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I Introduction of Metallic glass

Atomic structure of crystalline and amorphous materials
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Crystalline materials Amorphous materials

Unlike crystalline materials, absence of long-range order
- Unique mechanical properties, corrosion resistance induced by no defect, homogeneous
distribution
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I Properties of metallic glasses

= Mechanical properties of Metallic glass
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High fracture strength over 5 GPa in Fe-based BMGs
AL Greer E Ma, MRS Bulletin, 2007 32: 672

High strength of metallic glasses

= Corrosion resistance

JMR Volume 22, Issue 2 September 2006 , pp. 302-313
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*» BMG shows better wear resistance
than GCrl5 steel as a bearing roller
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Characteristic temperature of Metallic glasses

= Representative DSC curve of metallic glasses
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= Application of metallic glasses

Thermoplastic forming & Juining technique Micro-forming of Pt-BMG fabricated by hot embossing on an etched Si Nano-rod of Pt-BMG formed
wafer and hot cutting by embossing on porous alumina
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I Drawback of metallic glasses

3.0

25 Amorphous metal
- limited plasticity (0-2%0)
- catastrophic failure

Conventional metal
- low strength
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Although BMGs possess very high strength compared to their crystalline

counterparts, they generally suffer from low ductility
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I Overcoming the drawback of metallic glasses

Improvement of ductility through alloy design

J. Eckert et al. / Intermetallics 14 (2006) 876-881
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Improvement in the tensile ductility of BMG composites

P. Jia et al. / Scripta Materialia 54 (2006) 2165-2168
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Dramatic improvement in the tensile ductility of titanium—zirconium-based BMG composites containing
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Atomistic models for plastic deformation
in metallic glasses




I Formation of shear band in metallic glass

Materials Science and Engineering: R: Reports
Volume 74, Issue 4, April 2013, Pages 71-132

100 4

Preferential etching of shear bands on a polished cross-section of deformed
Pd77.5CuBSilB.aglass.

Fracture in glassy metals proceeds by highly localized shear deformations which contrasts

with the brittle fracture commonly observed in non-metallic glasses.
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I Deformation mechanism of metallic glasses

1. Shear transformation zones (STZs)_A.S.Argon 2. Free volume model_F.Spaepen

Diffuse and rearrangement “atomic jumps” into free volume spaces
Ect
- Modified Spaepen model_Steif - Cooperative shear model_Johnson and Samwer
by including additional free volume change yielding of metallic glasses displays a (T/Tg) 2/3
due to pressure temperature dependence

- Directional structural relaxation model_Khonik

suggesting that each rearrangement event can be Spaepen’s and Argon’s models remain
interpreted as a thermally-activated shear due to most popular for describing deformation
local atomic structures and subsequently nearly of metallic glasses

athermal viscous flow by external stress
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I Deformation mechanism of metallic glasses

T. Egami / Intermetallics 14 (2006) 882—-887

- Local topological fluctuation_T.Egami

propose an alternative approach based upon the exchange and fluctuation of atomic bonds,
described in terms of the atomic level stresses.

Free-volume theory = However, volume responds only to pressure, not to shear stress.

A more realistic approach is to consider deformation from the point of view of atomic bond rearrangement.

If the structure is defined by the topology of atomic connectivity, deformation should
involve changes in the bond arrangement.

total number of bonds = conserved during the rearrangement

deformation = by bond-exchange

well describe glass transition, structural relaxation, glass formation and mechanical deformation
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Analysis of shear band_bending test

J. Appl. Phys., Vol. 94, No. 2, 15 July 2003

(b}

FiGi. 1. {a) SEM micrograph showmng shear bands m a (05 mm thick melt-
spun ribbon of Vitreloy 106, bent over 2 mandrel with a radius of | mm, The
shear displacements associated with the shear bands are ecasidy visible and
secondary shear bands are also observed. The shear bands on the tension
side of the sample extend farther mto the sample than do those on the
compression side. Conner er al "' (b) SEM micrograph showing shear bands
in a .58 mm thick melt-spun nbbon of Vitreloy 1046, bent over a mandrel
with a radius of 1 mm. Some of the shear bands on the tension side of the
sample appear to have developed as cracks. Conner et alM!
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F1G. 10, Calculated shear band spacing vs plate thickness at the point of
fracture for Vitreloy | for both symmetric and nonsvmmetic bending for two
different values of the critical shear displacement, Aw®, 3 um, and 10 gm.
A fracture toughness of K, =20 MPaym was used for these calculations.
The shear band spacing at the point of fracture is observed to increase with
increasing plate thickness; the relationship is similar to the experimental
results shown i Fig. 3
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I Analysis of shear band_In-situ TEM

104l nm TH nm
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FIG. 3. In sitie dark-field TEM observation of the formation and
evolution of a major shear. The individual still frames [(a)—{f)] are
extracted from a dynamic video sequence. The growing shear offset
is indicated by the white arrow shown in (b}—{f)} (see video in Ref.
25 for the jerky advancement of the shear offset and the flow of the
MG outside the shear band region).
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FIG. 4. Load vs displacement curve for the displacement-
controlled compression test. The various stages commesponding o
those shown in Fig. 3(bl-3(e) are marked with letters. The load
drops in the carve are observed to synchronize with the jerky ad-
vancement of the shear step seen during the compression (est (see
Ref. 25).
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Analysis of shear band_Nano-indentation

Scripta Materialia, Volume 45, Issue 8, 29

October 2001, P 947-952 ) . .
clover ages S. Vincent et al. / Materials and Design 65 (2015) 98-103
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pop-ins can lead to nucleation and propagation of shear bands inside of the material as well
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https://www.sciencedirect.com/science/journal/13596462

I Analysis of shear band_Nano-indentation
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APPLIED PHYSICS LETTERS 103, 101907 (2013)
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I Analysis of shear band_Nano-indentation_Example 1
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TABLE 1. Parameters for the five metallic glasses.
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elastic modulus; (7 is shear modulus; A 1s hardness.

P 15 mass density; E is

Metallic glasses P (lem?) E (GPa) G (GPa) H (GPa)
Co-based 9285 293 111.53 16.4
Fe-based 1504 236 EENES 138
Zr-based H125 o0 3281 3.6
Mg-based 3.794 60 22.85 29
Ce-based 6732 45 16.94 2.8

Large pop-in event

“Hard” metallic glass

“Soft” metallic glass
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I Analysis of shear band_Nano-indentation_Example 1

© Loosely packed atom © Densely packed atom

(1) Local atom rearrangements
upon loading
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I Analysis of shear band_Nano-indentation_Example 2
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Mechanical response of local region from Statistical analysis by nano-indentation
Ta » Nb - Ti - Zr decrease larger strain burst, increase smaller strain burst
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