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Ch. 3 Unconstrained Optimization 
Method: Enumerative Method

3.1 Hooke & Jeeves Method
3.2 Nelder & Mead Simplex Method
3.3 Golden Section Search Method (One Dimensional 
Search Method)
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3.1 Hooke & Jeeves Method
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Hooke & Jeeves Method (1/16) 

 This method is a sequential technique, each step of which consists 
of two kinds of move, the ‘Local Pattern Search’ at a base point 
and ‘Global Pattern Move’ to the optimal point.
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Local Pattern Search

2. Global Pattern Move

3. Local Pattern Search

1. Base Point

Global Pattern Move
Base point
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Hooke & Jeeves Method (2/16)

1x

2x

1b

2b

2
0t

1. ‘Local Pattern Search’ at the base 
point b1

•Search in x1 direction.

- No improvement of the value of the 
objective function in x1 direction
 No movement in x1 direction
•Search in x2 direction.

- Improvement of the value of the 
objective function in x2 direction
 Movement in the positive x2 direction
•Move to and define the base point b2.

2. ‘Global Pattern Move’ at the base 
point b2

•Find a temporary base point t02 by symmetrical 
displacement of b1 to b2.
•Because the value of the objective function at 
t02 is better than that at b2, perform the ‘Local 
Pattern Search’ at t02.

2. Global Pattern Move

3. Local Pattern Search

1. Base Point
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Hooke & Jeeves Method (3/16)

1x

1b

2b

2
0t

3
0t

3b

3. ‘Local Pattern Search’ at the 
temporary base point t02

•Search in x1 direction.

- Improvement of the value of the 
objective function in x1 direction
 Movement in the positive x1 direction
•Search in x2 direction.

- Improvement of the value of the 
objective function in x2 direction
 Movement in the positive x2 direction
•Move to and define the base point b3.

4. ‘Global Pattern Move’ at the base 
point b3

•Find a temporary base point t03 by symmetrical 
displacement of b2 to b3.
•Because the value of the objective function at t03

is not better than that at b3, perform the ‘Local 
Pattern Search’ at b3.

2. Global Pattern Move

3. Local Pattern Search

1. Base Point

2x
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Hooke & Jeeves Method (4/16)

1x

1b

2b

2
0t

3
0t

3b

4b
4
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5. ‘Local Pattern Search’ at the base 
point b3

•Search in x1 direction.

- Improvement of the value of the 
objective function in x1 direction
 Movement in the positive x1 direction
•Search in x2 direction.

- No improvement of the value of the 
objective function in x2 direction
 No movement in x2 direction
•Move to and define the base point b4.

6. ‘Global Pattern Move’ at the base 
point b4

•Find a temporary base point t04 by symmetrical 
displacement of b3 to b4.
•Because the value of the objective function at 
t04 is better than that at b4, perform the ‘Local 
Pattern Search’ at t04.

2. Global Pattern Move

3. Local Pattern Search

1. Base Point

2x
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Hooke & Jeeves Method (5/16)

1x

1b

2b
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0t
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0t
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4b
4
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7. ‘Local Pattern Search’ at the 
temporary base point t04

•Search in x1 direction.

- No improvement of the value of the 
objective function in x1 direction
 No movement in x1 direction
•Search in x2 direction.

- No improvement of the value of the 
objective function in x2 direction
 No movement in x2 direction
•Because there is no improvement of the value of 
the objective function in x1 and x2 direction, the 
current base point is defined as the base point 
b5.

8. ‘Global Pattern Move’ at the base 
point b5

•Find a temporary base point t05 by symmetrical 
displacement of b4 to b5.
•Because the value of the objective function at t05 

is not better than at b5, perform the ‘Local 
Pattern Search’ at b5.

5 b
5
0t

2. Global Pattern Move

3. Local Pattern Search

1. Base Point

2x
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Hooke & Jeeves Method (6/16)

1x

1b

2b

2
0t

3
0t

3b

4b
4
0t

9. ‘Local Pattern Search’ at the base 
point b5

•Search in x1 direction.
- No improvement of the value of the objective 

function in x1 direction
 No movement in x1 direction

•Search in x2 direction.
- No improvement of the value of the objective 

function in x2 direction
 No movement in x2 in x2 direction

•Because there is no improvement of the value of 
the objective function in x1 and x2 direction, the 
current base point defined as base point b6.

•Because b5 = b6, reduce the step size by half 
and perform the ‘Local Pattern Search’ at b6.

5 b
5
0t

6 b

2. Global Pattern Move

3. Local Pattern Search

1. Base Point

2x
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Hooke & Jeeves Method (7/16)
- Rule of the ‘Local Pattern Search’ (1/2)

Rule ① Search in the positive xi direction.

- If the value of the 
objective function 
is increased
(Fail)

Rule of the ‘Local Pattern Search’

- If the value of the 
objective function 
is decreased
(Success)

- Move the exploratory point in the positive 
xi direction and evaluate the value of the 
objective function at that point.

bk

- Come back to the previous point 
and search in the negative xi
direction.

bk
F

- Search in the xi+1 direction at the 
current point.

bk
S

Rule ② Search in the negative xi direction.

- If the search in the positive xi direction is 
failed, move the exploratory point in the 
negative xi direction and evaluate the value 
of the objective function at that point.

bk
F

- If the value of the 
objective function 
is increased
(Fail)

- If the value of the 
objective function 
is decreased
(Success)

- Come back to the previous point 
and search in xi+1 direction.

bk
F

- Search in the xi+1 direction at the 
current point.

bk
F

F

S

- This process of the ‘Local Pattern Search’ is continued for i = 1, …, n.

- After searching in xn direction, the current point is defined as new base point bk+1.

(F: Fail, S: Success)
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bk

 Rule of the Local Pattern Search (F: Fail, S: Success)

<Case 1> <Case 2>

F F

S

bk
S

S <Case 3>

bk
F F

F

F

bk+1

Step/2bk+1
bk+1

1b

2b

2
0t

3
0t

3b

4b 54
0 bt 

1x

2x

5
0t

7

Global Pattern Move

Local Pattern Search

Base point

Case 1

Case 2

Case 3

* Super script ‘k’ means the number of step.

Hooke & Jeeves Method (8/16)
- Rule of the ‘Local Pattern Search’ (2/2)
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Example of the ‘Local Pattern Search’ 
in the problem with 

two design variables (x1, x2)
(Search in x1 direction)

Hooke & Jeeves Method (9/16)
- Algorithm Summary (1/4)

1b

1. Compute the value of the objective function at 
the starting base point b1.

2. Compute the value of the objective function at 
b1±δ1, where δ1 is input step size and a vector with 
n elements (δ1 = [δ1, 0, 0, …, 0]T). If the value of 
the objective function is decreased, b1±δ1 is 
adopted as t1

1 and the search is continued.

3. Compute the value of the objective function at 
t1

1±δ2, where δ2 is also input step size and a vector 
with n elements (δ2 = [0, δ2, 0, …, 0]T). If the value 
of the function is decreased, t11±δ2 is adopted as 
t2

1.

1x

2x 1
1 t

Example of the ‘Local Pattern Search’ 
in the problem with 

two design variables (x1, x2)
(Search in x2 direction)

1b

1x

2x 1
1 t

1
2t

1) Local Pattern Search (Problem with n design variables)1) Local Pattern Search (Problem with n design variables)
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Hooke & Jeeves Method (10/16)
- Algorithm Summary (2/4)

4. After the ‘Local Pattern Search’ for all design variables, new base point is defined. 
(new base point b2 = tn

1)

5. Perform the ‘Global Pattern Move’ from the previous base point along the line 
from the previous to current base point.

1) Local Pattern Search (Problem with n design variables)1) Local Pattern Search (Problem with n design variables)
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Hooke & Jeeves Method (11/16)
- Algorithm Summary (3/4)

2) Global Pattern Move2) Global Pattern Move

1. Define the temporary base point located the same distance between the 
previous and current base point (obtained from ‘Local Pattern Search’) from the 
current base point (‘Global Pattern Move’), and calculate the value of the 
objective function at this point. The temporary base point is calculated by 
‘Global Pattern Move’ as follows.

kkkkkk bbbbbt   111
0 2)(2

2b

2
0t

3
0t

3b

4b

Example of the ‘Global Pattern Move’ in the 
problem with two design variables (x1, x2)

when the value of the objective function at the 
temporary base point is not improved.

2. If the result of the temporary base point is a better point 
than the previous base point, perform the ‘Local Pattern 
Search’ at the temporary base point. Otherwise, come 
back to the previous base point and perform the ‘Local 
Pattern Search’.
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Hooke & Jeeves Method (12/16)
- Algorithm Summary (4/4)

2b

2
0t

3
0t

3b

4b

3) Closing Condition (Stopping Criterion)3) Closing Condition (Stopping Criterion)

1. When even this ‘Local Pattern Search’ fails (bk+1 = bk, there is no 
improvement), reduce the step sizes δi by half, δi/2, and resume the ‘Local 
Pattern Search’.

Example of the ‘Global Pattern Move’ in the 
problem with two design variables (x1, x2)

when the value of the objective function at the 
temporary base point is not improved.

2. If the step size δi is smaller than εi, stop the iteration 
and current base point is the optimal point.
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Hooke & Jeeves Method (13/16)
- Example (1/4)

 If the contour line of the objective function of shipbuilding cost with two 
design variables, L/B and CB, is given as shown in the Figure, find the 
optimal value of the L/B and CB to minimize the shipbuilding cost by using 
the ‘Hooke & Jeeves Direct Search Method’ and plot the procedures in the 
graph.
 Hooke & Jeeves Direct Search Method

 Starting design point: L/B = 7.0, CB = 0.2
 Step size at the starting design point: (L/B) = 0.5, (CB) = 0.1

CB

L/B

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Contour line of the objective function (f = const.) 

Optimization problem 
with two unknown variables
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BCxBLx  21   ,/

• Iteration 1: Local Pattern Search 1

1
2t

1
2

1 tb 

• Iteration 2: Global Pattern Move 1
0 1

2
0

Define the temporary base point by using  and  

(6,   0.4) 

b b

t

2
0t

CB

L/B

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

0b1
1t

2
0t

1
2t

1b

Because the value of the objective 
function at    is improved, this point is 
adopted as a new base point.

0
1 2

1 0
0

1 1
0 1 1

1 1
1 2 2

(7,   0.2),   0.5,   0.1,

Search from in  direction (6.5, 0.2)

Search from in  direction (6.5, 0.3)

x x

x

x

    



  

  

b

t b

t t

t t

Because the value of the objective function at    is improved, perform the ‘Local Pattern 
Search’ at this point.

Hooke & Jeeves Method (14/16)
- Example (2/4)
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Because the value of the objective function at    is improved, this point is adopted as a 
new base point.

• Iteration 3: Local Pattern Search 2

2
2

2 tb 
• Iteration 4: Global Pattern Move 2

1 2

3
0

Define the temporary base point by using  and  

(4.5,   0.7) 

b b

t

• Iteration 5: Local Pattern Search 3

3
2

3 tb 

CB

L/B

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

0b1
1t

1b

2
0t2

1t

3
0t 3

1t

2
2t

2b
3
2t

3b

2 2
0 1 1

2 2
1 2 2

Search from  in  direction (5.5,   0.4)

Search from  in  direction (5.5,   0.5)

x

x

  

  

t t

t t

2
2t

Because the value of the objective 
function at    is improved, this point is 
adopted as a new base point.

3 0
0 1 1

3 3
1 2 2

Search from  in +  direction (5,   0.7)

Search from  in -  direction (5,   0.6)

x

x

 

 

t t

t t
3
2t

Hooke & Jeeves Method (15/16)
- Example (3/4)
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• Iteration 6: Global Pattern Move 3

• Iteration 7: Local Pattern Search 4

• Iteration 8: Global Pattern Move 4

• Iteration 9: Stopping the Iteration of Search

CB

L/B

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

0b1
1t

1b

2
0t2

1t

2b

3
0t 3

1t
3b

4
0t

4 3
0 t b

Because the value of the objective 
function at    is not improved, 4

0t

2 3

4
0

Define the temporary base point by using  and  

(4.5,   0.7) 

b b

t

4 4 4
2 1 0 t t t

Because there is no improvement of the 
value of the objective function from the 
temporary base design point      

in x1 direction and x2 direction,4
0t

4 3
1 2

5 4
0

  0.25,   0.05,x x     



b b

t b

Because there is no improvement of the value of the objective function from base design 
point                                      in x1 direction and x2 direction by performing the ‘Local 
Pattern Search’ and ‘Global Pattern Move’, the optimal point is                       ./ 5.0,   0.6BL B C 

1 2( , ) ( / , ) (5.0, 0.6)Bx x L B C 

Hooke & Jeeves Method (16/16)
- Example (4/4)
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3.2 Nelder & Mead Simplex Method
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Nelder & Mead Simplex Method (1/14)

1x

2x
1. This method uses n+1 points in 

the function of n design variables.
Ex) If the number of the design 
variables is two, this method use 
three points, i.e., triangle.

2. The simplex is reflected in the 
direction where the value of the 
objective function is improved.

3. If the value of the objective 
function is improved, the simplex 
is expanded. Otherwise, the 
simplex is reduced.

 This method is used to find optimal point by successively 
reflecting, expanding, contracting, and reducing the simplex with 
(n+1) corners in the function of n design variables.
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Nelder & Mead Simplex Method (2/14)

 The following figure shows various operations (Reflection, 
Expansion, Contraction, Reduction) for 2-dimensional case.

xh: Simplex point having the largest value of the objective function
xl: Simplex point having the smallest value of the objective function
xb: Center point between x1 and x2

Reflection
to xr when

xh

xb

xr

Reflection

x2 xl(= xl)

Original
Simplex

xh

xb
xl

Reduction
toward xl when

Reduction

x2

f(xc)  f(xh)

=

=

=
xe

New Simplex
Expansion
to xe when

xh

xb

xr

x2

f(xr) < f(xl) & f(xe) < f(xl)

xl

Expansion

=

=xc

Contraction
to xcwhen

xh

xb

Contraction

x2

=

=

xr
Contraction
to xcwhen

xh

xb xlxlxc

x2

f(xr)  f(xl) &
f(xr) < f(x2)

f(xr) < f(xh) &
f(xr)  f(x2)

f(xr)  f(xh)
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Nelder & Mead Simplex Method (3/14)

Step 1: Calculate the value of the objective function f at the n+1 corners of 
the simplex.

Step 2: Establish the corners which yield the highest, xh, and lowest, xl, of 
f(x) in the current simplex.

Step 3: Calculate the value of the objective function f at the centroid (xb) of 
all xi except xh , i.e.,

1

1

1
(with   excluded)

n

b i h
in





 x x x

xh

xb
xl

x2 2
21 xx

x


b

Example)
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=

=

Nelder & Mead Simplex Method (4/14)

Step 4: Test stopping criterion:

 If the stopping criterion is satisfied, stop and return f(xl) as minimum. 
Otherwise, continue.

Step 5: Reflection
 Reflect xh through xb to give                    .

Calculate the value of the objective function f at xr

and change the simplex as following conditions.


 





2/12
1

1

})]()([
1

1
{ b

n

i
i ff

n
xx

hbr xxx  2

Reflection
to xr

Original
Simplex

xh

xb
xl

xr

x2

xh

xb

x2 xl(= xl)

Average of the distance between 
each corner and xb
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Nelder & Mead Simplex Method (5/14)

Step 6: Expansion
 Step 6-1: If f(xr) < f(xl), reflect xb through xr to give

. And then, calculate f(xe) and
compare f(xe) and f(xl). 

 Step 6-1-1: If f(xe) < f(xl), replace xh by xe (expansion)
and return to Step 2.

 Step 6-1-2: If f(xe)  f(xl), replace xh by xr (reflection)
and return to Step 2. =

=

=

=

=

bre xxx  2

xe  xh

Original
Simplex

xh

xb
xl

xr

x2

Original
Simplex

xh

xb
xl

x2

xr xh

 Step 6-1-1
f(xe) < f(xl)

 Step 6-1-2
f(xe)  f(xl)
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=

=

Nelder & Mead Simplex Method (6/14)

Step 6: Expansion
 Step 6-2: If f(xr)  f(xl),

 Step 6-2-1: test f(xr) < f(xi) for all xi except xl.
If true, replace xh by xr (reflection)
and return to Step 2.

 Step 6-2-2: If false, continue.

Original
Simplex

xh

xb
xl

x2

xr xh

 Step 6-2-1
For all xi except xl
f(xr) < f(xi)
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Nelder & Mead Simplex Method (7/14)

Step 7: Contraction
 Step 7-1: If f(xr) < f(xh),

calculate the value of the objective function f
at                        .

 Step 7-2: If f(xr)  f(xh),
calculate the value of the objective function f
at                        .

=

=

=

=

2/)( brc xxx 

2/)( bhc xxx 
xc

xr

xh

xh

xb

xb

xl

xlxc

x2

x2

 Step 7-1
f(xr) < f(xh)

 Step 7-2
f(xr)  f(xh)

2/)( brc xxx 

2/)( bhc xxx 
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=

=

=

=

Nelder & Mead Simplex Method (8/14)

Step 8: Reduction
 Step 8-1: If f(xc) < f(xh),

replace xh by xc (contraction) 
and return to Step 2.

 Step 8-2: If f(xc)  f(xh),
reduce the simplex toward xl using                         
(reduction) and return to Step 2.

xh

xb
xl(= xl)

Reduction
toward xl

x2

2/)( lii xxx 

 Step 8-2
f(xc)  f(xh)

xr

xh

xb xlxc xh

x2

xc  xh

xh

xb
xl

x2or

 Step 8-1
f(xc) < f(xh)
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Nelder & Mead Simplex Method (9/14)
- Example (1/6)

 If the contour line of the objective function of shipbuilding cost with two 
design variables, L/B and CB, is given as shown in Fig, find the value of the 
L/B and CB to minimize the shipbuilding cost by using the ‘Nelder & Mead 
Simplex Method’ and plot the procedures in the graph.
 Nelder & Mead Simplex Method

 Starting corners of the simplex: (L/B, CB) = (7, 0.1), (7.5, 0.1), (7.5, 0.2)
 Stopping criterion: 0.01

CB

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Contour line of the objective function (f = const.) 

Optimization problem 
with two unknown variables

L/B
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CB

L/B

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

1 2,h

3

4,e

5,e

1 2 3Triangle 1: ,  ,  x x x

BCxBLx  21   ,/

r

r

2 2

1 3

1 3

4,

1 3 4

Iteration 1:Because  is  reflect  

through the center between and

Because ( ) <  ( ) and ( )  

perform the expansion.  

Triangle 2: ,  ,  

h

r

r

e

x x x

x x x

f x f x f x

x

x x x







,

.

,

1 1

3 4

3 4

5,

3 4 5

Iteration 2:Because  is  reflect  

through the center between and

Because ( ) <  ( ) and ( )  

perform the expansion.  

Triangle 3: ,  ,  

h

r

r

e

x x x

x x x

f x f x f x

x

x x x







,

.

,

Nelder & Mead Simplex Method (10/14)
- Example (2/6) 

Number means the index ‘i’ of xi.

Alphabet means the kind of xi.

h: maximum point of the 
corner in the simplex (triangle)

r: reflection

e: expansion

c: contraction
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CB

L/B

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

3

4,e

5,e

6,e

7,r

r

3 3

4 5

4 5

6,

4 5 6

Iteration 3:Because  is  reflect  

through the center between and

Because ( ) <  ( ) and ( )  

perform the expansion.  

Triangle 4: ,  ,  

h

r

r

e

x x x

x x x

f x f x f x

x

x x x







,

.

,

4 4

5 6 7,

7, 6

5 6 7

Iteration 4:Because  is  reflect  

through the center between and

Because ( ) > ( ),go to the next iteration.

Triangle 5: ,  ,  

h

r

r

x x x

x x x

f x f x

x x x





,

.

Nelder & Mead Simplex Method (11/14)
- Example (3/6)

BCxBLx  21   ,/
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CB

L/B

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

5

6

7

8,c

9,c

5 5

6 7

5 6 7

8,

6 7 8

Iteration 5:Because  is  reflect  

through the center between and

Because ( ) > ( ),  ( ),  and ( ),

perform the constraction.  

Triangle 6: ,  ,  

h

r

r

c

x x x

x x x

f x f x f x f x

x

x x x







,

.

r

r
7 7

6 8

6 8

7

9,

6 8 9

Iteration 6:Because  is  reflect  

through the center between and

Because ( ) > ( ) and ( ),

and  ( ) < ( ),

contract the simplex toward x .  

Triangle 7: ,  ,  

h

r

r

r

r c

x x x

x x x

f x f x f x

f x f x

x

x x x







,

.

Nelder & Mead Simplex Method (12/14)
- Example (4/6)

BCxBLx  21   ,/
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CB

L/B

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

6 8,c

9,c10,e

11,c

r

r

8 8

6 9

6 9

10,

6 9 10

Iteration 7: Because  is  reflect  

through the center between and

Because ( ) < ( ) and ( ),

preforme the expansion.  

Triangle 8: ,  ,  

h

r

r

c

x x x

x x x

f x f x f x

x

x x x







,

.

9, 9,

6 10

6 10

9

11,

6 10 11

Iteration 8:Because  is  reflect  

through the center between and

Because ( ) > ( ) and ( ),

and ( ) < ( ),

contract the simplex toward .  

Triangle 9: ,  ,  

c h c

r

r

r

r c

x x x

x x x

f x f x f x

f x f x

x x

x x x







,

.

Nelder & Mead Simplex Method (13/14)
- Example (5/6)

BCxBLx  21   ,/
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)1.0  ,7(1x

)2.0  ,5.7(3x

)475.0  ,375.7(5x

)9125.0  ,8125.6(7x

)5375.0  ,4375.6(9x

)66875.0  ,21875.5(11x

)1.0  ,5.7(2x

)25.0  ,75.6(4x

)6875.0  ,1875.6(6x

)6375.0  ,9375.6(8x

)5625.0  ,0625.5(10x

)5796875.0  ,6171875.4(12x

Performing 10 times iterations, we can recognize that the simplex (triangle) has the 
tendency to approach the result obtained by the ‘Hooke & Jeeves method’.

CB

L/B

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

6

10

11

12,c

r

6 6

10 11

10 11

6

12,

10 11 12

Iteration 9:Because  is  reflect  

through the center between and

Because ( ) > ( ) and ( ),

and ( ) < ( ),

contract the simplex toward .  

Triangle 10: ,  ,  

h

r

r

r

r c

x x x

x x x

f x f x f x

f x f x

x x

x x x







,

.

Nelder & Mead Simplex Method (14/14)
- Example (6/6)
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3.3 Golden Section Search Method 
(One Dimensional Search Method)
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Phase 1: Global Search (1/2)

 Searching for the interval in which the minimum lies
 In the figure, starting at q = 0, we evaluate f() at  = , where  > 0 is a 

small number. If the value f() is smaller than the value f(0), we then 
take an increment of 1.618 in the step size (i.e., the increment is 1.618
times the previous increment ). (See Fibonacci sequence)

f()

0 5.236

2 4…

16.3269.472

3



q = 0

2.618

1

  0;0q

... ,2 ,1 ,0  ,)618.1(
0

 


q
q

j

j
q 

...

)618.1(326.16)618.1(472.9;4
4

0

4
4 




j

jq 





3

0

3
3 )618.1(472.9)618.1(236.5;3

j

jq 





2

0
2 )618.1(236.5)618.1(618.1618.2;2

j

jq 





1

0
1 )618.1(618.2618.1;1

j

jq 
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Phase 1: Global Search (2/2)

 If the function at        is smaller than that at the previous point       
and the next point       (i.e., ), the 
minimum point lies between     and       .

(The interval in which the minimum lies is called the interval of uncertainty.)

1q 2q
q )()(   ),()( 121 qqqq ffff   

q 2q










2

0
2

0

)618.1(,)618.1(
q

j

j
ql

q

j

j
qu 

upper lower

q-2 q-1 q

f()

0

…

16.3262.618

q-2

5.236

q-1

9.472

q

= = =

f()



upper
(u)

lower
(l)

The interval of uncertaintyThe interval of uncertainty



0

…

…

1.0 1.618

1.0:1.618 = 0.382:0.618

(a)

1

1
0

, (1.618)
q

j
a q

j

  





 
 Therefore, upper and lower limits on the interval of uncertainty are
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(1 - )I(k)=(1/3)I(k)I(k)=(2/3)I(k)

b

I(k)

l
u

(a)

(1 - )I(k)=(1/3)I(k) I(k)=(2/3)I(k)

a

< If  = 2/3 >

If f(a) < f(b), then minimum 
point  lies between l and b.

q-2 q

f()

The interval of uncertainty

l u

= =

Repeat to reduce 
the interval of 
uncertainty

I(k+1)=I(k)=(2/3)I(k)

l
(b)

u
I(k+1) (1 - )I(k+1)

ba

l a b u

For new interval of uncertainty, we always 
have to compute f(a ),  f(b ).
<Question>
Is there any method to use the previous 
function values?

Phase 2: Local Search (1/3)

 Reduction of the interval of uncertainty by comparing 
function values at a and b

 We consider two points symmetrically located from 
either end as shown in the figure – points a and b are 
located at a distance of  I(k) from either end of the 
interval.

 Comparing function values at a and b, either the left 
(l, a) or the right (b, u) portion of the interval gets 
discarded because the minimum cannot lie there.
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If f(a) < f(b), then minimum 
point lies between l and b.

I(k+1) (1 - )I(k+1)

b

(1 - )I(k) I(k)

a

(1 - )I(k)I(k)

I(k)

l u

(a)

I(k+1) =I(k)

l u
(b)

0)1( )()(  kk II 

 Reduction of the interval of uncertainty by comparing function values at a and b

 We consider two points symmetrically located from either end as shown in the figure – points 
a and b are located at a distance of  I(k) from either end of the interval.

1. f(a) will be used for the next interval of uncertainty I(k+1) .
2. a can be equal to a or b of the next interval of 
uncertainty I(k+1).

a a  

I(k+1)(1 - )I(k+1)

a

)1()( )1()1(  kk II 
)()( )1()1( kk II  

)()( kk II 

3-1. Assume that a is equal to a .

Because  = 1, this assumption is wrong.

3-2. Assume that a is equal to b . a b  
)1()()1(  kk II 

)()()1( kk II  

01 2 
618.1,618.0  618.0

b

Phase 2: Local Search (2/3)
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Phase 2: Local Search (3/3)

I(k+1) (1 - )I(k+1)

b

(1 - )I(k) I(k)

(1 - )I(k)I(k)
b

I(k+1) =I(k)

l u
(b)

0)1( )()(  kk II 

b b  

I(k+1)(1 - )I(k+1)

a

)1()( )1()1(  kk II 
)()( )1()1( kk II  

)()( kk II 

3-1. Assume that b is equal to b .

Because  = 1, this assumption is wrong.

3-2. Assume that b is equal to a . b a  
)1()()1(  kk II 

)()()1( kk II  

01 2 
618.1,618.0  618.0

I(k)

l u

(a)
a

1. f(b) will be used for the next interval of uncertainty I(k+1) .
2. b can be equal to a or b of the next interval of 
uncertainty I(k+1).

 Reduction of the interval of uncertainty by comparing function values at a and b

 We consider two points symmetrically located from either end as shown in the figure – points 
a and b are located at a distance of  I(k) from either end of the interval.

If f(a) > f(b), then minimum 
point lies between a and u.
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Summary (1/3) 

 Step 1: For a chosen small number , let q be the smallest integer
to satisfy f(q-1) < f(q-2) and f(q-1) < f(q), where q, q-1, and q-2 are
calculated from                                 . The upper and lower
bounds on * (the optimum value for ) are given as follows.

 Step 2: Compute f(a) and f(b) where a = l + 0.382I and
b = l + 0.618I (interval of uncertainty I = u - l). 

 Step 3: Compare f(a) and f(b), and go to Step 4, Step 5 or Step 6.










2

0
2

0

)618.1(,)618.1(
q

j

j
ql

q

j

j
qu 

(1 - )I(k) I(k)

a

(1 - )I(k)I(k)

b

I(k)

l u

0

(1.618) , ( 0,1,2, )
q

j
q

j

q 


  
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Summary (2/3)

 Step 4: If f(a) < f(b), then minimum point * lies between l

and b, i.e., l  *  b. The new limits for the reduced interval of
uncertainty are l’ = l and u’ = b. Also, b’ = a. Compute f(a’), 
where a’ = l’ + 0.382(u’ - l’) and go to Step 7.

 Step 5: If f(a) > f(b), then minimum point * lies between a

and u, i.e., a  *  u. Similar to the procedure in Step 4, let
l’ = a and u’ = u, so that a’ = b. Compute f(b’), where
b’ = l’ + 0.618(u’ - l’) and go to Step 7.

 Step 6: If f(a) = f(b), let l = a and u = b, and return to Step 2.

I(k+1) (1 - )I(k+1)

b

(1 - )I(k) I(k)

a

(1 - )I(k)I(k)

b

I(k)

l u

I(k+1) =I(k)

l u

I(k+1)(1 - )I(k+1)

a

Step 4

I(k+1) (1 - )I(k+1)

b

(1 - )I(k) I(k)

(1 - )I(k)I(k)

b

I(k+1) =I(k)

l u
(b)

I(k+1)(1 - )I(k+1)

a

I(k)

l ua

Step 5
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Summary (3/3)

 Step 7: If the new interval of uncertainty I’ = u’ - l’ is small

enough to satisfy a stopping criterion (i.e., I’ < ), let * = (u’ - l’) / 2 

and stop. Otherwise, delete the primes (’) on l’, a’, b’ and u’

and return to Step 3.

I(k+1) (1 - )I(k+1)

b

(1 - )I(k) I(k)

a

(1 - )I(k)I(k)

b

I(k)

l u

I(k+1) =I(k)

l u

I(k+1)(1 - )I(k+1)

a

Step 4

I(k+1) (1 - )I(k+1)

b

(1 - )I(k) I(k)

(1 - )I(k)I(k)

b

I(k+1) =I(k)

l u
(b)

I(k+1)(1 - )I(k+1)

a

I(k)

l ua

Step 5


