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Chapter 6: Basic Plasticity
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Ch. 6 6.1 INTRODUCTION -

* The procedure for computing the internal forces, 4, , from a set of nodal
displacements, p, is as follows:

1. Compute the strain from:
-1 ;1

27

E =

=bp+ TA
lp zazp p

0

3. Compute the internalforces, 4,, from [eq. 3.63] above.

[Review of chapter 3]



Ch. 6 6.1 INTRODUCTION -

* We have only considered linear or nonlinear elasticity when calculating stress from strain.
Iterative (Newton Raphson based) solution method with small strain increment with linear
elasticity can be simply put as:

K Ap =q, —(ijc dV) =—g(0)

o J
Vv

q;

* The main objective of the present chapter is to concentrate on a ‘numerical solution’ of
plasticity.

e Because plastic flow rules are incremental in nature, elasto-plastic problems should strictly be
solved using small equilibrium steps: strain increments

* When plastic deformation occurs due to a strain increment, the flow rule must always be

satisfied, and the stress state must be on the yield surface if time in-dependent plasticity is
employed. C.f. visco-plasticity



Ch. 6 6.1 INTRODUCTION
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[Fig 6.1 One-dimensional stress-strain relationship]

* Equilibrium point A may continue to point B or unloaded
elastically to C.

- path AB: elasto-plastic tangent stiffness should be used.

- path AC: elastic tangent stiffness should be used.




Ch. 6 6.1 INTRODUCTION -

* Roles of plasticity algorithms of a finite element code are:
- The formation of the standard tangent modular matrix for use in the
incremental tangent stiffness matrix of the structure or for use with the
stress/strain law
- The formation of ‘consistent’ tangent modular matrix for Newton-Raphson
iterations.
- The integration of the stress/strain laws to update stress.

e Structural tangent stiffness matrix

K, = J-BTCthV+(initial stress maz‘rix) [eq. 6.1]

G : :
where C, =—:standard tangential modular matrix leq. 6.2]

O€

* The initial stress matrix is related to geometrical non-linearity, and will be ignored in this
chapter.

* ‘Consistent’ tangent modular matrix is the matrix which is consistent with certain
numerical form of stress update algorithm, which can decrease the number of iterations.



Ch. 6 6.1 INTRODUCTION -

* The present chapter only concentrates on

Von Mises yield function vs. other anisotropic yield functions

Isotropic hardening vs. kinematic hardening/mixed (combined) hardening

Associated flow rule vs. non-associated flow rule

Time in-dependent plasticity vs. visco-plasticity (time dependent)



Ch. 6 6.2 STRESS UPDATING: INCREMENTAL OR ITERATIVE STRAINS?

(a) {b)

[Fig 6.2 One-dimensional illustration of alternative updating strategies]
(a) strategy A (b) strategy B

e Stress update can be done in two ways:
= Strategy A : iterative strains
= Strategy B : incremental strains

* Strategy A : iterative strains
op=-K,'g(c, ) mp Se¢=fn(5p) ™ 56 = fn(c, ,5c) WP 6, =0, +56

: 6 consistently accumulated by 66 at each iteration

e Strategy B : incremental strains

Sp=-K'g(c, ) mmp Ap, =Ap, +5p mmp Ag, = fn(Ap,)

m) Ac, = fi(c,,Az,) m) G, =0, +Ac, : Ao changes at each iteration, but 6| remains



Ch. 6 6.2 STRESS UPDATING: INCREMENTAL OR ITERATIVE STRAINS? -

(a) (b)

[Fig 6.2 One-dimensional illustration of alternative updating strategies]
(a) strategy A (b) strategy B

e Strategy A is not recommended as it may lead to ‘spurious unloading’.
" op=-K'g(s,,) mightresultin negative iterative displacement.

* Since o, in strategy B will be always in equilibrium, it does not lead to ‘spurious
unloading’.



Yield (stress) function - review

For isotropic case,

1-D : point

2-D : line
0-3370-111 A
Jll (d‘c"}}; > dg]‘lljl)
BB(B,B,0)
// RSZ or PLS2(2K,K,0)
// -7
=" JST(Y.0,0)

qqm

o, Deviatoric\plane

PS3 or PLS3(K,—K,0)

011:01
(defi.der)

o)

3-D : surface

ydrostafjc Line || (1, L 1)

> 05,07
» P
(dey,.dey)



Yield (stress) function - review -

Isotropic generalization

f(oy)

= f(G[ 9 G[] ) O-]H 9n] 9n1] 9n111) <— General case

=f(o,,0,,0,,)| asasymmetric function <— Isotropic case

_f(]1 ’ [2 ’ ]3) <—— Denote with invariants

where o,,0,,0,, : pricipal stresses

n,,n,,n,, : principal directions

1,,1,,1, : the threeinvariants of ¢
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Yield (stress) function - review -

Hydrostatic & deviatoric stresses

« Decomposition of the stress into two components: the hydrostatic
and deviatoric components

o, =S, +§akk5ij where 0, =0, +0,, +0,;

c=S+ % trace(o)l

S :deviatric stress

20, -0, — 0y,

3 gF: O3 0, +0, +0;, 0 0

20, — 0y — 1

(GU ) - O e Oy 3
3 3 0 0, +0, +0y, 0

o o 20y, -0, -0y
31 32
3 0 0 0, 10y t0;,
Similarly, » , 1 »
de’ =de” + gtmce(a’a )]

Deviatoric strains

de” : (plastic) strainincrement
de’ :deviatoric ( plastic) strainincrement

trace(de”) =de;, =0 (forcrystaline materials) »




Yield (stress) function - review -

Yield surface for incompressible case

» For crystal materials, plastic deformation is incompressible and the hydrostatic stress
does not affect the plastic deformation since the plastic deformation is incurred by shear
stress.

de” , =0 forarbitrary o,

SdWP =S8, de”,
f = f(o;) 1s independent of o,
J=1(0;)=1(S;,04) = 1 =1(S;)
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Yield (stress) function- review -

Isotropic & Incompressible yield surface

f(O'U) < General case

— f(Sl] )<— incompressible case

. S S S\ e— | -
— f(S]9S119SIH?n] nnnanm) SIRIE CEeE

=f(S,,8,,S,,) asasymmetric function

:f(J1,J29J3)<— Denote with invariants
=1(J,,J,;)|<— Since J;=0

where J,,J,,J, areinvariants of deviatoric tensor
J, =trace(S)=0

J, = %( trace(S)* — trace(S*) )
J, = det(S)
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Yield (stress) function - review -

Von Mises isotropic yield function (or J, plasticity)

| | |
(@)= f(8)= (2, )=, =—|S[ == 5,8, =—(S] +S; +5,) = Const.

f(0)=35(0)=5(S) =,/as;S, =c

1 _
\/ 5|:(011 — 0, )2 + (022 — 05, )2 + (033 — 011)2 + 60122 + 60'232 + 60'312} (= Y) =0

<:>f=\/ ESUSU 2\/ E(Ug—gﬁkké‘y)(ﬁ[j—ggppé‘g):6
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Ch. 6 6.3 THE STANDARD ELASTO-PLASTIC MODULAR MATRIX FOR AN
ELASTIC/PERFECTLY PLASTIC VON MISES MATERIAL UNDER PLANE STRE

2 9 5 W2
f= (Gx +0,-0,0, +32'xy) —0,=0,—0,  leq.63]
(o | & ] 20,-o0,
€, = l(%j =Ala= £, |= e 20,0, [eq. 6.4]
g ‘| 6r
pxy Xy

A : plastic strain — rate multiplier

X gx gpx
<0 6=| 6, |=[C]|| & |-| €, =C(£t—ap)=C(£t—/1a)
ny gxy gpxy [eq. 6.5]
[Fig 6.3 The von Mises yield criterion 1 v 0
under plane-stress condition]
E
C= = v 1 0 [eq. 6.6]
I-v
1-v
0O 0 —
L 2
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Ch. 6

6.3 THE STANDARD ELASTO-PLASTIC MODULAR MATRIX FOR AN
ELASTIC/PERFECTLY PLASTIC VON MISES MATERIAL UNDER PLANE STRE

ﬂ: should be always positive.

For plastic flow to occur, the stresses must remain on the
yield surface or consistency condition
. of" . . .
szc:aTcza:cs:O leq. 6.7]
06

By combining eq.6.7 and eq.6.5,

a’'Cé¢ a:C:¢

f < O /1 = T = [eq. 6.8]
aCa a:C:a
* Consequently,
[Fig 6.3 The von Mises yield criterion
under plane-stress condition] aaTC
6=Ci=C|I-——— |¢
. a Ca
x gx px
6=|6,|=[C]| ¢ |-| &, ||=C(¢-¢,)=C(¢ - a) 1
. _ . . . . .6.9
xy xy gpxy [eq 5] C a : C : a (C ‘ a) ® (C ‘ a) : 8 [eq ]
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Ch. 6 6.3 THE STANDARD ELASTO-PLASTIC MODULAR MATRIX FOR AN
' ELASTIC/PERFECTLY PLASTIC VON MISES MATERIAL UNDER PLANE STRE

® 6.3.1 Non-associative plasticity

* If a separate plastic potential g exists,

: =i% b
0o

‘ i_a:C:é

“a:C:b

=) Ct:C(I—

ba’C
a’Cb

C

t

is generally nonsymmetric.

Yield function de?,
f (o) Plastic potentia

¢ g(o)

17



Ch. 6 6.4 INTRODUCING HARDENING -

® 6.4.1 Isotropic strain hardening

* Hardening can be introduced by changing the fixed yield stress, o, , in €q.6.3 to a variable
stress, 0, (gps), so that

f=0,-0y(g,) Ileaso

* The variable yield stress is now a function of the equivalent plastic strain:

Eps = jgpsdt [eq. 6.11]

1/2
where ¢ —i 2 48?48 g +l 7 [eq. 6.12]
ps_\/g px  “py " “pxpy 47/pxy
* Under uniaxial tension O,
1. i =g
Epy = &p __Egpx - BB

* The relationship between &, and & ,;can be taken from the uniaxial stress/plastic strain

relationship.
18



Ch. 6 6.4 INTRODUCING HARDENING -

0o,
* Toobtain £, , 5 is required.
» / ©ps
/ £p: = Epg
I , 0o, 00, E
/ H = = = [eq. 6.13]
} o, 0Ot, 1-E/E
Slope E,
~y * Once hardening is introduced, the tangency condition of
i. 6o eq.6.7 is modified to:
\Slope £ T
f — i(‘; + i 60-0 éps — aT('; — ]—[’(c}ps [eq. 6.14]
0c 0o, O¢
k4 .
£ « Substitution form eq.6.4 into eq.6.12 gives:
[Fig 6.5 One-dimensional stress/strain relationship . .
with linear hardening] éps =)= B(G)ﬂ, [eq. 6.15]
(o . o 4 20, -0,
g, =i(%j=ﬂa= €y =20 20,-0, | [eq.6.4] * For the present von Mises yield criterion,
€y “\ er, B(o) =1but for other criteria, maybe not.
o 2( . .. 1 ,Y?
Eps = ﬁ(gpx TEy TERE, T Zypxyj [eq. 6.12]
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Ch. 6 6.4 INTRODUCING HARDENING -

e Substituting from eq.6.15 into eq.6.14 gives

8 /
/ spz == £ps . T. . . T. .
/7 f=a'6-HBA=a 6—AA  lea616]
/ \
Slope E, e Substituting from eq.6.5 into eq.6.16 give
S
i 6o T -C - 4
o P a Ca _ a:C:a ——_—
Nsiope £ a'Ca+4 a:C:a+4
aa'C
' . m) 6=Ci=C|I-— - 1&
" a Ca+ 4
[Fig 6.5 One-dimensional stress/strain relationship 1
with linear hardening] —| C— , (C : a) ® (C : a) - &
, a:C:a+4
. of . of Oo, . T. .
f= G+ E . =a6-—H'&  [eq.6.14] [eq. 6.18]
06 0do, 0, " P
dx 8)6 .px
6=|6, |=[C]|| & |-| &, ||=C(&-¢,)=C(¢ - a)
('sxy é‘xy g'pxy [eq. 6.5]
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Ch. 6 6.4 INTRODUCING HARDENING

® 6.4.2 Isotropic work hardening

Reading assignment




Ch. 6 6.4 INTRODUCING HARDENING -

® 6.4.3 Kinematic hardening
* Isotropic hardening cannot represent the
asymmetry in tension and compression after
‘ plastic loading: Bauschinger effect

+ y * For certain problems (ex: low-cycle fatigue,
cup drawing, ...), Bauschinger effect may be
significant.

gy

* Yielding in tension has lowered the
compressive stress by kinematic shfit

(G — a) =X0, 625 o :kinematic shift

[Fig 6.6 One-dimensional illustration of kinematic
hardening]
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Ch. 6 6.5 VON MISES PLASTICITY IN THREE DIMENSIONS -

* For the general three-dimensional case, the von Mises yield criterion is

f=0,-0, :\/5‘];/2_60

— %[(ax -0, )2 +(o,-o, )2 +(0,—0,) +6(c2 +7., +rfx)}l/2 -0,

1/2
1 2 2 2 2 2 2
:\/g[g(sx+Sy+sz)+fxy+ryz+rzx -,

3 1/2 3
_ \/;(STLS) ~0, = > (s, :s, )l/2 -0, [eq. 6.26]

1 0 00 0 O Sy
O 1 00 0 O Sy
O 01 0 0 O S,
where L= and S =
O 0 02 0O Ty
O 0 00 2 0 Ty
0 0 0 0 0 2] f(eqe2r Ty [eq. 6.28]
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Equivalent plastic strain rate

Von Mises isotropic yield criterion

] The von Mises yield surface, which is incompressible, isotropic and symmetric for

From normahty rU|e, tension and compression, is a sphere in the eight-dimensional deviatoric space as
shown in Eq. (12.15). Therefore, the plastic strain increment is figuratively pro-

portional to the deviatoric stress by the normality rule; i.e., a’:ﬁ; = AS; with a

d ) AS proportional constant A. Then,
&y =49

_7
G-

AS{";S@' = Se_xd""‘; = odi =

(S =

considering Eqs. (12.15) and (13.19). Therefore, A = 2t g that

7 O

From work equivalence principle,

dej; = m’{;ﬁ (13.30)
- a
4 ade
— - _2 1 JJ. “'.’. = =2 Ji’ = /] _ = _:2 S b3
ASZS — Sdgp — Gdg =0 N A — Furthermore, since df,udf,u AS,I,(I:,U Acde = ade” so that
gy y y ==
a (o)
de = (13.31)
From above equat|on51 with which the plastic strain increment surface is also a sphere in the deviatoric
S space.
= Vjj
del’=AS, =ade — i
y y o fle) =d(6) =a(S) = \/uS;S;j =c¢ (12.15)

o}

In addition,

_ 1
defde] = ASde] = A5de =ade” |".de =,|—d¢g de;
(04

24




Equivalent plastic strain rate

Von Mises isotropic yield criterion

Reference state : simple tension

1 3
’ —: — p p a:_
.de adgl.jdgl.j 5
2y 0 o
Y 0 0 3
o= 0 U U =8 =) L —%Y 0 |~dg ~
0 0 0 1
0 0 —--Y
3
_ 2 1 1
de = \/5 1+ Z + Z)d&SlT’p = d81S1T’p

ST,p
de;

0
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Ch. 6 6.5 VON MISES PLASTICITY IN THREE DIMENSIONS

* The equivalent plastic strain rate is given by

1/2

& _2 £ + 8% 4+ &2 +l('2 e )

ps \/5 px Py 2 Vo TV pyz TV pxz
2/ N2 2,0 . \2
- RV (sp : sp) A2 (ep : ep) [eq. 6.29]
e 3 3
CiT=(111)
Ty . . c 5 .
— e, : deviatoric plastic strain (refer to eq.4.19)
* Only elastic strain is related to stress by

[(1-v) v v 0 0 ]
o, v 1-v) v -
o, % % (1-v) W
Oz |_ E 0 0 0 l(1—2v) 0 0 2
o, 7, | (+v)1-2v) 2 Ve
. o 7. o 0 0 0 Za-2m o |7

[Fig 6.7 von Mises yield criterion in three- 2

dimensional principal stress space] 25 0 0 0 0 0 l(l—zv) Yy

_8 -& l)/ l)/ _ ) ? )

e 0 0 o2t 2te [eq. 6.30]
g, =¢cl+e,, =0 ¢ 0 |+ 17/ g —& 17 [eq. 4.19]
27 %m 2d — m ~x T Cnm ~yz 0 =
2 V. w 2 Y- — —_ .
i Eyzx Eﬂ/zy gzz_gm_ 26




Ch. 6 6.5 VON MISES PLASTICITY IN THREE DIMENSIONS -

f=0,-0, :\/5‘];/2 — 0y

1 2 2 , 172
:—[(o-x—ay) +(O'y—O'Z) +(O'Z—O'x) +6(z'fy+rjz+rfx)} -0,

* Differentiating eq.6.26 leads to V2
[eq. 6.26]
o’ 1
T _ _ Ay o — — G —
a = o _2O'e {(20'x o, O'Z),<2O'y o O'Z),(2O'Z o O'y),6fxy,6fyz,6fzx}
3 3 r of
=— 2t_,27t 27, :=—(Ls) =—
Ge {Sxﬁs)ﬂsz’ Txy? Tyz’ sz} 2( S) as [eq.6.32]
. 0 oo - . [20,-0,
* Or, using the tensor(indicial) form, ; ﬂ-(gj%[?’ }i(za _0} T
» "\ oo 20| T T
.PXJ’ ’ 67:’0’
of 0 3 B
a= (’B{s = (’st = 20 S [eq.6.33] éps=%(g';x+éjy+g';z+%(7';xy+y’;yz+y';xz)J
. = \P (¢,:¢,)" = \P (¢,:¢,)"  lea.629]
* Asineq.6.4, ¢ = Aa so that in eq.6.29 3 3

£, = \Eﬂl(aTL‘la)m = \Eﬂl(az 1)) = \/go_%(sTLs)l/2 =] lea63a
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Ch. 6

6.5 VON MISES PLASTICITY IN THREE DIMENSIONS

® 6.5.1 Splitting the update into volumetric and deviatoric parts

For the ‘radial return” method in section 6.6.7, it is useful to split the stress update into

volumetric and deviatoric components.

For von Mises yield criterion,

_N3u_3u

Ca = s=2 ,uL_la [eq. 6.35]
Vo
a’Ca=3 Y7, [eq. 6.36]
Substitution into eq.6.18 gives
3u r 3u

G:Cé:C(I

t

z[c_ !
a:C:a+ 4

aa’C ).
- T ! €
a Ca+4

(c:a)®(c:a)]:g

'€

[eq. 6.37]

[eq. 6.18]

28



Ch. 6 6.5 VON MISES PLASTICITY IN THREE DIMENSIONS

* In addition, the total strain rate, ¢ , can be split into

1
1
N R
E=¢&, 0 +e:gmj+e [eq. 6.38]
0
0
. L 1.7,
where 8m=(8x+8y+8z)/3=§j S
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Ch. 6 6.5 VON MISES PLASTICITY IN THREE DIMENSIONS -

® 6.5.2 Using tensor notation

1

1
=& | |[+é=¢ j+é (a3 4ump £=£ 1+€  [eaca0

0 . —

Voigt indicial

0

0
Cé=3ké j+2ul'é leacaa 4mmp C:&€=3k1+2pé Ieasewl  k:bulk modulus

Voigt indicial L . shear modulus

6=|C-— 2 T li=|C-— 2 _s®s|:é  rensam

Gf(1+ 4 ]
3u

Voigt indicial
) 6=0,j+S$=3ké, j+2u L' - 3 , ss' [6=C,¢ e 643
s’ j=0 202 1+ z indicial
[eq. 6.42] 3u
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Ch. 6 6.5 VON MISES PLASTICITY IN THREE DIMENSIONS

6=0,j+$=3ké j+2u| L' - 3 7 ss' |[e=Cg [ea6a3l
262(1+ j .
€ 3,U Voigt
&) -5 1+5=3ks 1+2u|1- 5 y S®s [:€=C,:¢& [ea64
207 1+ o
e( 3ﬂj indicial

1=0,e Qe : 2" order unit tensor

1
I= E(é'l.jé'kl +0,0, )el. e, Qe, e, : symmetric 4™ order unit tensor
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Ch. 6

6.5 VON MISES PLASTICITY IN THREE DIMENSIONS

T

I- = 7 sX®s [eq. 6.45a]
203[1+ ]
3u
Voigt
R 2u| L - 3 At
205(1+ j
3u
indicial

[eq. 6.45b]
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Thank you!
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