
Energy Methods: Elastic Energy – Castigliano’s Theorem

• Work

cosF dsθ⋅ =F ds

Here, θ is the angle between F and ds.

Force vector:
Displacement vector:
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Force vector:
Displacement vector:

•Inner product means�

•Inner product of two vector quantities results in a scalar, that is, the work   

is a scalar quantity.

•No work is done when the direction of the displacement is perpendicular 

to that of the force direction.
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Energy Methods: Elastic Energy – Castigliano’s Theorem

• General Work

⋅∫F ds

•We use general work when force varies with a point of application.

•There are two kinds of work.
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•There are two kinds of work.

• Conservative:  work done by external force is stored in the form of 

potential energy, and recoverable.

(ex. gravitational potential energy, elastic potential energy)

• Nonconservative: work done in system is not recoverable.

(ex. sliding block with friction)



Energy Methods: Elastic Energy – Castigliano’s Theorem

• Elastic Spring

0

Fd U

δ

δ⋅ = =∫ ∫F ds

- F (external force) remains in equilibrium 

with the internal tension (spring force).
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Fig. 2.17 Nonlinear Spring undergoes 

a gradual elongation.

• The potential energy appears as the 

shaded area in Fig. 2.17b.

• U (potential energy) is a function of 

elongation δ.

with the internal tension (spring force).



Energy Methods: Elastic Energy – Castigliano’s Theorem

• Application

Total work done by all the external loads

(at each point Ai, load is Pi, and 

displacement is Si)

=

Total potential energy U

i
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i
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Fig. 2.18 General elastic structure.

(a) at

(b) at



Energy Methods: Elastic Energy – Castigliano’s Theorem

• Complementary Work

0

*

F

dF Uδ⋅ = =∫ ∫s dF

When complementary work is done on this 

system, their internal force states are altered in 

such a way that they are capable of giving up 

equal amounts of complementary work when 

they are returned to their original force states. 

Under these circumstances the complementary 
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Fig. 2.17 Nonlinear Spring undergoes a 

gradual elongation.

• This energy appears as the shaded area 

in Fig. 2.17c.

• U*(complementary energy) is a function 

of the force F.

Under these circumstances the complementary 

work done on such system is said to be stored as 

complementary energy.



Energy Methods: Elastic Energy – Castigliano’s Theorem

• Application

Total complementary work done by all the 

external loads

(at each point Ai, load is Pi, and 

displacement is Si)

=

Total complementary energy U*

iPiA

i
S
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Total complementary energy U*
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dP Uδ⋅ = =∑ ∑∫ ∫
P

s dP

where si can be decomposed into 

parallel and perpendicular to      . The 

parallel component is δi. (Fig. 2.18b) iA
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Fig. 2.18 General elastic structure.
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Energy Methods: Elastic Energy – Castigliano’s Theorem

• Castigliano’s Theorem(1)

Now if the loads in Fig. 2.18a are gradually 

increased from zero so that the system 

passes through a succession of equilibrium 

states, the total complementary work done 

by all the external loads will equal the total 

complementary energy U* stored in all the 

internal elastic members.
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internal elastic members.

Let’s consider a small increment 
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Fig. 2.18 General elastic structure.
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Energy Methods: Elastic Energy – Castigliano’s Theorem

•Castigliano’s Theorem(2)

In the limit as ∆Pi→0 this approaches a derivative which we indicates 

as a partial derivative since all the other loads were held fixed.

i

iP
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δ=

∂
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iP∆
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i

This result is a form of Castigliano’s theorem.

The theorem can be extended to include moment loads.

*
i

i

U

M
φ

∂
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∂
where Mi is moment loads, and Φi is an 

angle of rotation.
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i
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Energy Methods: Elastic Energy – Castigliano’s Theorem

•Castigliano’s Theorem in Linear System

In nonlinear system U*≠U

But, in linear system, U*=U.
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Fig. 2.17 Nonlinear Spring undergoes 

a gradual elongation.
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Energy Methods: Elastic Energy – Castigliano’s Theorem

•Example: Linear Spring(1)
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δ where k is spring constant
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Energy Methods: Elastic Energy – Castigliano’s Theorem

•Example: Linear Spring(2)
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For the linear uniaxial member in Figs. 2.4 and 2.5
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EAL 22

Finally, the in-line deflection      at any loading point     is obtained by 

differentiation with respect to the load
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Energy Methods: Elastic Energy – Castigliano’s Theorem

Example 2.11

Consider the system of two springs shown in Fig. 2.19.  We shall use Castigliano’s 

theorem to obtain the deflections       and         which are due to the external loads

and      .

- To satisfy the equilibrium requirements the internal spring forces must be

1δ 2δ
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The total elastic energy, using                                        , is

The deflections then follow the form of
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Energy Methods: Elastic Energy – Castigliano’s Theorem

Example 2.12

Let us consider again Example 2.4 (also Example 1.3), and determine 

the deflections using Castigliano’s theorem.

- In Fig. 2.20  the isolated system from Example 2.4 is shown

together with the applied loads.

Because we will treat the members of the frame as springs, 

their “constants” are given.
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Energy Methods: Elastic Energy – Castigliano’s Theorem

We use the equilibrium requirements to express the member forces       and        in terms of

The load P so that the total energy is  

We can calculate directly the deflection of point D from 
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In order to calculate the horizontal deflection at point D using Castigliano’s theorem,

there must be a horizontal force at D. But the horizontal force at D is zero.

We can satisfy both requirements by applying a fictitious horizontal force Q and setting

Q = 0.



Energy Methods: Elastic Energy – Castigliano’s Theorem

Figure 2.21 shows the frame isolated with both P and Q applied. 
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The total energy in terms of the loads P and Q is
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Energy Methods: Elastic Energy – Castigliano’s Theorem

Example 2.13

Let us use Castigliano’s theorem to determine deflections in the

Truss problem that we considered in Example 2.5 and in the com-

puter solution example of Sec. 2.5.
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Energy Methods: Elastic Energy – Castigliano’s Theorem

- If a truss is made of n axially loaded members, 

(energy stored in the ith member)

(total energy in the system of  n members)∑
=

=

=

n
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The deflection at any external load P in the direction of P, is
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Energy Methods: Elastic Energy – Castigliano’s Theorem

We will number the members as shown in Fig. 2.22.
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In example 2.5 we solved for the forces     due to the actual applied loads.

We can now set up a system for evaluating (d).

The deflection at the joint at which the fictitious load P is applied, it appears

that we need to find the forces      in each members as a function of the actual

applied loads and in terms of P. 

However, once the member forces are found, we set P = 0 in (d).

Therefore, we can use immediately the member forces      from the actual loads

and the forces for a unit load at P to evaluate             .
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Energy Methods: Elastic Energy – Castigliano’s Theorem

In the Table 2.6 we have tabulated the individual quantities in (d) as well as

their products.
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Energy Methods: Elastic Energy – Castigliano’s Theorem

If we wish to solve for the deflection at P, we must reevaluate the products in 

row 1 and 2 of Table 2.6 with Q.
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The values for member 3 through 9 do not change since they carry no Q.

Therefore


