
운영체제의기초:

Demand Paging

2023년 5월 18, 23, 25, 30일

홍성수
sshong@redwood.snu.ac.kr

SNU RTOSLab지도교수

서울대학교전기정보공학부 교수

2

Agenda

I. Background

II. Issues

III. Thrashing and Working Set

IV. Miscellaneous Issues

Demand Paging

I. Background

4

Motivation (1)

❖ “Address mapping mechanism” in previous lectures

▪ Mechanism: Mapping hardware (MMU and mapping tables)

▪ Separates programmer’s view of memory from system’s

• Each user sees its own memory organization

• Allows OS to shuffle users around and simplifies memory

sharing between users

❖ So far, we have assumed that user processws are

completely loaded into memory

▪ Wasteful because of locality of reference

▪ Process only needs a small amount of its total memory at

any given time

I. Background

5

Motivation (2)

❖ Solution: Virtual memory

▪ Allows process to run with only some of its virtual address

space loaded into physical memory

• MMU: virtual address → physical address

• Virtual address

– Generated by CPU core and used by programmer

– Each process has its own virtual address space

• Physical Address

– Address on bus

– Only one physical address space exists in a system

I. Background

MMUVirtual Address Physical AddressCPU

RAM

IO

devices
Bus

6

Basic Workings

❖ Virtual-to-physical address layout

I. Background

Physical Memory

Magnetic DiskVirtual address space

7

Why Demand Paging? (1)

❖ Virtual address translates to either

▪ Physical memory

• Costly, small, fast

▪ Disk (backing store)

• Cheap, large, slow

▪ Error — Not valid

• Free

I. Background

8

Why Demand Paging? (2)

❖ Idea

▪ Produce the illusion of a disk as fast as main memory

• Works because programs spend their time in only a small piece

of the code

• Knuth’s estimate: 90% of the time in 10% of the code

❖ Key principle

▪ Locality

• Spatial locality

• Temporal locality

I. Background

II. Memory Management Mechanism

10

1. Page Fault Handling (1)

❖Why page faults?

▪ If not all of process is loaded when it is running, what

happens when it references a word that is only in the

backing store?

▪ Hardware and software cooperate to make things work

anyway

① Extend the page tables with an extra bit “valid (present)”

• If the valid bit isn’t set, a reference to the page results in trap

• This trap is given a special name, page fault

② Any page not in main memory right now has the “valid” bit

cleared in its page table entry

II. Memory Management Mechanism

11

1. Page Fault Handling (2)

❖Why page faults? (cont’d)

③ When page fault occurs

• Operating system brings the page into memory

• The page table is updated: “present” bit is set

• The process continues execution

II. Memory Management Mechanism

12

1. Page Fault Handling (3)

❖ Problem in page fault handling

▪ Continuing process is very tricky since page fault may have

occurred in the middle of an instruction

• Don’t want user process to be aware that the page fault even

happened

• Can the instruction just be skipped?

– No: Wouldn’t be transparent to the process

• The instruction has to be restarted from the beginning

– What about instruction like:

MOVE (SP)+, -(R2) or Block transfer

• Requires hardware support to restart instructions

II. Memory Management Mechanism

13

1. Page Fault Handling (4)

❖ Two kinds of memory-related faults

▪ TLB fault

• Required virtual to physical address translation is not in TLB

▪ Page fault

• Contents of a virtual page are either not initialized or not in

memory

II. Memory Management Mechanism

14

1. Page Fault Handling (5)

❖ Important facts regarding page/TLB fault

▪ Every page fault is preceded by a TLB fault

• If the contents of the virtual page are not in memory,

a translation cannot exist for it

▪ Not every TLB fault generates a page fault

• If a page is in memory and the translation is the page table,

the TLB fault can be handled without generating a page fault

II. Memory Management Mechanism

15

1. Page Fault Handling (6)

❖ On each page fault

▪ Stop the instruction that is trying to translate the address

until we can retrieve the contents

▪ Allocate a page in memory to hold the new page contents

▪ Locate the page on disk using the page table entry

▪ Copy the contents of the page from disk

▪ Update the page table entry to indicate that the page is in

memory

▪ Load the TLB

▪ Restart the instruction that was addressing the virtual

address we retrieved

II. Memory Management Mechanism

16

1. Page Fault Handling (7)

❖ To swap out a page to disk

▪ Remove the translation from the TLB, if it exists

▪ Copy the contents of the page to disk

▪ Update the page table entry to indicate that the page is on

disk

II. Memory Management Mechanism

III. Memory Management Policy

18

Key Issues in Demand Paging

1. Page selection

▪ When to bring pages into memory and which?

2. Page replacement

▪ Which page(s) should be thrown out and when?

3. Page frame allocation

▪ Global vs. local

4. In local page frame allocation

▪ Static

• # of page frames are fixed (LRU algorithm)

▪ Dynamic

• # of page frames are varying (working set algorithm)

III. Memory Management Policy

19

1. Page Selection (1)

❖ Page selection policies

1. Demand paging

• Start up process with no pages loaded

• Load a page when a page fault for it occurs

– Wait until the page is in memory

• Almost all paging systems in the past were like this

2. Prepaging

• Bring a page into memory before it is referenced

• When a page is referenced, bring in the next one, just in case

• Hard to do effectively without a prophet

• Sometimes works: sequential read-ahead

III. Memory Management Policy

20

1. Page Selection (2)

❖ Page selection policies (cont’d)

3. Request paging

• Let user say which pages are needed

• What’s wrong with this?

– Users don’t always know best

– Users aren’t always impartial (They overestimate needs)

• Example: Overlay

III. Memory Management Policy

21

2. Page Replacement (1)

❖ Page replacement algorithms

1. OPT

• Throw out the page that won’t be used for the longest time

into the future (by Belady)

• As always, the best algorithm arises if we can predict the future

• It isn’t practical, but it is good for comparison

2. Random

• Pick any page at random

• Works surprisingly well!

III. Memory Management Policy

22

2. Page Replacement (2)

❖ Page replacement algorithms (cont’d)

3. LRU

• Throw out the page that hasn’t been used in the longest time

• Use the past to predict the future

– With locality, LRU approximates OPT

4. FIFO

• Throw out the page that has been in memory the longest

• The idea is to be fair

• Give all pages equal residency

III. Memory Management Policy

23

2. Page Replacement (3)

❖ Example reference string: A B C A B D A D B C B

III. Memory Management Policy

FIFO OPT LRU

A B C A B C A B C A B C

A A B C A B C A B C

B A B C A B C A B C

D D B C A B D A B D

A D A C A B D A B D

D D A C A B D A B D

B D A B A B D A B D

C C A B C B D C B D

B C A B C B D C B D

24

2. Page Replacement (4)

❖ Stack algorithms

▪ Belady’s anomaly: Page fault rate may increase as the

number of allocated frames increases

• Reference string 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 with FIFO

algorithms with frames 3 and 4, respectively

▪ Stack algorithms never exhibit Belady’s anomaly

• A set of pages in memory for n frames is

always a subset of pages in memory for n+1 frames

III. Memory Management Policy

25

2. Page Replacement (5)

❖ Stack algorithms (cont’d)

▪ LRU is a stack algorithm

• Proof sketch:

– The set pages in memory with n page frames

always include n most recently referenced pages

• M(m, r) = the set of m pages of the least page age

• Clearly, M(m+1, r) = the set of m+1 pages of the least page age

• M(m+1, r) contains M(m, r)

III. Memory Management Policy

26

2. Page Replacement (6)

3. LRU algorithm

▪ Naïve implementation

• Too inefficient

– Time stamp + data structure manipulation on each memory

operation

• Too complex for hardware

III. Memory Management Policy

/* on each memory reference:*/

long timeStamp = System.currentTimeMillis();

sortedList.insert(pageFrameNumber,timeStamp);

27

2. Page Replacement (7)

4. LRU approximations

▪ Make use of hardware support: “reference bit”

• Reference bit is set when pages are accessed

• Can be cleared by the OS

▪ Trade off accuracy for speed

• It suffices to find a “pretty old” page

III. Memory Management Policy

28

2. Page Replacement (8)

4. LRU approximations (cont’d)

1) Additional reference bits algorithm

• Each page has a reference bit and an 8-bit register

– “Reference byte”

• At a regular interval, (R-bit, register) is shift to right

• A page with the smallest register value is the LRU page

• Pro:

– Does not impose overhead on every memory reference

– Interval rate can be configured

• Con:

– Scanning all page frames can still be inefficient

– E.g., 4 GB of memory, 4KB pages → 1 million page frames

III. Memory Management Policy

29

2. Page Replacement (9)

4. LRU approximations (cont’d)

2) Clock algorithm

• Background: general idea of the reference bit

– Keep a reference bit for each page frame

– Hardware sets the appropriate bit on every memory reference

– OS clears the bits from time to time

– OS uses the bit to figure out how often pages are being referenced

• Aka “second chance algorithm”

• Used in Unix for VAX-11

– Why didn’t they use hybrid FIFO-LRU?

– It’s too difficult to find the right residence set size

III. Memory Management Policy

30

2. Page Replacement (10)

4. LRU approximations (cont’d)

2) Clock algorithm (cont’d)

• On page eviction:

1. Circulate through the list of reference bits

2. If the value is zero, replace this page

3. If the value is one, set the value to zero; go to 1:

• Pro: Very low overhead

– Only runs when a page needs evicted

– Takes the first page that hasn’t been referenced

• Con: Isn’t very accurate (one measly bit!)

– Degenerates into FIFO if all reference bits are set

• Pro: But, the algorithm is self-regulating

– If there is a lot of memory pressure, the clock runs more often (and

is more up-to-date)

III. Memory Management Policy

1 0 0

0 1

0 1

1 0

1 0

1 1

1 0

31

2. Page Replacement (11)

4. LRU approximations (cont’d)

3) Enhanced clock algorithm

• Some systems use a “dirty bit” to give preference to dirty pages

– Clean ones need not be written to disk

– More expensive to throw out dirty pages

• Used in Macintosh OS

• Problem

– What if clean pages are frequently accessed?

– Example: code pages

III. Memory Management Policy

32

2. Page Replacement (12)

4. LRU approximations (cont’d)

▪ Performance of the clock algorithm

• What does it mean if the clock hand is sweeping very fast?

– Not enough memory

– BSD Unix uses the Clock Algorithm: Sun OS

– “vmstat” command gives info

– “sr” — pages scanned by clock algorithm, per-second

– vmstat –s:

• 292853 pages examined by the clock daemon

• 6 revolutions of the clock hand

• 127878 pages freed by the clock daemon

– vmstat 5:

• VM activity every 5 seconds

III. Memory Management Policy

33

2. Page Replacement (13)

4. LRU approximations (cont’d)

▪ Needs “reference bit” (AKA “use” bit)

• Most CPUs don’t support it in hardware

• So software emulation is performed

III. Memory Management Policy

34

2. Page Replacement (14)

❖ Software emulation of a reference bit

▪ Basic operations

• Set the bit: done by hardware when a page is referenced

• Clear the bit: done by the kernel, usually periodically

▪ Set the bit

• How does the kernel know of a reference to a page?

– Through a page fault

• Upon a page fault, the kernel checks if it is a genuine fault

• If not, the kernel sets both the reference and valid bit to one

• And then flushes TLB

▪ Clear the bit

• The kernel clears both the reference and valid bit

• And then flushes TLB

III. Memory Management Policy

35

2. Page Replacement (15)

5. FIFO-based algorithm

▪ Used in VAX/VMS operating system

▪ Data structures

• Each process has a “resident set list” ordered in FIFO

– For a process, the resident set is the set of pages in memory

– In the initial VMS, the resident set size is fixed to all processes

– In the later VMS, processes may have different sizes

• Keeps a system-wide “free page list”

– Used alongside to offset the weakness of FIFO

– Size of the free page list is maintained at run-time

III. Memory Management Policy

36

2. Page Replacement (16)

5. FIFO-based algorithm (cont’d)

▪ Operation

• On page fault, frames are taken from the head of the free list

– The desired pages are written into the selected page frames

• Old pages are freed from the resident set list to the free list

– But they may be reused when requested

• Maintains a system-wide “modified page list”

– When the swap device is idle, they are written out and

become clean

III. Memory Management Policy

37

2. Page Replacement (17)

5. FIFO-based algorithm (cont’d)

▪ Also called “hybrid FIFO-LRU” algorithm

• The resident set is managed according to FIFO

• The global free page list behaves similarly to LRU

• There exists a resident set size for which FIFO-LRU achieves

a page fault rate close to the pure LRU while incurring a cost

comparable to that of the FIFO

– Important to dynamically find the right resident set size

III. Memory Management Policy

38

3. Page Frame Allocation (1)

❖ Three different styles for page frame allocation

① Global allocation

• All pages from all processes are lumped into a single allocation

pool

• Each process competes with all the other processes for page

frames

② Per-process allocation

• Each process has a separate pool of pages

• A page fault in one process can only replace one of the

process’s frames

• This relieves interference from other processes

③ Per-job allocation

• Lump all processes for a given user into a single allocation pool

III. Memory Management Policy

39

3. Page Frame Allocation (2)

❖ Pros and cons

▪ In per-process and per-job allocation, OS must have a

mechanism for (slowly) changing the allocations to each pool

▪ Otherwise, can end up with very inefficient memory usage

▪ Global allocation provides most flexibility but the least “hog

protection”

III. Memory Management Policy

IV. More on Page Selection:

Thrashing and Working Set

41

1. Thrashing (1)

1. Rationale

▪ What happens when memory gets overcommitted?

• Suppose that there are many users and that between them

their processes are making frequent references to 50 pages,

but memory has only 49 pages

• Each time one page is brought in, another page, whose

contents will soon be referenced, is thrown out

• System will spend all of its time reading and writing pages

– It will be working very hard but not getting anything done

• Average memory access time equals disk access time

• Illusion breaks: Memory access will look as slow as a disk

rather than disks being as fast as memory

– Effective memory access time: teff_acc = ptmem_acc+(1-p)tfault
– Thrashing was a severe problem in early demand paging systems

IV. More on Page Selection: Thrashing and Working Set

42

1. Thrashing (2)

2. Why does the system incur thrashing?

▪ Because it doesn’t know when it has taken on more work

than it can handle

▪ LRU mechanisms order pages in terms of last access

but don’t give absolute numbers indicating pages that

mustn’t be thrown out

▪ What’s the human analogy to thrashing?

• Too many courses? – What’s the solution? Drop one!

IV. More on Page Selection: Thrashing and Working Set

43

1. Thrashing (3)

3. What can be done about thrashing in OS?

▪ If a single process is too large for memory,

there is nothing the OS can do

• That process will simply thrash

▪ If the problem arises because of the sum of several

processes

• Figure out how much memory each process needs

• Change scheduling priorities to run processes in groups

whose memory needs can be satisfied

• Shed load

IV. More on Page Selection: Thrashing and Working Set

44

1. Thrashing (4)

4. Impact

▪ The issue of thrashing may be less critical for PCs

than for time-shared machines

• With just one user, one can kill jobs

when the response gets bad

• With many users, OS must arbitrate between them

IV. More on Page Selection: Thrashing and Working Set

45

2. Working Set (1)

1. Key ideas

▪ A solution proposed by Peter Denning in 1968

▪ An informal definition

• The collection of pages that a process is working with, and

which must thus be resident if the process is to avoid thrashing

▪ The idea behind the working set is to utilize

the recent needs of a process to predict its future needs

• Choose t, the working set parameter

– At any given time, all pages referenced by a process in its last t
seconds of execution are considered to comprise its working set

• A process will never be executed

unless its working set is resident in the main memory

• Pages outside the working set may be discarded at any time

IV. More on Page Selection: Thrashing and Working Set

46

2. Working Set (2)

2. Rationale

▪ Effect of choice of what pages to be kept in main memory

• If too many pages of a process are kept in main memory

– Fewer other processes can be ready at any one time

• If too few pages of a process are kept in main memory

– Page fault frequency is greatly increased

– The number of active processes executing approaches zero

IV. More on Page Selection: Thrashing and Working Set

47

2. Working Set (3)

3. “Working set strategy”

▪ A process can be in memory iff all of the pages that it is

currently using can be in memory

▪ All or nothing model

• If the pages a process needs to use increase and there is no

room in memory, the process is swapped out of memory

to free the memory for other processes to use

IV. More on Page Selection: Thrashing and Working Set

48

2. Working Set (4)

4. Benefits

▪ By swapping some processes from memory,

processes finish much sooner than they would

if the computer attempted to run them all at once

▪ The processes also finish much sooner than they would

if the computer only ran one process at a time to completion,

since it allows other processes to run and make progress

during times that one process is waiting on the hard drive or

some other global resource

▪ The working set strategy prevents thrashing

while keeping the degree of multiprogramming as high as

possible

• Thus it optimizes CPU utilization and throughput

IV. More on Page Selection: Thrashing and Working Set

49

2. Working Set (5)

5. Problem with the working set model

▪ Working set window size varies with processes and time

▪ OS must constantly update working set information

• What pages have been accessed in the last t seconds?

IV. More on Page Selection: Thrashing and Working Set

50

2. Working Set (6)

6. One solution: Take advantage of reference bits

▪ OS maintains “idle time” value of each page

• Idle time

– Amount of CPU time received by process since last access to page

▪ Algorithm: Every once in a while, scan all pages of a process

• For each reference bit on, clear page’s idle time

• For reference bit off, add process CPU time (since last scan) to

idle time

• Turn all reference bits off during scan

▪ Scans happen on order of every few seconds

❖ In Unix, t is on the order of a minute or more

IV. More on Page Selection: Thrashing and Working Set

51

2. Working Set (7)

7. Other questions about the working set model

▪ What should t be?

• What if it’s too large?

• What if it’s too small?

▪ How do we compute working sets if pages are shared?

▪ How much memory is needed in order to keep the CPU busy?

• Note that under working set methods,

the CPU may occasionally sit idle

even though there are runnable processes

– Ends up being “non-work-conserving” scheduling

IV. More on Page Selection: Thrashing and Working Set

52

3. Resident Set (1)

❖ Approximation of working set in VAX/VMS

▪ “Resident set” of a process

• A set of its pages resident in physical memory

▪ Each process has a resident set limit

• Max # of page frames that can be assigned to that process

▪ Resident set limit is dynamically adjusted based on page

fault rate

• No need for costly computation of working set information

IV. More on Page Selection: Thrashing and Working Set

53

3. Resident Set (2)

❖ How can we use the notion of resident set

▪ Thrashing avoidance with resident set

• When a process is made inactive,

all of its pages in its resident set are swapped out

to the swap space

• When a process is made active,

all pages in its resident set are loaded

– Each process has a resident set list in its context

IV. More on Page Selection: Thrashing and Working Set

54

4. Balance Set (1)

❖ Definition

▪ A collection of processes whose working sets are

resident in physical memory

❖Motivation

▪ Working sets are not enough by themselves

to make sure memory doesn’t get overcommitted

▪ We must also introduce the idea of a “balance set”

IV. More on Page Selection: Thrashing and Working Set

55

4. Balance Set (2)

❖ How it works

▪ Key idea

• If the sum of the working sets of all runnable processes is

greater than the size of memory,

then refuse to run some of the processes (for a while)

▪ Thus, we divide runnable processes into two groups

• Active and inactive

• The “collection of active processes” is the “balance set”

• Only when its working set can be loaded,

a process is made active

• When a process is made inactive,

its working set is migrated back to the swap device

IV. More on Page Selection: Thrashing and Working Set

56

4. Balance Set (3)

❖ Balance set management mechanism

▪ Some algorithm must be provided for moving processes

into and out of the balance set

▪ The “long-term scheduler” does this in Unix

• When the number of free pages goes low,

it picks idle processes or less important processes

and swaps out their pages back to the swap device

▪ What happens if the balance set changes too frequently?

• Thrashing

IV. More on Page Selection: Thrashing and Working Set

57

4. Balance Set (4)

❖ In Unix, swapper (process 0)manages

the balance set and performs swapping

▪ The first process created by OS

▪ System process with no user context (daemon process)

▪ It executes a routine called sched()

▪ It is normally asleep and awakened once every second

▪ It swaps out a process, if free mem is less than t_gpgslo

▪ It calls as_swapout(), which cycles through each segment

▪ To swap in a process, the swapper swaps in its u_area

• When the process eventually runs,

it will fault in other pages as needed

IV. More on Page Selection: Thrashing and Working Set

58

Out-of-Memory Killer in Linux (1)

❖ Out-of-memory (OOM)

▪ Undesired state of computer operation where no additional

memory can be allocated for use by OS

▪ Occurs because all available memory, including disk swap

space, has been allocated

IV. More on Page Selection: Thrashing and Working Set

59

Out-of-Memory Killer in Linux (2)

❖ Out-of-memory (OOM) killer

▪ Typical OOM case happens when OS is unable to create

any more virtual memory because all of its potential backing

devices have been filled

▪ Linux kernel mechanism which attempts to recover from

OOM condition by terminating a low-priority process

IV. More on Page Selection: Thrashing and Working Set

V. Trends in Memory Management

61

Trends in Memory Management (1)

1. Larger physical memory

▪ Page replacement algorithm is less important

• Hopefully, it will rarely get invoked

▪ Less hardware support for replacement policies

• Software emulation of use and dirty bits

▪ Larger page sizes

• Better TLB coverage

• Smaller page tables

• Fewer pages to manage

V. Trends in Memory Management

62

Trends in Memory Management (2)

2. Larger virtual address spaces

▪ 64 bits with 4K page: Max page table size 64K TB

▪ Sparse address spaces

▪ Inverted page tables

• Hash table VA → PA

• Scale with the size of physical memory

V. Trends in Memory Management

63

Trends in Memory Management (3)

3. File I/O using the virtual memory system

▪ Memory mapped files

• Uses VM system for file caching

• Page fault handing for reads/writes

▪ Make page replacement interesting again

▪ More sequential behavior

V. Trends in Memory Management

64

Memory Mapped Files

❖Map a disk block onto pages
▪ paddr = mmap(addr,len,prot,flags,fd,offset)

• [offset, offset+len) → [paddr, paddr+len)

• fd is file descriptor returned by open()

▪ Reduces no. of system calls and data copies for file access

V. Trends in Memory Management

disk

page tables

buffer

cache

pageable

physical

memory

disk

page tables

pageable

physical

memory

65

mmap() System Call (1)

❖ mmap() creates a VMA in the virtual memory of the

calling process

▪ Case1: flags includes MAP_ANONYMOUS

• Created VMA consists of anonymous pages

• These are allocated to page frames later via a minor page fault

▪ Case2: flags does NOT include MAP_ANONYMOUS

• Created VMA consists of the pages which are mapped with the
file specified by fd

• These are allocated to a page frame later via a major page fault

V. Trends in Memory Management

void *mmap(void *addr, size_t length,

int prot, int flags, int fd, off_t offset);

66

mmap() System Call (2)

❖ Case1: flags includes MAP_ANONYMOUS

V. Trends in Memory Management

virt

Initial state

phys

① p1 = mmap();

② p1[100] = 1;

③ munmap(p1);

virt

After 

A VMA is allocated by

mmap(); the

corresponding pages

are not mapped yet

phys

After 

A minor page fault

occurs and the

page is mapped to

a page frame

After 

The VMA is released;

the mapping is

removed

virt phys virt phys

Legend

VMA

Page or

Page frame

67

mmap() System Call (2)

❖ Case2: flags does NOT include MAP_ANONYMOUS

V. Trends in Memory Management

virt

Initial state

phys

① p1 = mmap();

② p1[100] = 1;

③ munmap(p1);

virt

After 

A VMA is allocated by

mmap(); the

corresponding pages

are not mapped yet

phys

After 

A major page fault

occurs and the

page is mapped to

a page frame and

the handler reads

data from disk

After 

The VMA is released;

the mapping is

removed

virt phys virt phys

Legend

VMA

Page or

Page frame

68

Paging for Large Address Spaces

❖ Three approaches

1. Hierarchical page table

2. Hashed page table

3. Inverted page table

V. Trends in Memory Management

69

1. Hierarchical Page Table (1)

❖ Key ideas

▪ Break up the logical address space into multiple page tables

▪ A simple technique is a two-level page table

• Logical address (on 32-bit machine with 1K page size) is

divided into

– Page number consisting of 22 bits

– Page offset consisting of 10 bits

• Since page table is paged, page number is further divided into

– 14-bit first-level index

– 8-bit second-level index

V. Trends in Memory Management

70

1. Hierarchical Page Table (2):

Two-Level Page Table

❖ Address format

▪ Size of PTE: 4 bytes

▪ Size of PT: 222 x 4 bytes = 16 MB

▪ No of PTEs in a page: 256 entries (8-bit)

▪ No of pages in PT: 16K (14-bit)

▪ Size of first-level PT: 16K x 4 bytes = 64 KB

V. Trends in Memory Management

Page # offset

22 bits 10 bits
• • • • • • • •

• • •

First-level PT

Second-level PT

index to

1st – level PT
offset

14 bits 10 bits

index to

2nd – level PT

8 bits

71

2. Hashed Page Table (1)

❖ Key ideas

▪ The virtual page number is hashed into a page table

▪ This page table contains a chain of elements hashing to the

same location

▪ Virtual page numbers are compared in this chain searching

for a match

▪ If a match is found, the corresponding physical frame is

extracted

V. Trends in Memory Management

72

2. Hashed Page Table (2)

V. Trends in Memory Management

Source: Silberschatz, Galvin and Gagne, Operating System Concepts, 2002

73

3. Inverted Page Table (1)

❖ Key ideas

▪ Best thought of as an off-chip extension of the TLB

▪ One entry for each page frame of physical memory

▪ Entry consists of the virtual address of the page stored in

that real memory location, with information about the

process that owns that page

▪ Decreases memory needed to store each page table, but

increases time needed to search the table when a page

reference occurs

▪ Uses hash table to limit the search to one, or at most a few

page-table entries

▪ Each process still keeps its page table

• Disk address of an invalid page

V. Trends in Memory Management

74

3. Inverted Page Table (2)

V. Trends in Memory Management

Source: Silberschatz, Galvin and Gagne, Operating System Concepts, 2002

