Chapter 6 Spatial data sharing, data warehousing & DB federation

1. Introduction

spatial data sharing - become commercial business & a standard practice in modern data processing - in many countries, it's a cornerstone of the national info infrastructure

- 2. The concept & method of spatial data sharing
- 2.1 The definition & nature of spatial data sharing

data sharing aims to make DB sys interoperable at the data, application, business process levels $(\rightarrow Tables 6-1)$

data sharing include interoperability of DB & integration among different sys thematically + hierarchically

data sharing is dependent decreasingly on the physical transfer of data increasingly on virtual & logical sharing of data

Levels of Data Sharing	Data Sharing Characteristics			
	Computing Environment	Systems Architecture	Procedure	Purposes and Applications
Infrastructure	Open computing standards (Internet, Web services, Java), distributed processing and distributed objects	A distributed network of databases connected by the global telecommunicat- ions system	Global/Universal information access and application through database mediation and information brokering	Seamless spatial database interoperability and integration using operational and legacy data
Enterprise		Federated databases and data warehouses connected to an organisation's communications network	Inter-departmental information access and application through database mediation and information brokering	Simultaneous on- line transaction processing (OLTP), on-line analytical processing (OLAP)
Domain	Distributed databases connected using TCP/IP, HTTP and open database connectivity standards	Three-tiered client/server computing or data mart in a wide area network (WAN)	Shared databases with sophisticated collaboration among different users or organisations	Sector-based data management and applications, multi-sourced spatial data analysis and modelling
Functional		Two-tiered client/server computing in a local area network (LAN)	Heterogeneous data exchange	Spatial data visualisation and overlay analysis using data from multiple sources
Connected	Peer-to-peer proprietary network and communications protocols	Desktop computer with simple network connection	Homogeneous data exchange	Electronic exchange of text files and graphics files of the same format
Ad Hoc	Stand alone computers and independent data files	Independent desk top computers	Manual data exchange with hard copy maps, diskettes, CD-ROM	Occasional exchange or sale of data from ad hoc requests

3

Ы

2.2 The importance of spatial data sharing

2.3 Barriers to spatial data sharing

several general barriers to spatial data sharing

- a. inherently complex & diverse characteristics of spatial data
- b. non-deterministic nature of human cognition & language \rightarrow non-standardized terminology
- c. differences in data management policies, user access protocols, systems security measures, DB partitioning, DB structuring, network bandwidths, HW/SW standards
- d. technical incompatibilities & system dependencies
- e. lack of data model & format standardization
- f. restricted availability of data
- g. unwillingness of organizations to share data
- h. restriction on releasing data to the public
- i. diversity in the types of users & the disparities between the needs of high-end & low-end users
- j. lack of coordination between spatial data collectors
- k. lack of a supporting data discovery & delivery infrastructure
- I. high cost of data

2.4 A standard-based framework for spatial data sharing

users generally endorse the concept of interoperability thru standardization (by OGC)

DB access standard : OLE, ODBC, JDBC, CORBA, COM web-based services protocols : data sharing over the internet

* OLE DB programming overview

2.4.1 Object linking & embedding (OLE)

de facto standard for data access in MS window environment

common data access method for MS server SW (ex. SQL Server)

+ desktop application SW (PPT, Word, Access, Excel)

+ application development tools (ex. Visual Basic, Visual C++, .NET)

allow users to access & exchange data freely among MS SW products

use COM-based programming interface

a variety of OLE-based technologies have been published (by MS) – ex. OLE DB

- * OLE DB allows an SQL-based data access approach to query a relational / object-relational DB
 - allows cross-component business rules & create objects that export an event model

2.4.2 Open DB connectivity (ODBC)

open standard API for accessing DBs from an application

created by SQL-Access Group (SAG) → extended by MS as a standard Call-Level Interface (CLI)

main idea is to use a middle layer (called a DB driver) between the data source and application

function of driver - translate the queries from an application into commands

to work, both the data source & applications must be ODBC-compliant

each data source must have a specific ODBC driver for it to be accessed

- user install the necessary ODBC drivers from DB SW vendors / 3rd party SW developers

Fig 6-2 The working principles of open DB connectivity (ODBC)

2.4.3 Java DB connectivity (JDBC)

API specification for Java applets, servlets, applications to access data in DB, spreadsheet, flat files commonly used to connect a user application to a data source regardless of DBMS used very similar to ODBC function & architecture can be used w/ a one-tier driver / two-tier driver / a JDBC network driver can be downloaded from the SUN MicroSystems website

applet

웹에서 사용할 수 없는 코드들로 웹과 분리되어 웹브라우저에 담겨서 실행되는 작은 프로그램 동작은 웹브라우저에 의해 다운로드 된 후 설치되어 실행 (브라우저 내의 JVM에 의해 실행) 실행순서 - 웹브라우저가 처음 읽힐 때 init() 메소드 호출 - 페이지를 사용자가 볼 때마다 start() - 페이지를 떠날 때 stop() -중간에 프로그램내에서 / 애플릿 화면을 다시 그려야 할 때 paint() 호출

```
import java.awt.*;
import java.applet.*;
public class Applet1 extends Applet{ // Applet1클래스는 Applet을 상속하였기 때문에 애플릿임
public void paint(Graphics g){
this.setBackground(Color.red);
g.drawString("애플릿의 세계로...",20,50);
}
```

main메소드가 사용되지 않았는데 이것은 애플릿의 특성과 관련 응용 프로그램과 달리 웹브라우저에서 실행되므로 main메소드가 필요 없음

<Htm> <Body>

<h1>애플릿만들기</h1>

<Applet code = "Applet1.class" width=150 height=100> </Applet>

</Body> </Htm>

웹 페이지를 위와 같이 작성하고 Applet1.htm 으로 저장 (이 때, Applet1.class와 같은 디렉토리 안에 있어야 실행 된다고 함)

servlet

Java를 사용하여 웹페이지를 동적으로 생성하는 서버측 프로그램 / 사양

* 동적이란 : 요청에 대해 서버에서 처리된 내용(ex. DB에서 읽어온 내용)을 변경해서 보여줄 수 있음을 의미

컴파일을 거쳐 웹 어플리케이션에 등록이 되면 JSP와 같은 서비스를 제공

* JSP(Java Server Page) : 동적인 페이지로서 서버 측의 스크립트를 의미

JSP 동작원리와 일반적인 HTML 동작원리

일반적인 HTML의 동작원리

response

Fig 6-3 The working principles of Java DB connectivity (JDBC)

2.4.4 Common object request broker architecture (CORBA)

ORB - middleware tech that manage communication & data exchange between objects in OOP & DB provides a directory of services, helps establish connections between these services & clients, activates the required services on behalf of the client, returns the results to the clients

Fig 6-4 The working principles of object request broker

Interfaces & relationships of CORBA

Client : the application program that invokes a method / operation

Object implementation : a service / method of object (identity + interface + implementation)

IDL : Interface Definition Language : that needs mapping to programming languages, ex. Java, C++

Interface repository : run-time distributed DB that contains IDL-defined interfaces, serves as a dynamic metadata repository for ORBs

ORB core : run-time infrastructure for transparent communication

DII : Dynamic Invocation Interface : mechanism for constructing requests at run time

Client IDL stub : static interfaces that define how clients invoke corresponding services on the servers (allows to create client-side codes)

- ORB interface : an interface containing help functions, APIs that can be used by a client / an object implementation to enhance / extend their functionality
- IDL skeleton : server-side analogue of IDL stub receive requests for services from the object adapter, call the appropriate operation in the object implementation (allow to create server-side codes)
- DSI : Dynamic Skeleton Interface : server-side counterpart of DII

Object adapter : mechanism that assists the ORB w/ delivering requests to the object & activating it

Implementation repository : run-time repository of info about the classes a server supports, the objects that are instantiated, their respective identities

Fig 6-5 Interfaces & relationships of CORBA

2.4.5 The component object model (COM)

ORB specification & implementation by MS

provides a framework for integrating SW components in Window environment

DCOM - extension of COM for network-based interaction between remote clients & services

client applications interact w/ COM components thru interface pointers

SW components interacts in two different ways :

in-process serving : packaging a COM server as a DLL(Dynamic Linking Library) that is loaded into the client process when a class within the server is first accessed by a client calls made by a client go directly to a component object

out-of-process serving : packaging the COM server as a separate executable running on the same computer / on a remote computer over a network using a DCOM approach calls go to an object proxy (invokes requests using a remote procedure call) → stub receives incoming requests & dispatches it to component objects

2.4.6 Web services protocols

from technical perspective -

SW components that can be accessed over the internet thru standard-based protocols

ex. desktop application programs, web browsers, Java applets, SW running on mobile devices

from application perspective -

standardized way of integrating web-based applications using open standards

web services-based architecture - consists of 3 nodes : client, service, broker

important web services standards

XML (Extensible Markup Lang) : lang for structuring the messages between nodes
GML (Geographic Markup Lang) : defines a data encoding in XML for transmission
SVG (Scalable Vector Graphics) : XML-based format for defining 2D graphics
SOAP (Simple Object Access Protocol) : standard for transmitting messages between nodes
WSDL (Web Service Description Lang) : standard lang for describing services

UDDI (Universal Description, Discovery, Integration) : standard for registering available services & creating a directory service for users to locate & identify available services

OGC developed implementation specifications for the architecture, creation, operation of WMS * WMS : Web Map Service

- 3. DB heterogeneity & its solutions
- 3.1 The nature & characteristics of DB heterogeneity

typology of heterogeneity - data vs. system heterogeneity

data heterogeneity - 3 aspects

syntactic h. - due to different data types, storage word lengths, precision, data format, permissible values, units of measurement, abbreviation, acronyms

structural / schematic h. - due to different data models ex. various vector & raster format, data transfer format, relational/ OO/ O-relational DBs

semantic h. - due to the inconsistencies / disagreements between digital representation & corresponding real world features caused by interplay of factors such as conceptualization h., formalization h., context h.

two conceptual constructs to solve heterogeneity - increase interoperability

use of ontology

use of info mediation

Fig 6-8 A typology of DB heterogeneity

(a) Road Network Database (b) Pavement Management (c) Medium-scale map

(d) Small-scale map

3.2 The concept & method of ontology

term is used in the context of spatial DB interoperability as follow :

a **concept** of using formally defined terminology & vocabulary of real world features a **systematic collection & specification** of spatial entities, properties, their relations an **emerging approach** to designing spatial DB sys

ontologies are created by consensus among users of data of particular domain, then used ontology building \rightarrow semantic mapping \rightarrow ontology applications

ontology can be documented by various markup language ex. HTML, XML, OIL(ontology interchange can be graphically recorded by UML (E-R diagram) language)

three approaches to applying ontologies

global - all data sources are associated w/ one single common domain ontology multiple - each data source is related to its own ontology that are logically connected hybrid - global + multiple approach

two main role of ontology in supporting DB interoperation

query translation - mainly the process of translating /mapping heterogeneous field names schema integration - mainly combine the schemas of data sources into one global schema

Fig 6-10 Creation & use of ontology in DB sys

3.3 Information mediation

info mediation is a sort of DB interoperability strategy using **mediator** (middleware medium) mediator : a collection of SW components + DB access optimization rules + catalogue of info

process used

re-writing queries - by optimizing the queries using an execution plan by the DB access rules fragmenting queries to individual data sources + mapping the heterogeneous data field names to their corresponding ontologies using catalogue info

dispatching query fragments to target data sources

assembling results into a composite response + return to the user interface

wrapper is also used to manage data source heterogeneity

wrapper plays a user interface role - all data become homogeneous to the mediator

mediator-wrapper architecture represents a higher level of DB interoperation

4. Data warehousing

two approaches for data sharing - warehousing, federation warehousing - to merge data physically from several sources federation - to simultaneously on-line access to multiple data sources

4.1 The definition & characteristics of data warehouse

data warehouse - a special type of DB sys w/ 3 different implementations : central data repository, enterprise data warehouse, data mart

4.1.1 Central data repository

stores common reference data sets required by different applicationsex. topographic DB maintained by gov't mapping agencyDB is typically stable over time, voluminous, contains common data elements

4.1.2 An enterprise data warehouse

a repository of data derived from operational data sources within an organization clean data w/o syntactic, structural, semantic heterogeneity \rightarrow very complex task

4.1.3 A data mart

a subject-specific data warehouse for a particular department / functional unit smaller size, shorter implementation cycle

can be used as a building blocks for the construction of an enterprise data warehousing

4.1.4 Key features of a data warehouse (especially, of enterprise data warehouse)

four key features of data warehouse(DW) environment

subject-oriented : DW is organized around major applications of an organization

integrated : DW is built by integrating data from multiple heterogeneous sources

time variant : all data sets pertain to a time element

non-volatile : DW is a separate physical construct from the data sources

4.1.5 Differences between data warehouses & operational DBs

conflicting processing objectives

- DB for well defined tasks, high availability using indexing & pre-established OLTP
- DW to perform complex analysis of large legacy data using OLAP

conflicting processing requirements

DB - for read & write processing, needs concurrent control & recovery mechanisms

DW - mainly for long read-only processing

conflicting data requirements

DB - raw business data that may contain errors, incomplete, represent a snapshot of current state

DW - designed for decision making that data should be clean & pertain to different points in time

4.2 Architecture of a data warehouse

three tier architecture components :

data warehouse server

stores cleaned, transformed data using a multi-dimensional data model communication to the data sources uses DB connectivity standards contains metadata, administration protocols, procedures for management of the DW

OLAP server

maps user queries to the stored data in the DW server two methods of implementing an OLAP server : relational OLAP (ROLAP)

multi-dimensional OLAP (MOLAP)

client applications

query, reporting tools, data analysis tools, data mining tools

key to DW architecture - multi dimensional data model

views data in the form of a data cube - represent features from several perspectives / dimensions

commercial vendors - Oracle SDO(Spatial Data Option)+ArcSDE(Spatial Database Engine) IBM DB2 OLAP Server / DB2 OLAP Miner / DB2 Spatial Extender + ArcSDE

Fig 6-13 A basic multi-dimensional data warehouse model

5 Federated DB systems

5.1 Approaches to DB federation

a. tight federation

makes use of a unified schema as the access interface to member data sources of the federation schemas of individual DBs are progressively filtered & integrated semantically

b. loose federation

offer a uniform query language (MDBQL : multi-DB query language) which abstracts from the query language of the components

c. mediated federation

used by IBM as a standard solution to data heterogeneity

based on the principles & techniques of info mediation

data sources are federated into a unified system (FDB : federated DB system)

5.2 The architecture of a federated DB system

a. FDB (federated DB system)

control center of the DB federation

communicate w/ client applications using DB connectivity interfaces - ODBC, JDBC, CORBA, DCOM federated DB server - mediator

b. data sources

structured data in relational / O-relational DBs, spatial data, non/semi-structured data, DW

c. client applications

queries

request for services on remote computers - read & write processes are possible

5.3 A comparison between data warehouse & DB federation

Table 6-2

Characteristics	Data Warehouses	Federated Database Systems	
General Description	A collection of subject- oriented data in a well-defined and tightly structured repository	A configuration of geographically distributed, autonomous and heterogeneous data sources and services, communicating using a standard protocol over a network either through schema integration or information mediation	
Typical Systems Architecture	Central data server with distributed clients	Distributed data servers with distributed clients	
Data Processing Characteristics			
- Local Autonomy	- High	- High	
- Concurrent Access	- Easy to control	- Complex to control	
- DB Size	- 100 Gigabytes to terabytes	- 100 Megabytesto Gigabytes	
- Scalability	- Low	- High	
- Modularity	- Low	High	
- Security	- Easy to enforce	- Difficult to enforce	
- DP Overhead	- High	- Low	
- DP Function	- Subject-oriented	- Application-oriented	
- Access/Query	- Mostly read	- Read/write	
- View	- Summarised	- Detailed	
- Priority	- High performance	- High availability	
Network Requirements	Generally high	Generally low	
Interoperability Strategy	Pre-computed, data-oriented to merge data physically from several data sources	On-demand, application-oriented strategy to enable simultaneous queries on several data sources on-line	
Applicability Scenarios	Relatively small number of structured core data sets, e.g. framework spatial data sets	Large number of distributed and heterogeneous data sources with structured, semi-structured and unstructured data	
Application Focus	Subject-oriented data dissemination and OLAP in support of data mining and decision making	Application-oriented distributed services and OLTP in support of business operations	
Spatial Database Application	Global, national, state and local reference data, spatial data mining and decision support, multi-dimensional (space, time and attributes) analysis and modelling	Collaborative spatial data analysis and modelling using multi-format and multi-media data, spatial and non- spatial data integration	

Table 6-2. Characteristics of spatial data warehouses and a federated database system