

Contents
☑ Ch. 1 Introduction to Optimum Design
In Ch. 2 Unconstrained Optimization Method: Gradient Method
Image: Ch. 3 Unconstrained Optimization Method: Enumerative Method
☑ Ch. 4 Constrained Optimization Method: Penalty Function Method
☑ Ch. 5 Constrained Optimization Method: LP (Linear Programming)
Ch. 6 Constrained Optimization Method: SQP (Sequential
Quadratic Programming)
Ch. 7 Metaheuristic Optimization Method: Genetic Algorithms
Ch. 8 Case Study of Optimal Dimension Design
Image: Ch. 9 Case Study of Optimal Route Design
Image: Ch. 10 Case Study of Optimal Layout Design
Copics in Ship Design Automation, Fall 2015, Myung-II Roh

6

Pseudo Code for General Genetic Algorith	ıms
Initialize population; Evaluate population;	
while StoppingCriteriaNotSatisfied { Select parents for reproduction, Perform Crossover; Perform Mutation; Evaluate population; Replace population; }	;
pics in Ship Design Automation, Fall 2015, Myung-II Roh	/ydlab 24

Crossover Operato	or									
- Order 1 Crossove	er (2	/2)								
☑ General Steps										
Step 1: Select a (red box)	rand	om	swat	h of	cons	ecuti	ve g	jenes f	from Parer	nt 1.
■ Step 2: Drop th Parent 2.	e swa	th d	down	to C	hild	1 an	d m	ark ou	t these ge	nes in
Step 3: Starting Parent 2 and in Since 5 is in tha the right edge skipped becaus spot in Child 1.	on the sert t of the e they	he r hen sitio sw y ar	ight s n in C n in I ath. I e ma	side Child Parer Notic rked	of th 1 at nt 2, ce th out	the r it is i at ge and a	ath, ight nsei nes B is	grab g edge rted in 7, 2, 1 inserte	genes from of the swa to Child 1 , and 6 are ed into the	n ath. first at e 1 st
Step 4: If you d 1 and Parent 2	esire and g	a se jo b	econd ack t	l chil o Ste	d fro ep 1.	om th	e tv	vo par	ents, flip F	Parent
P ₁	(3	5	7	2	1	6	4	8)		
P ₂	(2	4	+	6	8	3	5	7)		
C ₁	(8	3	7	2	1	6	5	4)		
Other variation: C_1	(4	8	7	2	1	6	3	5)		44

Crossover Operator - Edge Recombination (1/4)	
 This is a crossover techniques for permutation (ordered) chromosomes. It strives to introduce the fewest paths possible. In problems such as the traveling salesman, introducing a stray edge between two nodes is usually very bad for a chromosome's fitness. The idea here is to use as many existing edges, or node- 	
 connections, as possible to generate children. ☑ Edge recombination typically outperforms PMX and Ordered crossover, but usually takes longer to compute. 	
Copics in Ship Design Automation, Fall 2015, Myung-II Roh	48

Crossover Oper - Edge Recombi	ator ination (2/4)						
☑ General Steps ■ Step 1: Gen	erate neigh	nbor lis	t.					
	P ₁ (A P ₂ (G	B F	F E A B	D C	G D	C) E)		
Neighbor list of	f A: B C F							
	P ₁ (A- P ₂ (G	→B F←/	F E A,→B	D C	G D	C) E)		
Neighbor lists:								
A: B C F D: E G C G: D C E F	B: A F E: F D	G G	C: F: I	GAI BEG	B D i A			
Fopics in Ship Design Automation, Fall 2015, Mi	yung-Il Roh						rydlal	49

Crossover Operator	P ₁ (ABFEDGC)					
- Edge Recombination (3/4)	P ₂ (G F A B C D E)					
☑ General Steps (continued)	Neighbor lists:					
■ Step 2: Generate a child.	D: E G C / E: F D G / F: B E G A / G: D C E F					
• First, we randomly select the firs	t node of a parent. Child C ₁ : A					
 Next, after crossing A out from a full list. So, Child C₁: A B 	all neighbor lists, we see that B is the least					
 Next, after crossing B out from a neighbors, so we randomly chool 	all neighbor lists, F and C both have only 2 ose between the two: Child C ₁ : A B F					
 Next, after crossing F out from all neighbor lists, E is the neighbor of F that has the fewest neighbors. Child C₁: A B F E 						
 Next, after crossing E out from all neighbor lists, D and G both have only 2 neighbors, so we randomly choose between the two: Child C1: A B F E G 						
 Next, after crossing G out from all neighbor lists, D and C both have only 1 neighbor, so we randomly choose between the two: Child C₁: A B F E G C 						
 Next, after crossing C out from all neighbor lists, D has only one neighbor and it has no neighbors left, so we randomly choose between the nodes that aren't yet included in the child. In this case, D is the only one left, so we're done: Child C₁: A B F E G C D 						
 The child that we produced intro algorithm makes excellent use o introduce stray edges during cro 	oduced only one new edge: A to D. This f existing edges and is much less likely to ossover.					
Topics in Ship Design Automation, Fall 2015, Myung-Il Roh	ydlab 50					

Crossover Operator - PMX (Partially Mapped Crossover) (1/3)
 PMX crossover is a genetic algorithm operator for crossover. For some problems it offers better performance than most other crossover techniques. Basically, Parent 1 donates a swath genetic material and the corresponding swath from the other parent is sprinkled about in the child. Once that is done, the remaining genes are copied direct from Parent 2.
Copics in Ship Design Automation, Fall 2015, Myung-II Roh 52

Crossover Operator - PMX (Partially Mapped Crossover) (3/3)						
 Example We copy a random swath of consecutive genes from Parent 1 to the Child. Parent 2 5 7 2 1 6 4 8) 	4. '3' is the next value in the swath in Parent 2 that isn't already included in the child. So, we check the same index in Parent 1 and see a '6' in that position. Next, we check for '6' in Parent 2 and notice that it is still in the swath. So, we go back to Step 2-1 using '6' as the value.					
$P_{1} (5 5 : 7 2 1 0: 4 0)$ $P_{2} (2 4 1 6 8 3 5 7)$ $C_{1} ()$ 2. '8' is the first value in the swath of Parent 2 that isn't in the child. We identify '1' as the value in the came parent 1. We locate the value ('1' in the child with the swath of the value ('1' in the child with the swath of the value ('1' in the child with the swath of the value ('1' in the swath of the swath of the value ('1' in the swath of the swath	5. Repeating Step 2-1: Once again, we see that '2' is in the same position in Parent 1, and we locate '2' in Parent 2 in the first position. Finally, we have obtained a position in the child for the value '3' from Step 2. P ₁ (3 5 7 2 1 6 4 8)					
Parent 2 and notice that it is still in the swath. So, we go back to Step 2-1 using '1' as the value.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
3. Repeating Step 2-1: Once again, we see that '7' is in the same position in Parent 1, and we locate '7' in Parent 2 in the last position. Finally, we have obtained	6. Now the easy part, we've taken care of all swath values, so everything else from Parent 2 drops down to the child.					
P ₁ (3 5 7 2 1 6 4 8) P ₂ (2 4 1 6 8 3 5 7)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
C ₁ (7 2 1 6)	If we wish to create a 2 nd child with the same set of parents, simply swap the parents and start over.					
Topics in Ship Design Automation, Fall 2015, Myung-II Roh	ydlab 54					

Mutation Operator - Inversion Mutation (Operator	
 ✓ General Steps ■ Step 1: Determine st ■ Step 2: Put the value ■ Step 3: Copy the value 	cart and stop of swath. es of the swath back in reve ues which are not in the sw	erse order. vath.
C ₁ (4	8 7 2 1 6 3	5)
C ₁ ′ (4	8 6 1 2 7 3	5)
Fopics in Ship Design Automation, Fall 2015, Myung-II Roh		rydlab 55

Mutation Operator - Insertion Mutatio	on Ope	rator					
 ✓ General Steps ■ Step 1: Select so ■ Step 2: Put the so ■ Step 3: Copy the 	ome gene values of e values	es for inso the gene which are	ertion. es in o e not se	rder. elected	for insertio	n.	
C ₁	(4 8	7 2	1	6 3	5)		
C ₁ ′	(4 8	7 1	3	26	5)		
						rudlab	56

Mutation Operato - Random Swap O	r perator			
 ☑ This is like single values instead. ☑ General Steps ■ Step 1: Select t ■ Step 2: Swap to ■ Step 3: Copy the 	swap, but sv wo swaths to k vo swaths and he values which	vaps a rando be swapped. put them. are not select	m string of ted for swap.	consecutive
C ₁	(4 8 7	2 1 6	3 5)	
C ₁ ′	(4 1 6	2 8 7	3 5)	
Fopics in Ship Design Automation, Fall 2015, Myung-II I	Roh			

Mutation Operator - Scramble Mutation	Operator	
 ✓ General Steps ■ Step 1: Determine s ■ Step 2: Scramble an ■ Step 3: Copy the va 	tart and stop of swath. d put the values of the swa lues which are not in the sw	th back. vath.
C ₁ (4	8 7 2 1 6 3	5)
C ₁ ' (4	8 2 6 7 1 3	5)
Topics in Ship Design Automation, Fall 2015, Myung-Il Roh		JUST SP

Classification of Optimization Problems According to Number of Objective Functions ☑ Single-objective Optimization Problem ■ The problem has only one objective function. ■ The problem has only a single (global) optimum. ■ The optimum can be maximum or minimum according to the type of objective function. Multi-objective Optimization Problem ■ The problem has at least two or more objective functions **The problem has not a single optimum but multiple optima called** Pareto optimal set. The optima can be subdivided into dominant solution and nondominant solution. • Dominant solution: When objective function value of the solution is better than those of others • Non-dominant solution: When objective function value of the solution can not be improved without the increase of those of others. It is also called Pareto optimal set or Pareto front or Pareto frontier. sydlab 🕫 s in Ship Design Automation, Fall 2015, Myung-Il Roh

36

