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Pierce method for gun design

 The first step in the charged-particle acceleration process is to extract low-
energy particles from a source and to form them into a beam. The particle 
source and initial acceleration gaps constitute the injector. The particles move 
slowly in the first acceleration gap, and the space-charge forces are 
correspondingly strong.

 The analytic derivation of Pierce gives a self-consistent solution for a space-
charge dominated injector. The procedure predicts the shapes of accelerating 
electrodes to produce a laminar beam with uniform current density.

 Although the treatment holds only for the special geometry of a sheet beam 
accelerated through an extraction grid, it gives valuable insights into the design 
of more complex guns.

 Assumptions:
• A space-charge-limited injector creates a sheet beam of width ±𝑥𝑥0.
• Particle motion in the extraction gap is non-relativistic.
• The force from beam-generated magnetic fields is small.
• Potentials at the surface and extractor electrodes are determined by 

conducting surfaces—the beam exits the gap through a grid or foil.
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[Remind] Potential distribution across a gap for space-
charge-limited ion flow
 Space-charge-limited current in a plane diode
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Pierce extraction system

 The essential principle of a Pierce extraction system is 
that the effect of the particles external to the chosen 
region can be represented by means of a single 
unipotential electrode, called the beam-forming or 
focusing electrode.

 This electrode should cause the field in the region 
external to the beam satisfy the proper boundary 
conditions at the beam edge, i.e. the transverse electric 
field is zero everywhere at the beam edge and the 
electric potential along the beam boundary is the same 
as in the corresponding idealized SCL diode.
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Pierce extraction system

 The desired potential distribution external to the beam is given by

 In principle, the desired potential distribution in the region external to the beam 
will be completely determined by two properly formed electrodes: the focusing 
electrode and the extraction electrode.
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Geometry of planar Pierce extraction system
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Axisymmetric Pierce extraction system

 Many applications require cylindrical electron beams. The design of a cylindrical 
gun follows the same procedure as a sheet beam gun. We can apply numerical 
methods to search for cylindrical electrode shapes that give the variation of 
potential along a beam boundary at 𝑟𝑟𝑜𝑜:

 In this case, the zero potential surface (focusing electrode) is a conical curved 
surface having a gradually increasing angle with the emission electrode from 
67.5° to 74.16°.

𝜙𝜙(𝑟𝑟𝑜𝑜, 𝑧𝑧) = 𝑉𝑉0 ⁄𝑧𝑧 𝑑𝑑 4/3
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Distortion of electric field due to anode aperture

 In the previous analyses, we ignored the effects of an anode aperture. In most 
cases, however, an anode aperture modifies the electric fields in an electron gun.

 The radial electric fields defocus exiting electrons. The fields act like an 
electrostatic lens with negative focal length—the defocusing action is called the 
negative lens effect. Also, the anode aperture reduces the axial electric field at 
the center of the cathode, leading to depressed beam current density.

 The change in cathode electric field is small 
if the diameter of the anode aperture is small 
compared with the gap width:

 The field perturbation is strong if

 Then, we must modify the geometry of the 
gun to achieve an output beam with uniform 
current density.

2𝑟𝑟𝑎𝑎 ≪ 𝑑𝑑

2𝑟𝑟𝑎𝑎

𝑑𝑑
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Perveance

 Space-charge-limited current in a cylindrical gun:

 Perveance: the quantity depends only on the geometry of the extractor and the 
type of particle.

 Classification

• Low-perveance guns: 𝑃𝑃 ≤ 0.1 × 10−6𝐴𝐴𝑉𝑉−3/2 or 𝑑𝑑/2𝑟𝑟𝑎𝑎 ≥ 4

• Medium-perveance guns: 0.1 × 10−6 ≤ 𝑃𝑃 ≤ 1 × 10−6𝐴𝐴𝑉𝑉−3/2 or 1.35 ≤
𝑑𝑑/2𝑟𝑟𝑎𝑎 ≤ 4

• High-perveance guns: 𝑃𝑃 ≥ 1 × 10−6𝐴𝐴𝑉𝑉−3/2 or 𝑑𝑑/2𝑟𝑟𝑎𝑎 ≤ 1.35
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Medium-perveance guns

 Moderate perveance guns usually have the converging geometry whose 
advantages are:

• The aperture diameter can be small because the beam has the minimum radius at 
the anode.

• A source with limited current density can generate a high current beam because the 
beam width is large at the cathode.

• The space-charge-limited current for a given aperture area is higher than that of a 
planar gun because the beam density is smaller near the cathode.

• With converging electrons, it is possible to counter the negative lens effect to 
generate a parallel output beam.
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Medium-perveance guns

 For small aperture perturbations, we can design a non-relativistic electron gun 
by dividing beam motion through the extractor into three roughly independent 
phases:

• (1) We treat electron motion from the cathode to the anode using the theory of space-
charge-limited flow between spherical electrodes.

• (2) We assume that aperture field perturbations are localized near the anode and we 
represent their effect as a thin linear lens with negative focal length.

• (3) In the propagation region beyond the anode, we treat space-charge expansion of 
the beam using the paraxial theory.



12/20 Radiation Source Engineering, Fall 2017

Medium-perveance guns: (1) converging electron flow 
between spherical electrodes
 [Remind] The perveance of a full spherical electron beam:

 For the focusing electrode below, the perveance is
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Medium-perveance guns: (2) defocus of electrons by radial 
fields near the anode aperture
 The focal length for the negative lens action of the aperture is roughly:

 To estimate the effect, we set 𝐸𝐸𝑎𝑎 equal to the value of electric field without the 
beam and aperture

 Passing through the aperture, the beam envelope convergence angle changes 
from 𝜃𝜃 to 𝜃𝜃′

𝑓𝑓 = −4𝑉𝑉0/𝐸𝐸𝑎𝑎

𝐸𝐸𝑎𝑎 ≈ 𝑉𝑉0( ⁄𝜌𝜌𝑐𝑐 𝜌𝜌𝑎𝑎)/(𝜌𝜌𝑐𝑐 − 𝜌𝜌𝑎𝑎)
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𝑟𝑟𝑎𝑎
𝑓𝑓 ≈ 𝜃𝜃 1 −

𝜌𝜌𝑐𝑐
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𝑓𝑓 ≈ −4 ( ⁄𝜌𝜌𝑎𝑎 𝜌𝜌𝑐𝑐)(𝜌𝜌𝑐𝑐 − 𝜌𝜌𝑎𝑎)
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Medium-perveance guns: (3) The minimum radius of the 
beam emerging from the aperture of a converging gun
 The beam emerging from the aperture of a converging gun usually has strong 

space-charge forces and low emittance.

 We can find the axial location where the beam reaches a neck using the beam 
current (𝐼𝐼), kinetic energy (𝑒𝑒𝑉𝑉0), initial radius (𝑟𝑟𝑎𝑎) and envelope angle (−𝜃𝜃′).

 The minimum beam radius in terms of the envelope angle and beam perveance
at the anode is given by:

𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟𝑎𝑎

= exp
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𝑒𝑒𝐼𝐼0
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Medium-perveance guns: Example

 Numerical calculations of converging gun properties using the EGUN code.

 Figures show electrodes, computational rays, and electrostatic equipotential 
lines. Left-hand-side: spherical-section cathode and focusing electrode. Right-
hand-side: shaped anode and output tube. V0 = 20 kV, I0 = 1 A. Calculation 
extends 0.05 m in radius and 0.08 m along the z axis. (a) Initial run — most of 
the available current strikes the anode. (b) With a corrected focusing electrode, 
the full current enters the output tube.

37.5°22.5°
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Problems in high-perveance gun design

a. Low-perveance gun follows the 
Pierce design procedure —
anode aperture has a negligible 
effect on particle extraction.

b. Moderate-perveance
converging gun — anode 
aperture has a small effect on 
electric fields at the cathode.

c. High-perveance gun — anode 
aperture reduces the electric 
field at the cathode center.

d. High-perveance gun —
modified focus electrode to 
produce an almost uniform 
electric field on the cathode 
surface. • Low axial field at the center of the cathode  nonuniform

current density  emittance growth
• Existence of transverse electric field  particle deflection
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High-perveance gun design and ray-tracing codes



18/20 Radiation Source Engineering, Fall 2017

High-current electron sources: thermionic sources

 High-current cathodes are important for microwave tubes, pulsed RF linacs, and 
induction linac injectors. Recently, there has been considerable interest in 
sources for high brightness beams that can drive free electron lasers.

 High-current electron sources either have a large area or produce a high 
electron flux. Here, we concentrate on sources that can supply high-current 
density (> 105 A/m2).

 Thermionic sources emit electrons according to Richardson-Dushman law:

 Schottky effect (field enhanced thermionic emission): For a constant temperature, 
the current still slowly increases with the applied extraction potential by lowering 
the surface barrier:

𝑗𝑗𝑠𝑠 = 𝐴𝐴𝑇𝑇2 exp −
11600𝜙𝜙𝑤𝑤

𝑇𝑇

𝑗𝑗𝑠𝑠 = 𝐴𝐴𝑇𝑇2 exp
139𝐸𝐸𝑠𝑠

1/2

𝑇𝑇 −
11600𝜙𝜙𝑤𝑤

𝑇𝑇

𝐸𝐸𝑠𝑠 : Electric field normal to the surface [kV/cm]



19/20 Radiation Source Engineering, Fall 2017

Schottky plot

 The properties of different thermionic cathode materials are usually compared in 
terms of the zero field current density, 𝑗𝑗𝑠𝑠0. The zero field current density is the 
value given by Schottky equation when 𝐸𝐸𝑠𝑠 = 0.

 Schottky plot: current density from a thermionic electron source as a function of 
temperature and applied electric field.

 At low values of 𝐸𝐸0, there is 
significant negative space-charge 
near the cathode — the negative 
electric field suppresses the current.

 At values of 𝐸𝐸0 where all electrons 
leave the cathode, the electric field 
on the surface is roughly equal to the 
vacuum field.

 We can find the zero field current by 
extrapolating the measurement to 
the 𝐸𝐸0 = 0 axis.
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Cathode materials

 Commercial thermionic cathodes consist of a high temperature metal substrate 
(W) coated with a material with low work function (Ba). Unfortunately, barium 
evaporates rapidly at high temperature.

 Dispenser cathodes are fabricated by impregnating porous tungsten with 
chemical compounds that generate barium when heated. Available dispenser 
cathodes generate current density in the range 20×104 A/m2 at a maximum 
operating temperature of 1100°C. To avoid cathode poisoning, dispenser 
cathodes require a clean vacuum less than 5×10-7 torr.

 Lanthanum hexaboride, LaB6, is an alternative to dispenser cathodes — it has 
some advantages for pulsed-beam accelerators. The homogeneous material has 
adequate mechanical strength and an inherently low work function. The material 
is resistant to poisoning, maintaining its emission properties at pressures in the 
10-5 torr range. Also, there is less problem with evaporation of the active material.
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