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CHAPTERS.
THE FINITE VOLUME METHOD FOR
CONVECTION-DIFFUSION PROBLEMS




Review

ApP) .. . .

5[ + div(pgu) = div(I" grad @) + .5, div(I" grad ¢) + 5,=0
Jdiv(l‘ erad ¢)dV + JS¢dV = [n (T grad ¢)dA + JS¢dV= 0 jde =D S
CV CV A Y 5 .

I, I I I,

Ac SIF - Am o Sﬁ ¢P = - An) ¢W T Ae (pE T Su
OXpg OXyyp Oxypp Oxpp
apQp= ay Py + apPr + .9, Step 1: grid generation

Step 2: discretization
Step 3: Modification of the discretized equation

Ay ap ap for the boundary cells
Step 4: Set-up systems of linear equations

rnJ re B
A A | ap+ag—Sp Step 5: Linear system solver
Oxypp Oxpp
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Introduction

** Steady-state convection-diffusion equation

(py)

ol
div(pug)|= div(I" grad ¢) + .5,

+ div(pgu) = div(T grad 9) + S,

® Integral type governing equation

Jn. (p(bu)dA:Jn.(Fgrad P)dA + JS¢dV

A A CV

® The main problem in the discretization of the convective terms is the calculation of ¢ at CV
faces and its convective flux across these boundaries.

® Diffusion process affects the distribution of ¢ in all directions.
® Convection spreads influence only in the flow direction.

® This sets a limit on the grid size for stable convection-diffusion calculations with central
difference method.
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Steady one-dimensional convection and diffusion



Steady 1D convection and diffusion

s+ Without source term

d d d¢ P Pe

—(pu@) =—| I'— Uymem
e e
® From the continuity, - P g

d(pu)
du

= ()

¢ Integration and discretization

[~ (oa)ay = [n-(pguyia -

7

(puAp), — (puAop),, = (FA%J - [FA%) (puA), — (puA),, =0
duw ) duw )



Steady 1D convection and diffusion

+s» Convective mass flux and diffusion conductance at cell faces

d d
(pudg), - (pudg), = | TASZ | — | a2 (pu), - (pu), = 0
dx | dv |
F D L
= pu = —
e Ox
F))) F(’
F, = (pu), F,=(pu),  D,= D, =
OX OX pf
® For 1D, equal cell face area
Fc@ _ Fn‘ ¢m — Dc( ¢E _ ¢P) T DI)?(¢P — ¢W)
F . F = O OX,p OXp,
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Assume that the velocity field
is ‘somehow known’ Xy
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The central differencing scheme



+¢* Central difference scheme

® Works well for diffusion terms

® For convective terms?

¢ For uniform grid,

9. = (9p+ Qp)/2
Feq)e o Fm¢m — Dc( ¢E o ¢P) o D}77(¢P o ¢W)

r,
2

F
(Qp+ Qp) — #((DW + Op) = D(Or — Op) — D,(0p — Op)

Op

0, = (O + Op)/2

CDS

Oy +

Or



¢ For uniform grid,

Op =

w

Pp

apPp = ayQy+ apPg

dyy

dr

ap

The same general form with the pure diffusion problem
except the additional coefficients for convection

D,+—
2

CDS

oy +|D,— 7 O
. D w D F e
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CDS

% Example 5.1 .

Y

® A property ¢is transported 0=1f

|| e
- <

by convection and diffusion

through the 1D domain.

Using CDS, find the distribution of ¢ for
L=1,p=1,1=0.1.

Case 1: u=0.1 m/s (use 5 CV’s)

Case 2: u=2.5m/s (use 5 CV’s)

Case 3: u=2.5m/s (20 CV’s)

Analytical solution for this problem,

O— @, exp(pux/T")—1

= Derive by yourself!

Oor— ¢y exp(pul/T’)—1

Problem description

%_ d2¢: "_ﬁ':() 0201 L)=¢,
'Oua’x . 0 0, 1_¢ #0)=¢, , o(L)=¢



CDS

** Example 5.1
® Fivecells: dv=0.2 m

gl |
7((151) + @p) — 7(¢W + @p) = D¢ — Op) — D,(0p — Op)

F =pu, D=Tlog F,=F=Fand D,=D,=.D

® Forcell1
Fc’¢€ o Fn?¢lﬂ — Dc’(¢E o ¢P) o D})J(¢P o ¢I’V) ¢w — ¢A y Fw — FA =F
— F10,=D,(0p— ¢p) —
OX
A Ui Y 4 | 5 5
DA: F :2£:2D ¢:1I 3 i %—r"i—r‘bt i @ =¢,:0
0.5x OX x=0 wew BPoe k x=L



CDS

** Example 5.1
® Forcelll

F,
7‘(@, +0p) = 104 =DA@r — ¢p) = D (0p = ¢,)

(Ze +De+DAj¢P =(De—

F,=F,=F

j¢E"‘O°¢W"'(DA"‘FA)¢A D,=2D

r,
2

(§+3Dj¢}) =(D—§)¢E +0-¢, +(2D+F)g,

apPp = ay Py + ap Qg For internal cells
- a7 a a
apPp=ayQy+apPp+ .35, - - -
F F,
Dm+l ‘DL’__L ﬂ”"'-i_aE—'_(Fc’_FH’)
[l_])—ﬂl,.V‘l‘(lE‘*'(FL,_FW)_SP 2 2




CDS

**» Example 5.1
® Forcell 1

(§+3D)¢P :(D—g)% +0-¢, +(2D+F)g,

Clp¢p — ﬂ”/(DH/"‘ CZE¢E + Sl! Su = (ZD ‘I‘F) 4
aP:dI’V-I_dE_I_(Fe_Fm)_SP SP:_(2D+F)
Node Ay ar Sp S,
1 0 D-F/2 _(2D+F) (2D + F)o,
2.3.4 D+T/2 D—F/2 0 0

5 D+F/2 0 —~(2D - F) (2D — F)oy



**» Example 5.1
® Forcell 2~4

FIP

CDS

F,
7(% + @p) — 7(¢W + @p) = D (0 — ¢p) — D,(0p — Oip)

apQp= ay Py + agPp

For internal cells

dyy ag dp
F F,
Dn)+i De_ - aW+dE+(Fc_Fn>)
2 2
NOde aw arg SP Su
| 0 D-—F/2 2D+ F) 2D+ F)o,
2,3, 4 D+F/2 D-F/2 0 0
5 D+F7/2 0 —(2D-F) (2D - F)fy




**» Example 5.1
® Forcell 5

F.0,— F,0,= D0z — ¢p) — D, (0p — ) *=0 o]
Fn?
Fgop— 7(% + Q) = Dg(@p — 0p) — D,(0p — Oy)
F F

(_EJFBDJ% =0-¢, +(D+5)¢W +(2D - F )¢,
ap@p=ayQpy+apdp+ S, S, = (ZD _F) B
aP:ﬂVV_I_(lE_i_(Fe_Fm)_SP SP:_(ZD_F)

Node ay ag Sp S,

1 0 D-F/2 _(2D + F) (2D + F)o,

2.3.4 D+ F/2 D—F/2 () ()

5 D+ F/2 0 =20 =) (2D - F)¢g




CDS

**» Example 5.1
® Case-1

= Matrix form of the linear equations

=01 m/s F=pu=0.1 D=T/0x=0.1/0.2=0.5
¢A: 1 and ¢B:O

" 1.55 —045 0 0 0 T[¢] [1.1 0] [0.9421

—0.55 1.0 —045 0 0 |l¢] |0 0, |0.8006
0  —055 10 045 0 |lo;0=]0 0, = |0.6276
0 0 —055 10 —045/l¢,] |0 0, |0.4163
0 0 0  -055 145\l |0 05| 0.1579




CDS

*** Example 5.1

® Case-1

= Comparison with the analytical solution
= Errormax.:~5%

Good enough !

1.0
u=0.1m/s

0.8

0.6 |~ /

Exact solution

0.4

Numerical solution (CD)

0.0 | I |
0 0.2 0.4 0.6 0.8 1.0

Distance (m)



CDS

*** Example 5.1

® Case-2
= Matrix form of the linear equations 25 times faster flow than case-1
u=25m/s F=epu=25 D=T/6x=0.1/0.2=0.5
¢44: 1 and ¢B:O
Unstable !
2.5 |
u=25m/s
Numerical solution (CD)
20}
Wiggles!
) 1.5 Max. error=170%
1.0 —‘\.//\
0.5} Exact/
solution
0.0 | | | |
0 0.2 0.4 0.6 0.8 1.0

Distance (m)



CDS

*** Example 5.1

® Case-3
= Matrix form of the linear equations 4 times more cells than case-2
u=25m/s ow=005 F=pu=25 D=T/6x=0.170.05 = 2.0
Q)‘{: 1 and ¢B:O

Good enough ?

1.0

Numerical solution (CD)
08 |

0.6 |-
¢
Exact solution
0.4 |
0.2 |
u=2.5m/s
0 0 | | | |
0 0.2 0.4 0.6 0.8 1.0

Distance (m)



CDS

** Example 5.1
® Discussion

= Case-1, stable, F=01D=05F/D=0.2

= Case-2, unstable F=25D=05F/D=5

= Case-3, stable F=25D=2FI/D=1.25
® CDS

= Seems to yield accurate results when the F/D ratio is low!
= Large F: highly convective
= Small F: diffusive
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Properties of discretization schemes

** Limitation of the computational meshes

® Numerical results may be obtained that are indistinguishable from the ‘exact’ solution of the
transport equation when the number of computational cells is infinitely large, irrespective of
the differencing method used.

® However, in practical calculations we can only use a finite number of cells.

® Our numerical results will only be physically realistic when the discretization scheme has
certain fundamental properties.




Properties of discretization schemes

*» Conservativeness

® To ensure conservation of ¢for the whole solution domain
* The flux of ¢ leaving a CV across a certain face must be equal to

the flux of ¢ entering the adjacent CV through the same face.

® To achieve this
= The flux through a common face must be represented in a consistent manner

Gradient = (¢ = ¢,)/6x

s o ,

R -9
% 1 E 2 ! 3 | 4 %
i L 1 ‘ ; * : o }
ox/2 OX OX OX ox/2
———————— | - P | et ' - o e p—



Properties of discretization schemes

*» Conservativeness

Gradient = (¢ — ¢1)/6x

Sl ¢2 L, o TR N

(=00 (0= @1 {qﬂ _r, 0 cbs,)}
b L o




Properties of discretization schemes

*» Conservativeness

® Inconsistent use of a quadratic interpolation formula
= Eastface of CV2: CVs1,2,3
= West face of CV3: CVs 2,3,4

® OQverall conservation is not satisfied.

Gradient of 1

Gradient of 2
/ Quadratic function 2

Quadratic function 1 /

03
Pa
! ¢2 | ;
Qa 1 : 2 i 3 : 4 ds
g S : & . e : & E ~
| 0x/2 ox %( Ox ox/2 ‘
|t — | -




Properties of discretization schemes

** Boundedeness

® Sufficient condition for a convergent iterative method

:aW+aE+(F;_Fw)_S

a zap—S ,

p p

= Diagonally dominant

® For diagonal dominance, S, <0

= Diagonal dominance is a desirable feature for satisfying the boundedness criterion.

= All coefficients of the discretized equations should have the same sign.
— Usually positive

— Increase in the variable ¢ at one should result in an increase in ¢ at neighboring cells.

Node Ay ag Sp S,
1 0 D-F/2 —(2D + F) 2D+ F)¢,
2,3,4 D+ F/2 D-F/2 0 0
5 D+ F/2 0 —(2D - F) (2D — F)p



Properties of discretization schemes

*** Transportiveness
® The transportiveness property of a fluid flow

can be illustrated by considering two constant sources m
of ¢ at point W and E .

w E
P

(a)

Direction of
flow =
& b b
w P E \\
\_/U Pure
(b)

convection Pe — oo

® Two extreme cases
= No convection and pure diffusion (Pe - 0)
= No diffusion and pure convection (Pe—> o)

— All of property ¢ emanating from the sources at W and E is immediately transported downstream.

— Thus, conditions at P are now unaffected by the downstream source at E and completely dictated by the
upstream source at W.

— No diffusion,

Dp =y
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Assessment of the central differencing scheme for convection—diffusion problems



Assessment of CDS for C-D problems

+s» Conservativeness
® Consistent evaluation of cell faces = conservative

*** Boundedness Ay aE; ap
® Internal coefficients D +ﬂ D. _t ay+ap+ (F,—F,)
= Satisfied? !
® < ..
F an < 1 at one node at least D T/ox
D,——<>0 ar]
2
F
¢ =Pe, <2
D

e

= Otherwise, the requirements for boundedness will be violated and this may lead to physically
impossible solutions.

= Case-1, stable, F=01D=05F/D=0.2
= Case-2, unstable F=25D=05F/D=5
* Case-3, stable F=25D=2F|D=1.25



