Quantitative phase analysis

Jenkins & Snyder Chap 13 Cullity Chap 12 Bish & Post Chap 5 Klug & Alexander Chap 7 Krawitz Chap 8

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

QPA - reference

- Madsen, I.C. and Scarlett, N.V.Y. (2008) Quantitative Phase Analysis In "Powder Diffraction: Theory and Practice." Dinnebier, R.E. and Billinge, S.J.L., Editors. The Royal Society of Chemistry: Cambridge, UK
- Madsen, I.C. and Scarlett, N.V.Y., Riley, D.P. and Raven, M.D. (2012) Quantitative Phase Analysis using the Rietveld Method In "Modern Diffraction Methods", Mittemeijer, E.J. and Welzel, U., Editors. Wiley-VCH
- Madsen, I.C., Scarlett, N.V.Y. and Kern, A. (2011) Description and survey of methodologies for the determination of amorphous content via X-ray powder diffraction. Z. Krist., 226, 944-955.
- Kern, A., Madsen, I.C. and Scarlett, N.V.Y. (2012) *Quantifying amorphous phases.* Uniting Electron Crystallography and Powder Diffraction. Editors: Kolb, U., Shankland, K., Meshi, L., Avilov, A. & David, W. Springer
- Madsen, I.C., Scarlett, N.V.Y. and Webster, N.A.S. (2012) *Quantitative phase analysis*. Uniting Electron Crystallography and Powder Diffraction. Editors: Kolb, U., Shankland, K., Meshi, L., Avilov, A. & David, W. Springer

QPA - reference (continued)

- Rietveld Refinement Round Robin (http://www.iucr.org/iucr-top/comm/cpd/)
 - ✓ Hill, R.J. (1992): "Rietveld Refinement Round Robin. I. Analysis of Standard X-ray and Neutron Data for PbSO4". J. Appl. Cryst., 25, 589-610
 - ✓ Hill, R.J. & Cranswick, L.M.D (1994): "Rietveld Refinement Round Robin. II. Analysis of Monoclinic ZrO2". J. Appl. Cryst., 27, 802-844
- QPA Round Robin (http://www.iucr.org/iucr-top/comm/cpd/)
 - ✓ Madsen, I.C. et al. (2001): "Outcomes of the International Union of Crystallography Commission on Powder Diffraction Round Robin on Quantitative Phase Analysis: samples 1a to 1h". J. Appl. Cryst., 34, 409-426
 - Scarlett, N.V.Y. et al. (2002): "Outcomes of the International Union of Crystallography Commission on Powder Diffraction Round Robin on Quantitative Phase Analysis: samples 2, 3, 4, synthetic bauxite, natural granodiorite and pharmaceuticals". J. Appl. Cryst., 35, 383-400
- > Biannual "Reynold's Cup" series (http://www.clays.org/Reynolds.html) (Clay Minerals Society)
- > Quantitative Rietveld Phase Analysis of Pharmaceuticals"
 - ✓ Fawcett T.G., Needham, F., Faber, J.N. & Crowder, C.E. (2010): "International Centre for Diffraction Data Round Robin on Quantitative Rietveld Phase Analysis of Pharmaceuticals". Powder Diffraction, 25 (1), 1-8

Presentation of Arnt Kern, DXC 2014 Workshop "QUANTIFYING CRYSTALLINE AND AMORPHOUS PHASES" CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

- Volume of a unit cell in a substitutional solid solution is linearly proportional to the fraction of sites substituted.
- Can use measurement of lattice parameter of a substitutional solid solution in determining composition of material.
- The only application of diffraction for quantitative analysis that does not rely on intensity

4

- > First done by L. Navias (GE) in 1925 on sillimanite and mullite.
- ➤ Typical accuracy worse than 10%
- ➢ Best RIR analysis ~3%
- > Best multi-line Copland-Bragg analysis ~1%
- ➢ Routine Rietveld analysis ~1%

RIR ; reference intensity ratio

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

Jenkins & Snyder, Chap 13

actors aff	ecting line intensities	s of XRPD pe	aks secul national univers
factor	parameter	factor	parameter
Structure- sensitive	Atomic scattering factor	Sample- sensitive	Microabsorption
	Structure factor		Crystallite size
	Polarization		Degree of crystallinity
	Multiplicity		Residual stress
	Temperature		Degree of peak overlap
Instrument -sensitive (Absolute intensity)	Source intensity		Preferred orientation
	Diffractometer efficiency	Measurement -sensitive	Method of peak area measurement
	Voltage drift		Degree of peak overlap
	Takeoff angle of tube		Method of background subtraction
	Receiving slit width		Kα2 stripping or not
	Axial divergence allowed		Degree of data smoothing used
Instrument -sensitive (Relative intensity)	Divergence slit aperture		Time 1
	Detector dead time		

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

6

- Preferred orientation most serious effect, present to some degree in most specimen mounts.
- > <u>Absorption</u> same at all angles in Bragg-Brentano diffractometer.
- Microabsorption can distort I's of all the lines, can be minimized by grinding powder to < 10um size.</p>
- Crystallite statistics
- Extinction
- > Degree of crystallinity

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

- > A mixture of equal amounts of TiO_2 and Al_2O_3
- > The TiO₂ pattern is more intense because TiO₂ diffracts X-rays more efficiently.
- With proper calibration, the amount of each phase present in the sample can be calculated.

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

$$I(hkl) = \left(\frac{I_o A \lambda^3}{32\pi r}\right) \left[\left(\frac{\mu_o}{4\pi}\right)^2 \frac{e^4}{m^2} \right] \left(\frac{1}{v^2}\right) \left[|F(hkl)|^2 p \left(\frac{1+\cos^2 2\theta}{\sin^2 \theta \cos \theta}\right) \right] \left(\frac{e^{-2M}}{2\mu}\right).$$

$$> I(hkl) = \text{ integrated intensity diffracted by a single phase powder specimen in a diffractometer}$$

$$> I_0 = \text{ intensity of incident beam}$$

$$> A = \text{ cross-sectional area of incident beam}$$

$$> \lambda = \text{ wavelength of incident beam} r = \text{ radius of diffractometer circle}$$

$$> \mu_0 = 4p \times 10^{-7} \text{ mkgC}^{-2} e = \text{ electron charge}$$

$$> m = \text{ mass of electron} v = \text{ volume of unit cell}$$

$$> F(hkl) = \text{ structure factor} P = \text{ multiplicity factor}$$

$$> \theta = \text{ Bragg angle} e^{-2M} = \text{ temperature factor}$$

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

Single phase

Mixture of phase $\alpha \otimes \beta$ $I_{\alpha}(hkl) = I_{\alpha} = \frac{K_1 c_{\alpha}}{\mu}$

 $\underline{c_{\alpha}}$ = volume fraction of alpha phase in the mixture μ_m = linear attenuation coefficient <u>of the mixture</u>

- > c_{α} can be found from I_{α}/I (reference)
- > Different methods depending on what is used as the reference line
 - \checkmark External standard method a line from pure α
 - ✓ Direct comparison method a line from another phase in mixture
 - ✓ Internal standard method a line from a foreign material mixed with the specimen

$$\gg \mu_m = \mu_m (c_\alpha)$$

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

Cullity, page 348

SECUL NATIONAL UNIVER

11

- Single peak method
- Whole pattern methods
 - ✓ Traditional Rietveld method
 - ✓ Internal Standard method
 - External Standard method
 - ✓ PONKCS* method
 - ✓ Linear Calibration Model (LCM)
 - ✓ Degree of Crystallinity (DOC)

* Partial Or No Known Crystal Structures

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

> Powder XRD is ideal for crystalline mixture analysis.

- ✓ Each component produces characteristic pattern superimposed on those of other components.
- ✓ Intensity of lines in each component is proportional to the <u>concentration of</u> <u>that component</u>, disregarding the effects of absorption.
- Absorption
 - ✓ When a mixture contains <u>both a weak and strong absorber</u>, lines of the weak-absorbing compound appear weaker (and those of the strong-absorbing compound stronger) than calculated from a linear relationship between pattern intensity and composition.

Nomenclature (Klug & Alexander)

➢ i, j, k,	lines in diffraction pattern
≽ I, J, K,	components of a mixture
⊳ S	subscript referring to component used as reference standard
> ρ,	density of components J
≻ fj	volume fraction of component J in a mixture
≻ x _J	weight fraction of component J in a mixture
> μ	linear absorption coefficient of component J for X-ray wavelength I
$\succ \mu_J^* = \mu_J/\rho_J$	mass absorption coefficient of component J for X-ray wavelength I
▶ μ	linear absorption coefficient of sample with N components
> μ*	mass absorption coefficient of sample with N components μ^{\star} = \sum $x_{J}\mu_{J}^{\star}$
> I _U	intensity of ith line of component J in mixture
≻ (l _{IJ})₀	intensity of ith line of pure component J
≻ I/I _{cor}	ratio of intensity of strongest peak of each component to a common
	standard, synthetic corundum, in a 1;1 mixture of sample and standard
➢ RIR _{J,S}	reference intensity ratio of phase J with respect to phase S

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

Basic concepts

- \blacktriangleright $\mu = linear$ attenuation coefficient
- \triangleright ρ = density
- > $\mu/\rho = mass$ attenuation coefficient; materials constant, f(λ)
- > Integrated intensity proportional to analyte phase concentration
- > Intensity functionally dependent on absorbing power of mixture for X-rays
- Dependence is generally non-linear and unknown.
- Absorption

$$I_{ij} = (K_{ij} f_j)/\mu = (K_{ij} x_j)/(\rho_j \mu^*)$$

✓ Density is constant for a given phase

$$I_{iJ} = (K_{iJ} x_J)/\mu^* = (K_{iJ} x_J)/(\sum x_k \mu_k^*)$$

Can get x_J by

- ✓ Measuring intensity I_{iJ}
- ✓ Determining μ^* of sample
- ✓ Determining calibration constant K_iJ
- CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

- $f_{J}\;\; volume\; fraction\; of\; component\; J\; in\; a\; mixture$
- x_J weight fraction of component J in a mixture μ_J linear absorption coefficient of
- $\mu_J^* = \mu_J/\rho_J$ mass absorption coefficient of J
- $\mu\;$ linear absorption coefficient of sample with N components

SEOUL NATIONAL

 $\left(\frac{\mu}{\rho}\right)_{s} = \sum_{i} \left(\frac{\mu}{\rho}\right)_{i} X_{i}$

 μ^{\star} mass absorption coefficient of sample with N components $\mu^{\star} = \sum x_J \ \mu_J^{\star}$

Multi-phase mixtures

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

External standard method

Mixture of phase α & β

$$\left(\frac{\mu}{\rho}\right)_{s} = \sum_{j} \left(\frac{\mu}{\rho}\right)_{j} X_{j}.$$

$$\frac{\mu_m}{\rho_m} = w_\alpha \left(\frac{\mu_\alpha}{\rho_\alpha}\right) + w_\beta \left(\frac{\mu_\beta}{\rho_\beta}\right).$$

 c_{α} = volume fraction of α in the mixture w = weight fraction, ρ = density

in a unit volume of mixture,

weight of the mixture = ρ_m weight of the α phase = $w_\alpha \rho_m$ volume of phase $\alpha = c_\alpha = (w_\alpha \rho_m)/\rho_\alpha \rightarrow w_\alpha = (\rho_\alpha c_\alpha)/\rho_m$ μ_m = linear attenuation coefficient of the mixture

Iα

$$\mu_m = c_\alpha \mu_\alpha + c_\beta \mu_\beta = c_\alpha \mu_\alpha + (1 - c_\alpha) \mu_\beta$$

$$= c_{\alpha}(\mu_{\alpha} - \mu_{\beta}) + \mu_{\beta};$$

(hkl) =
$$I_{\alpha} = \frac{K_1 c_{\alpha}}{\mu_m} = \frac{K_1 c_{\alpha}}{c_{\alpha} (\mu_{\alpha} - \mu_{\beta})}$$

 $+ \mu_{\beta}$

External standard method

> Need to have a sample of pure phase of unknown.

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

- > The required reference line comes from another phase in the mixture. \rightarrow do not need to have a sample of pure phase of unknown.
- > The amount of retained austenite in hardened steel (austenite/martensite mixture) --- Cullity Chap 12-5
 - ✓ Composition of the mixture when two phases have the same composition but different crystal structure
 - ✓ External standard method cannot be used, because it is usually impossible to obtain a reference sample of pure austenite, or of known austenite content, of the same chemical composition as the austenite in the unknown.

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

Direct comparison method

$$I(hkl) = \underbrace{\left(\frac{I_o A\lambda^3}{32\pi r}\right) \left[\left(\frac{\mu_o}{4\pi}\right)^2 \frac{e^4}{m^2}\right] \left(\frac{1}{v^2}\right) \left[|F(hkl)|^2 p \left(\frac{1+\cos^2 2\theta}{\sin^2 \theta \cos \theta}\right)\right] \left(\frac{e^{-2M}}{2\mu}\right)}_{\mathbf{K}_2} \mathbf{K}_2 = \frac{\left(\frac{1}{v^2}\right) \left[|F|^2 p \left(\frac{1+\cos^2 2\theta}{\sin^2 \theta \cos \theta}\right)\right] (e^{-2M})}_{\mathbf{K}_2}.$$

 $I = \frac{K_2 R}{2\mu}$ K₂ constant, independent of the kind & amount of the diffracting substance R depends on θ , *hkl*, and the kind of substance. R depends on θ , *hkl*, and the kind of substance.

22

- Can eliminate any effects due to variations in instrument or specimen.
- Useful when there is little prior knowledge of the composition of samples.
- ➤ Diffraction line from the unknown phase is compared with a line from a standard substance mixed with the sample in known proportions. → can be used in powder samples only.

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

Internal standard method

- > Need to get amount of phase A in a mixture of phases A, B, C, & others.
- > Mix known amount of original sample & known amount of standard substance (S).
- \succ c_A = volume fraction of phase A <u>in the original sample</u>
- \succ c'_A = volume fraction of phase A <u>in the composite sample</u>
- $> c_s =$ volume fraction of S in the composite sample

$$I = \frac{K_2 R}{2\mu} \implies I_A = \frac{K_3 c_A}{\mu_m}, \quad I_S = \frac{K_4 c_S}{\mu_m} \implies \frac{I_A}{I_S} = \frac{K_3 c_A}{K_4 c_S}$$

in composite sample

$$c_{\alpha} = \frac{W_{\alpha}/\rho_{\alpha}}{W_{\alpha}/\rho_{\alpha} + W_{\beta}/\rho_{\beta}}$$

mixture of phase $\alpha \& \beta$
$$c'_{A} = \frac{w'_{A}/\rho_{A}}{w'_{A}/\rho_{A} + w'_{B}/\rho_{B} + w'_{C}/\rho_{C} + \dots + w_{S}/\rho_{S}}$$

mixture of phase A, B, C, others, S

Ori

Composite

(Stan

Internal standard method

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

Internal standard method

- > Prepare a set of synthetic samples (known amount of A + constant amount of standard). \rightarrow multiple measurements \rightarrow calibration curve
- > Calibration curve (w_A vs. (I_A/I_S)) $\rightarrow w_A$ can be obtained from (I_A/I_S) for a composite with same w_s which was used in the calibration curve.

$$\frac{I_{\rm A}}{I_{\rm S}} = K_6 w_{\rm A}$$

- > Quartz + Calcium Carbonate
- ➢ Fluorite (standard)
- ≻ w_s = 0.2

- ➢ Relative class
- > Sample doped with known amount of reference material (internal standard)
 - \checkmark x'_J weight fraction of the unknown phase J in the doped sample
 - \checkmark x_J weight fraction of phase J in the un-doped sample
 - \checkmark x_s weight fraction of internal standard

$$> x'_{J} = x_{J} (1 - x_{S})$$

- > $I_{iJ} = (K_{iJ} x_J)/\mu^* ---- (Q1)$
- > $I_{iJ} = K_{iJ} x_J (1-x_S) / \mu_d^*$ (for phase J)
 - $\checkmark~\mu_d{}^*$ mass absorption coefficient of doped sample
- > $I_{hS} = K_{hS} x_S / \mu_d^*$ (for internal standard)
- > $I_{iJ}/I_{hS} = [K_{iJ} x_J (1-x_S)] / [K_{hS} x_S]$
 - ✓ Ratio of intensity is independent of absorption
- > $x_J = [K_{hS} x_S] / [K_{iJ} (1-x_S)] \bullet [I_{iJ} / I_{hS}] = \text{constant} \bullet [I_{iJ} / I_{hS}]$
- > Can be used to analyze any phase in a mixture without analyzing remaining phase.

www.ccp14.ac.uk/poster-talks/david-hay-quant-notes-axaa99/html/sld001.htm CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

Quantitative analysis – Jenkins & Snyder
Intensity of line hkl of phase
$$\alpha$$

 $I_{(hk1)\alpha} = \left[\frac{I_0\lambda^3}{64\pi r^2} \left(\frac{e^2}{m_ec^2}\right)^2\right] \left[\frac{M_{(M1)}}{V_{\alpha}^2} |F_{(hkl)a}|^2 \left(\frac{1+\cos^2 2\theta \cos^2 2\theta_m}{\sin^2 \theta \cos \theta}\right)\right] \left[\frac{X_{\alpha}}{\rho_{\alpha}\left(\frac{\mu}{\rho}\right)_s}\right]$
 K_e experiment $K_{(hkl)\alpha}$ specimen
 $I_{(hk1)\alpha} = \frac{K_e K_{(hk1)\alpha} X_{\alpha}}{\rho_{\alpha}\left(\frac{\mu}{\rho}\right)_s}$ \Rightarrow X is not an independent variable.
 \Rightarrow All X_j must be known to compute the mass absorption coefficient.

28

Internal standard method

$$I_{(hk1)\alpha} = \frac{K_e K_{(hk1)\alpha} X_{\alpha}}{\rho_{\alpha} \left[\frac{\mu}{\rho}\right]_{S}} \clubsuit \quad \frac{I_{(hkl)\alpha}}{I_{(hkl)'\beta}} = \left(\frac{K_{(hkl)\alpha}}{K_{(hkl)'\beta}}\right) \left(\frac{\rho_{\beta}}{\rho_{\alpha}}\right) \left(\frac{X_{\alpha}}{X_{\beta}}\right) \clubsuit \quad \frac{I_{(hkl)\alpha}}{I_{(hkl)'\beta}} = k \frac{X_{\alpha}}{X_{\beta}}$$

- The ratio of a line from phase α to a line from phase β in any specimen causes the mass absorption coefficient to cancel.
- Adding a phase of known concentration to the specimen will permit the evaluation of k for a known and then the evaluation of the wt. fraction of alpha in any unknown.

Jenkins & Snyder, page 369

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

Absorption-diffraction method (external standard method)

- > μ^* (mass absorption coeff of sample with N components, $\mu^* = \sum x_J \mu_J^*$) previously determined by
 - ✓ Calculation from known composition, summation of atomic absorption coefficients
 - ✓ Direct absorption measurement
 - ✓ Measurement of Compton scattering
 - ✓ Case with constant μ^* (include phase transitions where chemical composition remains unchanged during the transition)

- > Multiple phases, variable absorption coefficient
- > Requires measurement of $(I_{ij})_0$ for the pure phases in the mixture.
- > $I_{iJ} = (K_{iJ} x_J)/\mu^* \rightarrow$ pure phase $(x_J = 1) \rightarrow (I_{iJ})_0 = K_{iJ}/\mu_J^*$
- $\succ x_{J} = (I_{iJ})/(I_{iJ})_{0} \bullet (\mu^{*} / \mu_{J}^{*})$
- > x_j can be obtained from (I_{ij}) , $(I_{ij})_0$, μ^* , and μ_j^* .
- > $\log x_J \log[I_{iJ}/(I_{iJ})_0] = \log [\mu^*/\mu_J^*] \rightarrow$ should be a straight line, but deviates (due to microabsorption).

 \rightarrow x_J = (I_{ij})/(I_{ij})₀ • (μ^* / μ_J^*)^{α}

- a is not constant, depends on grain size of analyte and the nature of the matrix of other phases.
- Microabsorption effect can be severe when absorption properties and crystallite size distribution of the pure phase J and the multi-phase mixture are widely different.

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

Absorption-diffraction method

 \succ Compare I_{(hkl) α} of a line in a mixture to its value in pure phase α .

Spiking method (method of standard addition)

$$\frac{I_{(hkl)\alpha}}{I_{(hkl)'\beta}} = \left(\frac{K_{(hkl)\alpha}}{K_{(hkl)'\beta}}\right) \left(\frac{\rho_{\beta}}{\rho_{\alpha}}\right) \left(\frac{X_{\alpha}}{X_{\beta}}\right)$$

Add Y_{α} grams of phase alpha per gram of unknown.

$$\frac{I_{(hkl)\alpha}}{K_{(hkl)'\beta}} = \frac{K_{(hkl)\alpha}\rho_{\beta}(X_{\alpha} + Y_{\alpha})}{K_{(hkl)'\beta}\rho_{\alpha}X_{\beta}}$$

$$\frac{I_{(hkl)\alpha}}{I_{(hkl)'\beta}} = K(X_{\alpha} + Y_{\alpha}).$$

- > X_{α} initial weight fraction of α
- > X_{β} initial weight fraction of β
- > Y_{α} # grams of phase alpha added per gram of original sample
- The ratio of a line from phase alpha to a line from phase beta in any specimen causes the mass absorption coefficient to cancel.

Spiking method

- > Absolute class
- > Sample to be analysed is spiked with known amount of analyte phase J.
 - \checkmark M = mass of sample M_{JD} = mass of dopant phase J
 - \checkmark x_JM = mass of phase J in undoped sample
 - \checkmark x_{JD} = weight fraction of dopant = M_{JD}/(M + M_{JD})
 - \checkmark (x_J)_D = weight fraction of phase J in spiked sample
- $(x_{J})_{D} = (x_{J}M + M_{JD}) / (M + M_{JD}) = x_{J}(1 x_{JD}) + x_{JD}$

$$> \mu_D^* = \mu^* (1 - x_{JD}) + \mu_J^* x_{JD}$$

>
$$I_{ij} = (K_{ij} x_j)/\mu^* ---- (Q1)$$

 $(I_{iJ})_{D} = [K_{iJ} (x_{J})_{D}]/\mu_{D}^{*} = K_{iJ} [x_{J} (1-x_{JD}) + x_{JD}] / [\mu^{*}(1-x_{JD}) + \mu_{J}^{*}x_{JD}]$

 $= K_{iJ} [x_J (1-x_{JD}) + x_{JD})] / [\mu^* \{1 + x_{JD}(\mu_J^* - \mu^*)/\mu^*\}] --- (Q4)$

✓ In case the dopant does not change the overall μ^* significantly, $\mu^* \approx \mu_D^*$

>
$$(I_{iJ})_{D} = K_{iJ} [x_{J} (1-x_{JD}) + x_{JD})] / \mu^{*}$$

$$\succ$$
 $(I_{iJ})_{D}=$ $(K_{iJ}/\mu^{*})x_{J} + (K_{iJ}/\mu^{*})(1-x_{J})x_{JD} = I_{iJ} + (K_{iJ}/\mu^{*})(1-x_{J})x_{JD}$

Spiking method

- $> I_{ij} = (K_{ij} x_j)/\mu^* ---- (Q1)$
- \succ (I_{iJ})_D= (K_{iJ}/ μ^*)x_J + (K_{iJ}/ μ^*) (1-x_J) x_{JD}
- \succ (I_{iJ})_D vs. x_{JD}
- \triangleright @ x₀, (I_{ij})_D= 0, and x_j = x₀ /(x₀-1)

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

Reference intensity ratio (RIR)

Generalization of internal standard method

- Scale the peak intensities to a particular peak (of a reference phase) to bring them to common scale.
- > deWolff & Visser (1964) suggested the (113) peak of corundum (100% peak).
- > RIR = ratio of strongest peak of phase J to that of corundum (113) in 1:1 (weight) mixture

$$\blacktriangleright$$
 RIR_{J,c} = I_{iJ} / I_{hc}

- > General case of $\alpha \& \beta$, $RIR_{\alpha,\beta} = I_{i\alpha} / I_{h\beta}$
- Integrated intensities have to be used.
- > Any number of constituents can be used.
- > Mixture can contain amorphous components.
- > Mass absorption coefficient of mixture need not be known in advance.

> The slope of the internal standard curve is a materials constant.

$$\frac{I_{(hkl)\alpha}}{I_{(hkl)'\beta}} = k \frac{X_{\alpha}}{X_{\beta}}$$

- Scale the peak intensities to a particular peak (of a reference phase) to bring them to common scale.
- deWolff & Visser (1966) suggested that all materials be mixed <u>50:50 with corundum</u> and <u>the ratio of the 100% lines</u> be published with reference patterns.
- > ICDD has a great number in the current PDF.

CHAN PARK, MSE, SNU Spring-2022 Crystal Structure Analyses

Reference intensity ratio (RIR)

$$\frac{I_{(hkl)\alpha}}{I_{(hkl)'\beta}} = \left(\frac{K_{(hkl)\alpha}}{K_{(hkl)'\beta}}\right) \left(\frac{\rho_{\beta}}{\rho_{\alpha}}\right) \left(\frac{X_{\alpha}}{X_{\beta}}\right) \implies \frac{I_{(hkl)\alpha}}{I_{(hkl)'\beta}} = k \frac{X_{\alpha}}{X_{\beta}}$$

$$X_{\beta} \frac{I_{(hkl)\alpha}}{I_{(hkl)'\beta}} \text{ vs. } X_{\alpha} \implies \text{ straight line (slope = k)} \\
 k; \text{ measure of inherent diffracted intensities of the two phases}$$

$$\beta = \text{ corundum} \\
 1;1 \text{ mixture} \\
 hkl's = 100\% \text{ intensity lines}$$

$$\beta = \text{ any phase} \\
 arbitrary concentration \\
 hkl's = any \text{ lines}$$

$$\varphi = RIR_{\alpha,\beta} = \left(\frac{I_{(hkl)\alpha}}{I_{(hkl)'\beta}}\right) \left(\frac{I_{(hkl)\alpha}}{I_{(hkl)'\beta}}\right) \left(\frac{X_{\beta}}{X_{\alpha}}\right) \\$$

$$I^{rel}_{j} - \text{ relative intensity of line j scaled to 100\% line}$$

Jenkins & Snyder

Reference intensity ratio (RIR)

$$\operatorname{RIR}_{\alpha,\beta} = \left(\frac{I_{(hkl)\alpha}}{I_{(hkl)'\beta}}\right) \left(\frac{I_{(hkl)'\beta}^{\operatorname{rel}}}{I_{(hkl)\alpha}^{\operatorname{rel}}}\right) \left(\frac{X_{\beta}}{X_{\alpha}}\right) \Longrightarrow X_{\alpha} = \left(\frac{I_{(hkl)\alpha}}{I_{(hkl)'\beta}}\right) \left(\frac{I_{(hkl)'\beta}^{\operatorname{rel}}}{I_{(hkl)\alpha}^{\operatorname{rel}}}\right) \left(\frac{X_{\beta}}{\operatorname{RIR}_{\alpha,\beta}}\right)$$

$$\operatorname{RIR}_{\alpha,\beta} = \frac{\operatorname{RIR}_{\alpha,\gamma}}{\operatorname{RIR}_{\beta,\gamma}}, \qquad X_{\alpha} = \left(\frac{I_{(hkl)\alpha}}{I_{(hkl)'\beta}}\right) \left(\frac{\operatorname{RIR}_{\beta,c}}{\operatorname{RIR}_{\alpha,c}}X_{\beta}\right)$$

$$\left(\frac{X_{\alpha}}{X_{\beta}}\right) = \left(\frac{I_{(hkl)\alpha}}{I_{(hkl)'\beta}}\right) \left(\frac{I_{(hkl)\alpha}^{\operatorname{rel}}}{I_{(hkl)\alpha}^{\operatorname{rel}}}\right) \left(\frac{\operatorname{RIR}_{\beta,c}}{\operatorname{RIR}_{\alpha,c}}\right), \qquad \int_{j=1}^{n} X_{j} = 1.$$

$$X_{\alpha} = \frac{I_{(hkl)\alpha}}{\operatorname{RIR}_{\alpha}I_{(hkl)\alpha}^{\operatorname{rel}}} \left[\frac{1}{\sum_{j=1}^{\operatorname{No. of phases}}(I_{(hkl)'j}/\operatorname{RIR}_{j}I_{(hkl)'j}^{\operatorname{rel}})\right].$$

$$\operatorname{I}^{\operatorname{rel}}_{j} - \operatorname{relative intensity of line j scaled to 100\% line}^{10\% \operatorname{RIR}_{j}I_{(hkl)'j}}$$

Whole pattern profile matching

- Most useful where overlapping peaks are a problem. Phase to be analysed may not have at least one clearly resolved peak.
- > Profile fitting
 - ✓ Groups of overlapping peaks are separated into individual peaks and integrated intensities extracted. Knowledge of peak profiles, positions required but not crystal structure or composition.
- Structure refinement
 - Either using conventional methods developed for single crystal structure analysis (extraction of integrated intensities, refinement of derived structure factors against a model) or by Rietveld methods
 - ✓ Both structure refinement methods require knowledge of crystal structure.

Example > Alka-Seltzer 2 > Quant using Rietveld refinement

