Ship Stability

Ch. 11 Static Equilibrium State after Flooding Due to Damage

Spring 2018

Myung-II Roh

Department of Naval Architecture and Ocean Engineering Seoul National University
sydab

Contents

∇ Ch. 1 Introduction to Ship Stability
V Ch. 2 Review of Fluid Mechanics
V Ch. 3 Transverse Stability Due to Cargo Movement

- Ch. 4 Initial Transverse Stability

Ch. 5 Initial Longitudinal Stability

- Ch. 6 Free Surface Effect

Ch. 7 Inclining Test
\square Ch. 8 Curves of Stability and Stability Criteria
\square Ch. 9 Numerical Integration Method in Naval Architecture
Ch. 10 Hydrostatic Values and Curves
Ch. 11 Static Equilibrium State after Flooding Due to Damage
Ch. 12 Deterministic Damage Stability
V Ch. 13 Probabilistic Damage Stability

Ch. 11 Static Equilibrium State after Flooding Due to Damage

1. Change in Position Due to Flooding
2. Lost Buoyancy Method
3. Added Weight Method

Introduction

In general, the document which contains the following list is submitted to ship owner and classification society, and get approval from them 9 months before steel cutting.

- Principle particulars
- General arrangement
- Midship section plan
- Lines plan
- Hydrostatic table
- Bonjean table
- Tank capacity table
- Light weight summary
- Allowable Minimum GM Curve
- Trim \& stability calculation (Intact stability)
- Damage stability calculation
- Freeboard Calculation
- Visibility Check
- Equipment number calculation

Today's main subject!
\qquad

1. Change in Position Due to Flooding

sydlab

Damage of a Box-Shaped Ship

\checkmark A ship is composed of three compartments.

When a compartment of the ship is damaged, what is the new position of this ship?

Damage of a Box-Shaped Ship (Immersion)

The position of the ship will be changed.

* The new position of the ship can be calculated by the lost buoyancy and added weight methods.
sydob

Damage of a Box-Shaped Ship (Immersion, Trim)

When the compartment at the after part of the ship is damaged, what is the
new position of this ship?

The position of the ship will be changed.

> Immersion
\square

Damage of a Box-Shaped Ship (Immersion, Trim, Heel)

The position of the ship will be changed.

$$
\text { Immersion }+ \text { Trim } \square
$$

Change in Position Due to Flooding (Immersion)

What happens if the compartment located in the midship part of a ship is damaged?

Change in Position Due to Flooding (Immersion, Trim)

What happens if the compartment located in the after part of a ship is damaged?

Change in Position Due to Flooding (Immersion, Trim, Heel)

What happens if the compartment located in the fore and right part of a ship is damaged?

<Plan view of water plane>

<Section view>

> <Elevation view>

2. Lost Buoyancy Method

sydtab

Concept of Lost Buoyancy Method (1/2)

L

$\sqrt{\square}$

A damage occurs.

\square : Volume which contributes to buoyancy

The lost buoyancy must be regained by
\square : Additional volume which contributes to buoyancy (regained buoyancy)

Lost buoyancy method
"The water that enters the ship is considered still part of the sea, and the buoyancy of the flooded space is lost."

Concept of Lost Buoyancy Method (2/2)

Lost buoyancy method

\square : Volume which contributes to buoyancy
: Additional volume which contributes to buoyancy

- In this method, it is assumed that the flooded compartment has free communication with the sea.
- The flooded compartment can be considered as a sieve (or filter), and that offers no buoyancy to the ship. Only the intact portions of the ship on either side of the flooded compartment contribute to the buoyancy.
- Since buoyancy has been lost, it must be regained via an increase in the draft
- The ship will sink until the volume (or displacement) of the newly immersed portions equals the volume (or displacement) of the flooded compartment.
\qquad

The water that enters the damaged compartment is considered as an , and the buoyancy of the flooded space is
And the loss of buoyancy is regained by an increase of draft.

Loss of buoyancy: Sea water flooded into the damaged compartment is considered as part of the sea

$$
\rho \cdot g \cdot v=\rho \cdot g \cdot\left(A_{W P}-a\right) \cdot \delta d
$$

$A_{W P}$: water plane area of the ship
(Including water plane area of the damaged compartment)
a : water plane area of the damaged compartment d : Draft before the compartment is not damaged δd : Draft change due to damaged compartment v : Volume of damaged compartment below initial water plane

[Example] Damage of a Box-Shaped Ship (Immersion) (1/6)
\checkmark A ship is composed of three compartments.

When a compartment of the ship is damaged, what is the new position of this ship?
sydab

[Example] Damage of a Box-Shaped Ship (Immersion) (5/6)

syd్ab ${ }^{23}$
$=$

3. Added Weight Method

3. Added Weight Method	

Concept of Added Weight Method (1/2)

$\sqrt{5}$

\square

A damage occurs.
: Added weigh

Added weight will be equilibrium with the buoyancy regained by

Additional added weight
\square : Additional volume which contributes to buoyancy

Added weight method

"The water that enters the damaged compartment is considered as an added weight with no loss of buoyancy."

- The water that enters the damaged compartment is considered as an added weight with no loss of buoyancy.
- This is a misnomer, since water in space open to the sea and free to run in or out does not actually add to a ship's weight.
- For calculation purposes, it is convenient to regard such flooding water as adding to the displacement.
- However, it must be remembered that the resulting (virtual) displacement not only differ from the initial displacement, but varies with change in trim or heel.
- Since the added weight method involves a direct integration of volumes up to water plane at the damaged condition, it is just as well adapted to dealing with complex flooding conditions as with simple ones.

$$
\delta d=\frac{v}{A_{W P}-a}
$$

[Example] Damage of a Box-Shaped Ship (Immersion) (1/9)

\checkmark A ship is composed of three compartments.

When a compartment of the ship is damaged, what is the new position of this ship?
sydlab

[Example] Damage of a Box-Shaped Ship (Immersion) (5/9)

syd్ab

\#
[Example] Damage of a Box-Shaped Ship (Immersion) (7/9)

[Example] Damage of a Box-Shaped Ship (Immersion) (9/9)

