |  |
|                                | o Data Security and Integrity                             |  |  |
|                                | o Spatial Data Query                                      |  |  |

#### 4.2 Characteristics of spatial DB systems

4.2.1 Spatial data types (user-defined / abstract data types)

OGC geometry object model provides a conceptual standards-based framework for ADT

different SW vendors implement the concept in different ways Oracle Spatial – 9 SDT called geometric primitive types IBM DB2 Spatial Extender – geometry type to describe its ADT ESRI geodatabase – feature geometry



(a) Geometry types used in the object-oriented model of Oracle Spatial



(b) Geometry types and sub-types of DB2 Spatial Extender



(c) Feature geometry of ArcGIS Geodatabase

#### 4.2.2 Spatial data indexing & access method

spatial indexing – expedite access to & return of data to a user from a DB more complicated than table indexing – it deals w/ 2D space not linear array in tables

concept is the use of approximation to gradually narrow its search area until objects are found numerous indexing methods – R tree, B tree, quadtree

R-tree : more commonly adopted method

multi-level tree that stores a set of rectangles in each node

\* the rectangle - minimum bounding rectangle (MBR)

index stores the reference numbers of the MBRs + coordinates of its 4 corners + object IDs



(b) Spatial relationships among bounding boxes in a R-tree index

#### 4.2.3 Spatial data integrity & constraints

integrity constraints - business rules to protect the data by ensuring accuracy, correctness, validity

six classes of spatial data integrity constraints (Cockcroft's view)

static topological int conts – ex. all polygons must be closed transition topological int conts – ex. if a polygon boundary is modified, all the conjugate polygons must be updated simultaneously

static semantic int conts - ex. area of land parcel must not be negative

transition semantic int conts – ex. subdivided land parcels must have the same sum area as the original land parcel

static user-defined int conts – ex. rivers wider than 2m must be stored as polygons transition user-defined int conts – ex. after re-zoning a land parcel, the land use status must be updated within 2 days

cf. data modeling & DB operations case (in Chapter 2) : domain constraints, key& relation constraints, semantic constraints

#### 4.2.4 Long transaction management

DB transaction - involves movement of data in & out of DB + recording of the process

spatial DB transaction is different from the conventional DB transactions need to handle long transactions (ex. road fabric update – takes several days, not seconds)

different vendors use different solutions to the long transactions problem

- ex. Oracle workspace manager
  - : support multiple versions of all records in a table
    - users can change these versions independently & share w/ others

- 4.3 Spatial data processing
- 4.3.1 Classification of spatial operators

a spatial query is formulated using one / more operators

OGC classification of spatial operators ( $\rightarrow$  Table 4-2)

basic operators - allow to access the general properties of a geometry

topological operators - express spatial relationship between geometries

spatial analysis operators – allow to construct analytical spatial queries using a single /multiple geometries

| Classes     | Operators         | Operator Functions                                           |  |
|-------------|-------------------|--------------------------------------------------------------|--|
| Basic       | Spatial Reference | Returns the reference system of the geometry                 |  |
| Operators   | Envelope          | Returns the minimum bounding rectangle of the geometry       |  |
|             | Export            | Converts the geometry into a different representation        |  |
|             | IsEmpty           | Tests if the geometry is the empty set or not                |  |
|             | IsSimple          | Returns TRUE if the geometry is simple                       |  |
|             | Boundary          | Returns the boundary of the geometry                         |  |
| Topological | Equal             | Tests if the geometries are spatially equal                  |  |
| Operators   | Disjoint          | Tests if the geometries are disjoint                         |  |
|             | Intersect         | Tests if the geometries intersect                            |  |
|             | Touch             | Tests if the geometries touch each other                     |  |
|             | Cross             | Tests if the geometries cross each other                     |  |
|             | Within            | Tests if a geometry is within another geometry               |  |
|             | Contain           | Tests if a given geometry contains another geometry          |  |
|             | Overlap           | Tests if a given geometry overlaps another given geometry    |  |
|             |                   | Returns TRUE if the spatial relationship specified by the 9- |  |
|             | Relate            | Intersection matrix holds                                    |  |
| Spatial     | Distance          | Returns the shortest distance between any two points of two  |  |
| Analysis    |                   | given geometries                                             |  |
| Operators   | Buffer            | Returns a geometry that represents all points whose          |  |
|             |                   | distance from the given geometry is less than or equal to a  |  |
|             |                   | specified distance                                           |  |
|             | ConvexHull        | Returns the convex hull of a given geometry                  |  |
|             | Intersection      | Returns the intersection of two geometries                   |  |
|             | Union             | Returns the union of two geometries                          |  |
|             | Difference        | Returns the difference of two geometries                     |  |
|             | SymDifference     | Returns the symmetric difference (i.e. the logical XOR) of   |  |
|             |                   | two geometries                                               |  |

# Table 4-2. OGC spatial operators defined on the class geometry

### 4.3.2 Spatial operations & filtering

large size of a typical spatial DB + complexity of spatial operations  $\rightarrow$  requires filtering

example solution : Oracle Spatial : two-tier approach

primary filter – reduce the number of candidate geometries by the spatial index of DB secondary filter – made up of one /more spatial operators

advantages - expedite the process of accessing the DB



Fig 4-13 Spatial query using the method of two-tier filtering

#### 4.3.3 Topological relations & predicates

among many spatial operators, topological operators play a significant role in spatial queries

topological relations are used w/ predicates

\* **predicates** = Boolean function, return 1(TRUE) if a comparison meets the function criteria 0(FALSE) otherwise

basic problem w/ the use of topological predicates is to define all possible relationships

DE-9IM (Dimensionally Extended 9 Intersection Model) – define 52 topological relationships → too many to be implemented in a spatial DB sys !

thus, most spatial sys include a subset of the possible topological relations (Fig 4-14)



Fig 4-14 The most common topological relations in spatial systems

#### 4.3.4 Spatial joins

spatial join : a spatial query that compares two / more geometries

#### 4.3.5 Spatial SQL

standard SQL is extended by spatial operators (from 1980s)

spatially extended SQL consists of 2 parts : query language + presentation language query language – define what data to retrieve presentation language – specify how the results of a query are displayed

many spatial extensions to conventional DB sys ex. Oracle Spatial, IBM DB2 Spatial Extender SELECT parcel.name FROM parcel, subdivision WHERE within (parcel.loc, subdivision.loc) AND subdivision.name=봠ranebrook?

(a) Preservation of the basic SQL SELECT-FROM-WHERE construct

**CREATE TABLE** parcel char(20) (parcel.ID geometry ST\_polygon) 뷰**aroly/gars?**a spatial data (b) Defining a spatial object type SELECT city **FROM** ontario.city **WHERE** geometry = PICK; SELECT city **FROM** ontario.city WHERE city.name = 밯aterloo? (c) Query by location by means of a mouse) and by attribute value 발aterle SET CONTEXT FOR parcel.geometry SELECT parcel geomemtry, building geometry, road geometry, easement geometry FROM parcel, building, road, easement WHERE parcel.ID = 밚ONDON00221122145678"

SET LEGEND COLOUR green LINE.TYPE dashed FOR SELECT boundary.geometry FROM parcel

(e) Setting the property of a legend

SELECT parcel FROM parcel.layer WHERE geometry = ZOOM.WINDOW; SELECT parcel FROM parcel.layer WHERE geometry = PICK

(f) Restricting a query to a specific area