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3.1 Hooke & Jeeves Method
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Hooke & Jeeves Method (1/16) ﬁ

3. Local Pattern Search

M This method is a sequential technique, each step of which consists
of two kinds of move, the ‘Local Pattern Search’ at a base point
and ‘Global Pattern Move' to the optimal point.

F 00X

=

Global Pattern Move
Base point-y ¥
Local Pattern Search
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Hooke & Jeeves Method (2/16)

= 1. Base Point

3. Local Pattern Search

1. ‘Local Pattern Search’ at the base
point b’

«Search in x; direction.

- No improvement of the value of the
objective function in x, direction
» No movement in x, direction
«Search in x, direction.

- Improvement of the value of the
objective function in x, direction
» Movement in the positive x, direction
*Move to and define the base point b2

2. 'Global Pattern Move' at the base
point b2

*Find a temporary base point t,> by symmetrical
displacement of b' to b2.

*Because the value of the objective function at
t,? is better than that at b? perform the ‘Local
Pattern Search’ at t,°.
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Hooke & Jeeves Method (3/16)

= 1. Base Point

3. Local Pattern Search

3. 'Local Pattern Search’ at the
temporary base point t,?

«Search in x; direction.

- Improvement of the value of the
objective function in x, direction

= Movement in the positive x, direction
«Search in x2 direction.

- Improvement of the value of the
objective function in x, direction

=» Movement in the positive x, direction
*Move to and define the base point b3.

4. 'Global Pattern Move' at the base

point b3

«Find a temporary base point t,* by symmetrical
displacement of b? to b3.

*Because the value of the objective function at t,*
is not better than that at b3, perform the ‘Local
Pattern Search’ at b3.
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Hooke & Jeeves Method (4/16)

= 1. Base Point

3. Local Pattern Search

5. 'Local Pattern Search’ at the base
point b3

«Search in x; direction.

- Improvement of the value of the
objective function in x, direction
» Movement in the positive x; direction
«Search in x, direction.

- No improvement of the value of the
objective function in x, direction
= No movement in x, direction
*Move to and define the base point b*.

6. 'Global Pattern Move' at the base
point b*

*Find a temporary base point t;* by symmetrical
displacement of b3 to b*.

*Because the value of the objective function at
to* is better than that at b* perform the ‘Local
Pattern Search’ at ty*.
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Hooke & Jeeves

Method (5/16)

= 1. Base Point

3. Local Pattern Search

7. 'Local Pattern Search’ at the

X,

temporary base point t,*

«Search in x, direction.
- No improvement of the value of the

objective function in x, direction

=» No movement in x, direction

«Search in x, direction.
- No improvement of the value of the

objective function in x, direction

» No movement in x, direction

*Because there is no improvement of the value of
the objective function in x; and x, direction, the

e X1 current base point is defined as the base point

b®.

8. ‘Global Pattern Move' at the base

point b®

*Find a temporary base point t,> by symmetrical
displacement of b* to b°.

*Because the value of the objective function at t,°
is not better than at b, perform the ‘Local
Pattern Search’ at b>.
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= 1. Base Point
2. Global Pattern Move

3. Local Pattern Search

Hooke & Jeeves Method (6/16)

9. 'Local Pattern Search’ at the base
point b?
«Search in x; direction.

- No improvement of the value of the objective
function in x, direction
» No movement in x, direction

«Search in x, direction.

- No improvement of the value of the objective
function in x, direction
=» No movement in x, in x, direction

*Because there is no improvement of the value of
the objective function in x; and x, direction, the
current base point defined as base point b®.

*Because b® = bb, reduce the step size by half
and perform the ‘Local Pattern Search’ at b®.

I!(".nb 1
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Hooke & Jeeves Method (7/16)
- Rule of the ‘Local Pattern Search’ (1/2)

p 1
‘ Rule of the ‘Local Pattern Search’ [c i< siccess)

Rule @ Search in the positive x; direction.

- Move the exploratory point in the positive
x; direction and evaluate the value of the

objective function at that point. is increased direction.
(Fail) =oF
bk
o—— - If the value of the | - Search in the x,,, direction at the
bk objective function current point.

- If the value of the
objective function

- Come back to the previous point
and search in the negative x;

is decreased
(Success)

s

bk

Rule @ Search in the negative x; direction.

- If the search in the positive x; direction is
failed, move the exploratory point in the
negative x; direction and evaluate the value
of the objective function at that point.

b ---oF

- If the value of the
objective function
is increased
(Fail)

- Come back to the previous point
and search in x;,,; direction.

- If the value of the
objective function
is decreased
(Success)

- Search in the x;,, direction at the
current point.

51—0———-0F
bk

- This process of the 'Local Pattern Search’ is continued fori=1, .., n.
- After searching in x, direction, the current point is defined as new base point b**..

12
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Hooke & Jeeves Method (8/16)
- Rule of the ‘Local Pattern Search’ (2/2)

Global Pattern Move /

Base point -
(o]

Local Pattern Search

* Super script 'k’ means the number of step.

X

= Rule of the Local Pattern Search (F: Fail, S: Success)

<Case 1> g <Case 2> S <Case 3> F
k+1
lb bl+1 ? Step/2
F o---0---oF o—IS Fo--4%--0 F ) o9
b¥ b¥ s brerd
)
F
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Hooke & Jeeves Method (9/16)
- Algorithm Summary (1/4)

1) Local Pattern Search (Problem with n design variables)

1. Compute the value of the objective function at
the starting base point b'.

2. Compute the value of the objective function at
b'+8,, where &, is input step size and a vector with
n elements (8, = [6;, 0, 0, ..., Q7). If the value of
the objective function is decreased, b'+8; is
adopted as t,! and the search is continued.

Example of the 'Local Pattern Search’
in the problem with
two design variables (x;, x,)
(Search in x, direction)

3. Compute the value of the objective function at
t,'+8,, where 8, is also input step size and a vector
with 1 elements (8, = [0, 6,, O, ..., O]"). If the value
of the function is decreased, t,"+8, is adopted as
t,.

Example of the ‘Local Pattern Search’
in the problem with
two design variables (x;, X,)
(Search in x, direction)
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Hooke & Jeeves Method (10/16)
- Algorithm Summary (2/4)

1) Local Pattern Search (Problem with n design variables)

4. After the 'Local Pattern Search’ for all design variables, new base point is defined.
(new base point b? = t,)

5. Perform the ‘Global Pattern Move’ from the previous base point along the line
from the previous to current base point.
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Hooke & Jeeves Method (11/16)
- Algorithm Summary (3/4)

2) Global Pattern Move

1. Define the temporary base point located the same distance between the
previous and current base point (obtained from ‘Local Pattern Search’) from the
current base point (‘Global Pattern Move’), and calculate the value of the
objective function at this point. The temporary base point is calculated by

‘Global Pattern Move’ as follows. Example of the ‘Global Pattern Move' in the /3

problem with two design variables (x;, x) tO
k+l _ .k k+l kY _ k+l _ gk | when the value of the objective function at the
t0 =b" + 2(b b ) =2b b temporary base point is not improved.

2. If the result of the temporary base point is a better point
than the previous base point, perform the ‘Local Pattern
Search’ at the temporary base point. Otherwise, come
back to the previous base point and perform the ‘Local
Pattern Search'.
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Hooke & Jeeves Method (12/16)
- Algorithm Summary (4/4)

3) Closing Condition (Stopping Criterion)

1. When even this ‘Local Pattern Search’ fails (bx*! = bk, there is no
improvement), reduce the step sizes §; by half, /2, and resume the ‘Local
Pattern Search'.

Example of the ‘Global Pattern Move' in the 3

problem with two design variables (x;, x,) /t

when the value of the objective function at the
temporary base point is not improved.

2. If the step size &, is smaller than g, stop the iteration
and current base point is the optimal point.

opics in Ship Design i Fall 2015, Myung:| 1l Roh ’ !dmlnﬁnbm 17

Hooke & Jeeves Method (13/16)
- Example (1/4)

M If the contour line of the objective function of shipbuilding cost with two
design variables, L/B and Cg, is given as shown in the Figure, find the
optimal value of the L/B and C; to minimize the shipbuilding cost by using
the ‘Hooke & Jeeves Direct Search Method’ and plot the procedures in the
graph.

B Hooke & Jeeves Direct Search Method
® Starting design point: L/B = 7.0, C; = 0.2
® Step size at the starting design point: A(L/B) = 0.5, A(Cg) = 0.1
Contour line of the objective function (f = const.)

Ce
09 1 N
0'8 ///' e N \
T S
URRYp s ay.e 270 I,
o V'V (| Y=V V VY
Optimization problem < 0'4 JAVAR . VY
with two unknown variables ' [\ BYy4
0.3 \ = | A //
0.2 AN —
0.1 N =
10 20 30 40 50 60 70 80L/B18
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Hooke & Jeeves Method (14/16)
- Example (2/4)

x,=L/B, x,=C,

« Iteration 1: Local Pattern Search 1 Ce
0 — 1 T
b’ =(7, 0.2), Ax,=0.5, Ax,=0.1, ]
t:, —p° 09 :_‘\

0.8

Search fromt} in — x, direction — t| = (6.5, 0.2)

Search fromt| in + x, direction — t, = (6.5, 0.3) 06

W1
.
N

(o=
Because the value of the objective 0.5 /17 ( —— ~s
function at t}is improved, this pointis 0.4 ( —— oy
adopted as a new base point. 03 - ——— L1 T 0
b! =t 0.2 - —— !
2 01 \¥:/

. 10 20 30 40 50 60 70 80

« Iteration 2: Global Pattern Move 1 L/B
Define the temporary base point by using b’ and b’
>E£=(6 04)

Because the value of the objective function at t; is improved, perform the ‘Local Pattern
Search’ at this point.

opics in Ship Design i Fall 2015, Myvung:Il Roh ’ !dmlnanbm 19

Hooke & Jeeves Method (15/16)
- Example (3/4)

* Iteration 3: Local Pattern Search 2

Search from t; in —x, direction — t; = (5.5, 0.4)

Search from t; in +x, direction > t; =(5.5, 0.5) C,

Because the value of the objective L 1]
function at t; is improved, this point is 09 e e B \
adopted as a new base point. 8-3 e e ]
2 _ 2 )
b’ =t 06 sV T/
' IRESS
« [teration 4: Global Pattern Move 2 05 /11 R e
0.4 ——
Define the temporary base point by using b' and b’ 03 ( b
- S [ -y 1 0
>t =045, 07) 02 - — f, Jb
0.1 1
» Iteration 5: Local Pattern Search 3 10 20 30 40 50 60 70 80 4

Search from t; in +x, direction — t} =(5, 0.7)
Search from t] in -x, direction >t} =(5, 0.6)

Because the value of the objective function at t] is improved, this point is adopted as a
new base point.

ydlab =
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Hooke & Jeeves Method (16/16)
- Example (4/4)

« Iteration 6: Global Pattern Move 3
Define the temporary base point by using b*> and b’

-t =45 0.7) c
Because the value of the objective B T 1]
function at t}is not improved, 09 ]
¢ = b’ : = i NN
0 0.8 . il
« Iteration 7: Local Pattern Search 4 0.7 4 = ) 7
Because there is no improvement of the o6 &2
value of the objective function from the o5 ( R gtf
temporary base design point 0.4 /1 || Lgbo e
t; in x, direction and x, direction, 03 ( — e
t4=t4=t4 0.2 I t, b
2 1 0 g \‘_‘///
* [teration 8: Global Pattern Move 4 01 M~
b*=b’—> Ax, =025 Ax,=0.05, 10 20 30 40 50 60 70 80 L/B

5 4
t,=b

« Iteration 9: Stopping the Iteration of Search

Because there is no improvement of the value of the objective function from base design
point (x,, x,)=(L/B, Cy)=(5.0,0.6) in x4 direction and x, direction by performing the ‘Local
Pattern Search’ and ‘Global Pattern Move’, the optimal pointisL/B=5.0, C,=0.6.

opics in Ship Design i Fall 2015, Myvung:Il Roh ’ !dmlnanbm 2

3.2 Nelder & Mead Simplex Method
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Nelder & Mead Simplex Method (1/14)

M This method is used to find optimal point by successively
reflecting, expanding, contracting, and reducing the simplex with
(n+1) corners in the function of » design variables.

1. This method uses n+1 points in
the function of n design variables.
Ex) If the number of the design
variables is two, this method use
three points, i.e., triangle.

X

2. The simplex is reflected in the
direction where the value of the
objective function is improved.

3. If the value of the objective
x, function is improved, the simplex
is expanded. Otherwise, the
simplex is reduced.

opics in Ship Design i Fall 2015, Myung:| 1l Roh
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Nelder & Mead Simplex Method (2/14)

M The following figure shows various operations (Reflection,
Expansion, Contraction, Reduction) for 2-dimensional case.

Reflection | Expansion | | Contraction | | Reduction |
X, X, X,
A, Original AN A
/w2 Simplex S
X(= X)) X X X0 X|
X,
Contraction Reduction
g to x,when toward x, when
X, X, Sx,) 2 f(xy) fx) = fixy)
Reflection Contraction
to x, when . to x,when
fix,) > fix) & New i fx) < fix,) &
ST ew Simplex
%) < fx;) Expansion %) = fix;)
to x, when
Sx) < %) & flx,) < fx)
x,,: Simplex point having the largest value of the objective function
x;: Simplex point having the smallest value of the objective function
x,: Center point between x; and x,
opics in Ship Design i Fall 2015, Myung:| 1l Roh ’!dw lunn b“ 24
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Nelder & Mead Simplex Method (3/14)

M Step 1: Calculate the value of the objective function f at the n+1 corners of
the simplex.

M Step 2: Establish the corners which yield the highest, x,, and lowest, x, of
f(x) in the current simplex.

M Step 3: Calculate the value of the objective function f at the centroid (x,) of
all x; except x,, i.e.,

n+l

X, =12xi(with x,, excluded)

i=1
Exan ple) X,
X, +X
Xb =1 "2

X, 2
X
Xp

opics in Ship Design i Fall 2015, Myung:| 1l Roh ’ !dlmlnﬁnbm 2

Nelder & Mead Simplex Method (4/14)

. . . X
M Step 4: Test stopping criterion: /' Average of the distance between

each corner and x,,
G 2L )=o)y < Y Koy

b

B If the stopping criterion is satisfied, stop and return f(x,) as minimum.
Otherwise, continue.

M Step 5: Reflection

d
B Reflect x, through x, to give X, =2X, —X, . A Original
Calculate the value of the objective function 1 at x, /L Simplex
and change the simplex as following conditions. X “ox
1
Xr
Reflection
to x,
opics in Ship Design i Fall 2015, Myung:| 1l Roh ’!diﬂlllnlﬂ b" 26
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Nelder & Mead Simplex Method (5/14)

M Step 6: Expansion
m Step 6-1: If f{x,) < f(x), reflect x, through x, to give X,
X, = 2X, —X,. And then, calculate f(x,) and /
compare f(x,) and f(x)).

Original
¥ Simplex
X,

® Step 6-1-1: If f{x,) < f(x), replace x, by x, (expansion)
and return to Step 2.

» Step 6-1-1
ﬂxe) < f(xl)

Original
Simplex

® Step 6-1-2: If f(x,) 2 f(x)), replace x, by x, (reflection)
and return to Step 2.
Xy / ox
1

» Step 6-1-2
j—(xe') 2 -f(xl) Xr « xh
opics in Ship Design i Fall 2015, Myung:| 1l Roh ’ !diﬂ lnﬁn bm 27

Nelder & Mead Simplex Method (6/14)

M Step 6: Expansion
B Step 6-2: If f(x,) > f(x),
® Step 6-2-1: test f(x,) < f(x,) for all x; except x,. X,
If true, replace x, by x, (reflection) :
and return to Step 2.

Original
g Simplex
X,/ Y

X

» Step 6-2-1
For all x; except x, X, @x,
fx,) < fix)) '
® Step 6-2-2: If false, continue.
opics in Ship Design ion, Fall 2015, Myung:l Roh ’“dlnb 28
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Nelder & Mead Simplex Method (7/14)

M Step 7: Contraction X,
| Step 7-1: If fix,) < flx,),
calculate the value of the objective function f
at x, =(x,+x,)/2.
» Step 7-1
Ax) < fxy)

B Step 7-2: If fIx,) > f(x,),
calculate the value of the objective function f

at x, =(x, +x,)/2. » Step 7-2 ’éh
)2 ) Xix, = (x, +x,)/2
X, LI\
X
X,
opics in Ship Design i Fall 2015, Myung:| 1l Roh ’!dwlnﬁn bm 29
Nelder & Mead Simplex Method (8/14)
M Step 8: Reduction
m Step 8-1: If f{ix,) < flx,), ’éh
replace x, by x, (contraction)
and return to Step 2. X,/ X or
» Step 8-1
fx) < fix,)
W Step 8-2: If f(x,) > f(x,),
reduce the simplex toward x, using X, =(X; +X,)/2 X
(reduction) and return to Step 2. o
» Step 8-2
.f(xzr) Zj—(xh) /,’
fo e bx, (=
Xy X, X((= X))
Reduction
toward x;
opics in Ship Design i Fall 2015, Myung:| 1l Roh ’!dwlunn b“ 30
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Nelder & Mead Simplex Method (9/14)
- Example (1/6)

M If the contour line of the objective function of shipbuilding cost with two
design variables, L/B and Cg, is given as shown in Fig, find the value of the
L/B and Cg to minimize the shipbuilding cost by using the ‘Nelder & Mead
Simplex Method’ and plot the procedures in the graph.

B Nelder & Mead Simplex Method
® Starting corners of the simplex: (L/B, CB) = (7, 0.1), (7.5, 0.1), (7.5, 0.2)
® Stopping criterion: 0.01

Contour line of the objective function (f = const.)

(&
05 g N
0-8 /// L 1 \\\ \
EEEZSZZSZE==N AN
06 NAX AT T]]
RS IANAURSSZA W
Optimization problem < 0'4 JAVAR L ) v
with two unknown variables ' [T\ Ny
0.3 \ — // 7
0.2
0.1 N 1
1.0 2.0 3.0 4.0 5.0 6.0 7.0 80 L/B 31

Nelder & Mead Simplex Method (10/14)
- Example (2/6)

x=L/B, x,=C,

Triangle 1: x,, x,, x;
Iteration 1:Because x, is x,, reflect x, 09 L AN
through the center between x, and x;. — x, 08 ,// -t ™ N
Because f'(x,) < f(x;) and f(x;), 07 //’/ /, // i \ l
perform the expansion. = x,, 0 (/ // // // A < Cz/ )/ ) //
. ' 05 A £ ( =1 / / /
— Triangle 2: x,, x;, x, / / { L ~—— // VY i3
04 A A
L
. . oo 1 1L\ A
Iteration 2:Because x, is x,, reflect x, = A V. ‘
through the center between x; andx,. = x, o \\ —T | A r 3
01
Because f(x,) < f(x,) and f(x,), N | 1 [an
perfoml the expansion‘ N xsw 1.0 20 30 40 50 6.0 7.0/ ‘B.O )

— Triangle 3: x;, x,, x;

Number means the index |i of x;.

Alphabet means the kind of x;.

h: maximum point of the
corner in the simplex (triangle)
r: reflection

e: expansion

c: contraction I

2016-08-29
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Nelder & Mead Simplex Method (11/14)
- Example (3/6)
x=L/B, x,=C,4
Ce
Iteration 3:Because x, is x,, reflect x, = ~
through the center between x, and x,. — x, 09 //’ 7\r \\
8 A
Because f(x,) < f(x,) and f(x;), o T A MY U]
perform the expansion. — x,, ZZ // // /’ = 7 3 [\ ) /
— Triangle 4: x,, x;, X, obc / // 4 ’ ( == K /
: /
AV (BRS¢, &
Iteration 4:Because x, is x,, reflect x, 03 ( \| ///// /(
- =
through the center between x; and x,. — x; , 02 \ T A48
Because f(x;,) > f(x,), o to the next iteration. o \\ : — i
- Triangle 5: X5 X> X7 1.0 20 3.0 40 5.0 6.0 7.0 80 e
opics in Ship Design it Fall 2015, Myvung:Il Roh ’!dlﬂl lnnn bm 38
Nelder & Mead Simplex Method (12/14)
- Example (4/6)
x,=L/B, x,=C,
Ce
D
Iteration 5:Because x; is x,, reflect x; —i —
through the center between x, and x,. — x, 09 /// 7\ \\
Because £ (x,) >/ (x:), / (x;), and f(x;), 0@ Eo% 0% \[ ]
perform the constraction. - x; 2’7 / /// 7 /// §% = 7 c} /
— Triangle 6: x,, x,, X, 0'[ VARSI =EZ% v
- N
NV RS S I s
Iteration 6:Because x; is x,, reflect x, 03 ( \ ///f//
through the center between x and x,. — x, 02 \ - ]
Because f(x,) > f'(x,) and £ (x,), 01 \\ : 1
and f(x") </ (x2), 1.0 20 3.0 40 50 6.0 7.0 80 s

contract the simplex toward x,. = X,

— Triangle 7: x,, x;, X,

opics in Ship Design i Eall 2015, Myvung:ll Roh
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Nelder & Mead Simplex Method (13/14)
- Example (5/6)

x=L/B, x,=C,4

Iteration 7: Because x; is x,, reflect x, — -
through the center between x, and x,. — x, 09 — — \ \\

8 A | N
Because f(x,) </ (x;) and f (x,), o A AT RN

i > 1
preforme the expansion. - x,, . o7 V' VT A
10,0 06 A A / A 4 9
— Triangle 8: x;, x,, x;, 05 / ,/ V1 ( q 5 /,/
NIVAVIN (AN 4
Iteration 8:Because x, _ is x,, reflect x, 03 ( \ //////
. z : /
through the center between x, and x,,. = x, 02 N \ 1
—

Because f(x,) > f(x,) and f (x,), 01 N L
and f(x,) <f(x,), 10 20 30 40 50 60 7.0 80 s

contract the simplex toward x,. — x;

— Triangle 9: x,, x,,, x;,

opics in Ship Design ion, Fall 2015, Myung:l Roh ’!dlnb 35

Nelder & Mead Simplex Method (14/14)
- Example (6/6)

Iteration 9:Because x; is x,, reflect x;

through the center between x,,andx,. > x, &

Because f(x,) > (x,) and f (x;, ) — <
and £ (5,) </ (x,). 1=

contract the simplex toward x,. — x,, 08 - A ; — \\ \]

. : 07 Valb sl - \
— Triangle 10: x,,, x,,, X,, . (///;// (/ (/ ) ///6//}//
7, 0.1 7.5, 0.1 s V. 4 I /
wn o N BTN RS == 74
x,(7.5, 0.2) x,(6.75, 0.25) . [TV ///f//
fe]
x,(7.375, 0.475) x,(6.1875, 0.6875) o2 \ |
5 6 o \\ I >
x,(6.8125, 0.9125)  x,(6.9375, 0.6375) |
1.0 20 30 40 50 6.0 70 8.0 v}

X,(6.4375, 0.5375)  x,,(5.0625, 0.5625)
x,,(5.21875, 0.66875) x,,(4.6171875, 0.5796875)

Performing 10 times iterations, we can recognize that the simplex (triangle) has the
tendency to approach the result obtained by the ‘Hooke & Jeeves method'.
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3.3 Golden Section Search Method
(One Dimensional Search Method)

opics in Ship Design i Fall 2015, Myung:| 1l Roh ’ !dmlnﬁnbm 37

Phase 1: Global Search (1/2)

M Searching for the interval in which the minimum lies

B In the figure, starting at 4 =0, we evaluate f(a) at =6, where §>0 is a
small number. If the value f(6) is smaller than the value f{0), we then
take an increment of 1.6185 in the step size (i.e., the increment is 1.618
times the previous increment ¢). (See Fibonacci sequence)

q=0;0,=0
1
g=la, =5+1.6185=2.6185= 5(1.618)

Jj=0

=20, =2.6185+1.618(1.6185)=5.2365 = 3 5(1.618)’

j=0
3
q=3a,=52365+(1.618) 5 =9.4725 = > 5(1.618)’

J=0

4
q=4a,=94726+(1.618)'6 =16.3265 = 3 5(1.618)’

=0

I
! g .
1 iy 3 4. sa, =Y 5(1.618), ¢=0,1,2,...
| | =
0 52.6185 52365 94725 163265 a
opics in Ship Design i Fall 2015, Myung:| 1L Roh ’“diin llnﬂ blll 38
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Phase 1: Global Search (2/2)

B If the function at ¢, is smaller than that at the previous point 2,
and the next point «, (i.e., f(a,_)< f(a,,). f(a,)<f(a)) the
minimum point lies between o, and «__,.

(The interval in which the minimum lies is called the interval of uncertainty.)

fayt ¥ ‘
| |
P\ e !
| |
| |
| |
| |
| . | »
| I ! |
1 | | |
| H ! I |
: R . SILIERILID kot !
! ! | | I
! ! | 1 |
| L | |
| ! | | i
03 2.6188 5.2368 9.4728 16.3268
n n n
a e, a Q,

q
a,=a,=Y 501.618).,a,=q,,

upper j=0

lower

flo)

The interval of uncertainty

1
|
| |
! I
| I
| |
: |
I
1

1.0:1.618 = 0.382:0.618

upper
(@)

(@)
B Therefore, upper and lower limits on the interval of uncertainty are

q-2 gq-1
=) 501.618) ,a,=a, =) 5(1.618)
Jj=0 j=0

Phase 2: Local Search (1/3)

(m Reduction of the interval of uncertainty by comparing\

function values at ¢, and ¢,

® We consider two points symmetrically located from
either end as shown in the figure - points ¢, and a, are
located at a distance of 7 I® from either end of the

interval.

® Comparing function values at ¢, and a,, either the left

The jnterval of uncertaint

| Repeat to reduce
I the interval of
|
1

uncertainty

S
[\%}
Y

(e @,) or the right (¢, @,) portion of the interval gets -
i ini i n 1l
\_ discarded because the minimum cannot lie there. ) a a,
(<ifr=2/3> ® )
A®=(2/3)I®
(@)
o , !
If fia,) <A@, then minimum (1 - DIO=(1/3)[® AW=,
point lies between ¢, and a;. |
TD=7®=(2/3)[® ;
(b) v N
a g Q, ’ @ ’ Q, i’
For new interval of uncertainty, we always kD - I*+D
have to compute fle,’), fie,’).
<Question> 7
Is there any method to use the previous % % @ ! @, ! a
\function values? j
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Phase 2: Local Search (2/3)

B Reduction of the interval of uncertainty by comparing function values at ¢, and ¢,
e We consider two points symmetrically located from either end as shown in the figure - points
a, and «, are located at a distance of rI® from either end of the interval.
4 w h
I®
(a)
a a, a,
‘ 1-9I® }
If fla,) <fla,), then minimum
point lies between ¢; and a,. I+ =70
3 by (Y] A - I
® -
a, ’ a.’ a,’
1 a, b u
a - pI®D I+
1. fle,) will be used for the next interval of uncertainty /¢,
2. a,can be equal to a,’ or @, of the next interval of | 3-2. Assume that ais equal to @,”. | o = t,
uncertainty 16+, “ ? a7
H _ (k) _ (k+1)
3-1. Assume that g, is equal to a,’. | a =a' : (=)™ =d
¢ ¢ : 1= ® =7. 7. J0
(I_T)](k) :(I_T)[(M-l) “ ( 7) © T-T
(1-0)1® =(1-7)d® rd 7 =(1-0)I7 =0
T o +7-1=0
K Because 7 = 1, this assumption is wrong. —>7=0.618,-1.618 —) 0.61&/

Phase 2: Local Search (3/3)

B Reduction of the interval of uncertainty by comparing function values at ¢, and ¢,
* We consider two points symmetrically located from either end as shown in the figure - points
a, and g, are located at a distance of rI® from either end of the interval.
r w N
®
(@)
aj A @,
‘ (1-9I% 3
If fla,) > fla,), then minimum :
point lies between ¢, and a,. J&+D) = k)
' 1 - I*D 7[k+D) :
\ 1\
(b) - - ,
] @, @ @,
I *+D) (1 - T)I(k-u)
1. fley) will be used for the next interval of uncertainty /¢,
2. a, can be equal to a,’ or a,’ of the next interval of 3-2. Assume that g,is equal to a,".| o, = '
uncertainty ¢+, g “
: _ VB = kD)
3-1. Assume that g, is equal to a,’. | a,=a, : (=)™ =d
s : 70—
(A=) 1M = (1= 7)1 ) (-1 ) 71
(I_T)[(k):(l_r)ﬂ(k) T-TI')—(I—T)I' ) =0
7O — g ® 2 +7r-1=0
=7 =0618,-1.618 = 0618 /

K Because 7 =1, this assumption is wrong.




Summary (1/3)

™
a® J a-I®

1 @& @,

2
1-91% | oo

u Step 1: For a chosen small number 4, let 4 be the smallest integer
to satisfy fle, ) < f(aqq_z) and fle,,) <fla), where o, a,,, and «_, are
calculated from o, =) 5(1.618), (¢=0.1,2,.... The upper and lower
bounds on o' (the optimum value for @) are given as follows.

q ) g2 )
a,=a,=) 6(1618),a=a,,=>) 51618)
=0 J=0

u Step 2: Compute f{e,) and f(e;) where a,= o+ 0.3821 and
a, = a;+ 0.618I (interval of uncertainty 7= ¢, - a).

m Step 3: Compare f(a,) and f{a,), and go to Step 4, Step 5 or Step 6.

opics in Ship Design i Fall 2015, Myung:| 1l Roh ’!dl“b 43
Summary (2/3)
I - I
g - Step 4 Step 5 -
K

a @, ! Ry > %

! (1-91® 1“ | -9 r

H T*+D =gf® : :

h+1) A - pI%n| | ' r— :

':' 2. o, @ I — = —

T N— o AR a
(1- 9 P e (AT

B Step 4: If fla,) <f(a,), then minimum point &" lies between ¢,
and g, i.e., ;< a" < a,. The new limits for the reduced interval of
uncertainty are ¢,’= ¢, and ¢,’ = a,. Also, ¢,’ = a,. Compute f(a,’),
where a,’= @’ +0.382(a,’ - @) and go to Step 7.

B Step 5: If fla,) > fla,), then minimum point o lies between a,
and o, i.e., ,< a < a,. Similar to the procedure in Step 4, let
a’=a, and ¢,’= a,, so that a,”= a,. Compute f(e,’), where
a,’=a’+0.618(q,’ - ¢’)and go to Step 7.

B Step 6: If fla,) =fla,), let ¢,= ¢, and @, = a,, and return to Step 2.

l“dlﬂb a
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Summary (3/3)

—— Step 4

@ @, al A a,
H (1-9I® 3 | (1-9I® 3

|
7]
-
[1']
©
(0}

T+ =gk

e Laarl _— 1
M s , a-arl P L
aj 2 a, a, ®)
- a . ’ ’
> o a’ |a a,
(1 - Il %+ — | -

B Step 7: If the new interval of uncertainty I’=¢,’ - ,” is small
enough to satisfy a stopping criterion (i.e.,, I’<¢), let " =(a,’- @) / 2
and stop. Otherwise, delete the primes (’) on ¢, @,’, @,’ and a,’

and return to Step 3.
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