

Cont	ents
⊠ C	h. 1 Introduction to Optimum Design
⊠ C	h. 2 Unconstrained Optimization Method: Gradient Method
⊠ C	h. 3 Unconstrained Optimization Method: Enumerative Method
⊠ C	h. 4 Constrained Optimization Method: Penalty Function Method
⊠ C	h. 5 Constrained Optimization Method: LP (Linear Programming)
⊠ C Q	h. 6 Constrained Optimization Method: SQP (Sequential uadratic Programming)
⊠ C	h. 7 Metaheuristic Optimization Method: Genetic Algorithms
⊠ C	h. 8 Case Study of Optimal Dimension Design
⊠ C	h. 9 Case Study of Optimal Route Design
⊠ C	h. 10 Case Study of Optimal Layout Design
Topics in Ship De	sign Automation, Fall 2015, Myung-II Roh

Optimal Dimension Design for Ship										
- Determination of Optimal Dimensions of Bulk Carrier (2/2)										
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$\frac{DMCR}{r_{j_r}, v_{T_{j-}}} = \frac{Min_f - Sin_f - O}{T_{j_r}, v_{T_{j-}}}$ Non-linear	om Leve Building $(r_2 = 0, r_3)$ $(r_2 = 0, r_3, V)$ Optin brary	$\begin{array}{c} \\ \hline \\ Cost \\ = 0 \\ DMCR^{2} \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	": Target Variables ": Dummy Variables ;, <i>L</i> ", <i>DMCR</i> " scipline Level 2 $r_2 = (L^*L_2^2 + (B^*B_2^2)^2)$		System Leve				
$\begin{array}{c} + (D - D)^{1/2} (C_{k}^{-1} C_{k}^{-1}) \\ - (D + D)^{1/2} (C_{k}^$	$\begin{array}{c} L^{*}B^{*}\\ 4.5 \\ B_{2J}\\ T^{+}\\ T^{+}\\ \end{array} \qquad \begin{array}{c} Min.r_{2} = (l \\ +(D \cdot D^{*}) \\ S_{2J}\\ S_{2J}$	D^*, C_B^* ne Leve $L^2 + (B)^2 + (C_B^* - C_I - C_I^2)^2 + (C_B^* - C_I^2 - C_I^2)^2 + (C_B^* - C_I^2 - C_I^2)^2 + (C_B^* - C_I^2 - C_I^2)^2 + (C_B^* - C_B^* - C_I^2)^2 + (C_B^* - C_B^* - C_B^* - (C_B^* - C_B^* - C_B^2)^2 + (C_B^* - C_B^* - C_B^* - C_B^2)^2 + (C_B^* - C_B^* - C_B^* - C_B^2) + (C_B^* - C_B^* - C_B^* - C_B^2)^2 + (C_B^* - C_B^* - C_B^* - C_B^* - C_B^2) + (C_B^* - C_B^* - C_B^* - C_B^* - C_B^2) + (C_B^* - C_B^* - C_B^* - C_B^* - C_B^2) + (C_B^* - C_B^* - C_B$	r.s. Pr) ++ el3 + s'13 + s'13 + s'13 + s'14 + But + F-f(P) + ative optimin + nvironment	$\begin{array}{c} C_{2}^{-1} C_{2}^{-1} Y^{2} + (V - T)^{2} \\ (M - R^{-} D M C R^{2}) \\ St_{R_{22}} \leq 0 \\ L^{+}(B_{1}^{+} C_{2}^{-} - V, D) H C R_{1} \\ g_{22} = V - V \\ R_{22}^{-} = f(U_{1}^{+} B_{1}^{+} C_{2}^{-} R) \\ R^{-} f(R_{1}^{+} R_{2}^{+} R) \\ R^{-} f(R_{1}^{+} R) \\ R^{-} f(R_{1}^{+$	(Commo T.V. The D.F.V UNIX Discipline Level 1 * T.V: Target variable among discipline le	Discret Request Broker T.V O D.F.V Vindows Discriptine Level 2 es from system level w vels	Architecture) T.V 🗘 D.F.V UNIX Discipline Level 3 hich are shared			
Application to an actual problem of shipyard		Unit	Manual	Standar	d, single optir	value of each disciplin	Collaborative optimization			
Cargo hold capacity: 179,000m ³ Ship speed: 13,5knots Design draft: 17,2m Percenter RPM: 27,9 rpm	Building cost	\$	60,949,431 (100.0%)	cost reduction 59,000,510 (98.3%)	GA ² 59,863,587 (98.2%)	HYBRID ³ 59,831,834 (98.2%)	with MS 59,831,688 (98.2%)			
Applicable to	L	m	266.00	265.18	264.71	263.69	263.70			
64,000,000 Convergence history naval surface	В	m	45.00	45.00	45.00	45.00	45.00			
B 63,000,000 - Collaborative optimization (for best one)	D	m	24.40	24.54	24.68	24.84	24.83			
S 62,500,000 Multi-start method (for best one) Genetic algorithm	CB	-	0.8276	0.8469	0.8463	0.8420	0.8418			
Sec.000,000	Dp	m	8.3000	8.3928	8.4305	8.3999	8.3960			
8 61,000,000 -	Pi	m	5.8200	5.8221	5.7448	5.7365	5.7411			
⁶ 60,500,000	A _E /A _O	-	0.3890	0.3724	0.3606	0.3690	0.3692			
69,500,000 0 10 20 30 40 50 60 70 80 90	CPU time ⁴	sec	-	209.58 (140%)	198.60 (133%)	187.22 (125%)	149.75 (base)			
Generation(Iteration) Number * 1: Multi-start local optimization (50 random starting points), 2: Genetic algorithm	n (50 random starting p	oints), 3	: HYBRID: Hybrid opti	imization method, 4: Te	ested on the Intel Pen	tium III 866MHz, 512R/	M in 2002 6			

Optimal Dimension Design for Ship - Determination of Optimal Dimensions of Naval Ship (2/2)								
Application to an actual problem US Navy DDG-51 missile destroyer		Unit	Manual design	MS ¹	GA ²	HYBRID ³		
Displacement: about 9,000ton Ship speed: 20knots	Objective function value	-	3,760.35 re (100.0%)	duction (99.5%)	3,723.80 (99.0%)	3,715.80 (98.8%)		
Given: Displacement, V Variation of main dimensions	Fuel consumption	kg/h	3,589 (100.0%)	3,584 (99.9%)	3,556 (99.1%)	3,551 (98.9%)		
L, B, D, T, C _B , P ₁ , A _C /A _C , n Estimation of light weight	Hull structure weight	ton	3,931 (100.0%)	3,897 (99.1%)	3,891 (99.0%)	3,880 (98.7%)		
Estimation of variable load Estimation of speed and power Ontimization algorithm	L	m	157.37	157.02	156.74	156.51		
Estimation of freeboard "EzOptimizer"	В	m	19.99	19.98	19.82	19.82		
Criteria for optimum	D	m	12.70	12.69	12.73	12.84		
Minimization of fuel consumption and hull structure weight	т	-	5.61	5.62	5.67	5.80		
	C _B	m	0.510	0.506	0.506	0.508		
······································	P _i	m	9.02	9.51	9.33	9.05		
$3,340$ $w_1 - 1, w_2 - 0$	A _E /A _o	-	0.80	0.65	0.65	0.65		
3,920 W1 W2 Pareto optimal set	n	rpm	97.11	93.49	94.53	93.51		
$w_1 = w_2 = 0.5$	Displacemen t	ton	9,074	9,048	9,004	9,001		
Selected optimum	CPU time ⁴	sec	-	201.63 (140%)	191.28 (133%)	193.22 (base)		
					•	$w_1 = w_2 = 0.5$		
$ \begin{array}{c} \overset{\mu}{}_{3840} \\ \underset{3850}{\overset{3850}{}} \\ f = w_1 f_1(Fuel \ Consumption) + w_2 f_2(Hull \ Structure Weight) \\ \end{array} $								
3,500 3,520 3,540 3,560 3,580 3,600 Fuel Consumption (f,) *1: Multi-start local optimization (50 random starting points); 2: Genetic algorithm (50 random starting points)	, 3: HYBRID: Hybrid optim	ization me	thod, 4: Tested on t	he Intel Pentium III	866MHz, 512RAM i	n 2002 8		

Op - D	Optimal Dimension Design for Ship - Determination of Optimal Dimensions of Hatch Cover (2/2)												
Appli	cation to an actual prob	olem				Unit	Manua	al desig	n Op	timizati [B]	ion	Ratio (B/A)	
• 180,	000ton bulk carrier	E.			t,	mm		16		14		87.5%	
• Lbp/	B/D: 283.5/45.0/24.7m 8.2m			ion	t,	mm		8		8		100.0%	
E 000-13				1	b	mm	1	170		160		94.1%	
18417774				- 1	а	mm	1	20		111		92.5%	
·97	1	-			d	mm	220 3 32.360			198 3 28.410		90.0%	
					Ν	-						100.0% 87.8%	
	weight			1	Weight	ton			<u>.</u>				
	HYUNDAI					MPa	2	218 <mark>1</mark> .	2% duction	252		115.6%	
					δ _{max}	mm	5.	.532		6.388		115.5%	
				Manual	OPT	Composites HC		нс	Steel-Compo		osites HC		
Defen				Unit	[A]	[B]	C-1	C-2	C-3	D-1	D-2	D-3	
(we	ight = 32.36ton)	(weight = 28.41ton)	Material	-	Steel (AH32)	Steel (AH32)	GFRP ¹	GFRP	CFRP ²	AH32 +GFRP	AH32 +GFRP	AH32 +CFRP	
450,000	Weight of steel hatch cover	135 Jack 197	Fabrication method	-	Welding	Welding	Hand lay up	Vacuum	Vacuum	Hand lay up	Vacuum	Vacuum	
400,000	12.3	27.93 28.2 - 30	Weight	ton (%)	32.36	28.41 (87.8)	20.77	21.09	9.60 (29.7)	27.93 (86.3)	28.20 (87.1)	21.85	
300,000	Steel Composites	Hybrid Steel+Composites) - 25	Material cost	\$ (%)	24,653 (100.0)	21,644 (87.8)	89,109 (361.5)	90,438 (366.8)	406,102 (1,647.3)	56,360 (228.6)	57,530 (233.4)	167,360 (678.9)	
250,000 uigl COS	20.77 —-Material cost	21.85 20 J) 21.85 20 J) 21.85 20 J)	Fuel cost (for 25 years)	\$	419,871	368,620	269,491	273,643	124,560	362,392	365,895	283,504	
150,000	Weight	167,360 19 🗙	CO ₂ emissions (for 25 years)	ton	16,088	14,124	10,326	10,485	4,773	13,885	14,020	10,863	
100,000	99.109 9.6 90.418 86	.360 57.530 - 5	CO ₂ cost ³ (for 25 years)	\$	402,194	353,101	258,145	262,122	119,316	347,135	350,491	271,568	
0	21 et-	ost of steel hatch cover	Total cost (for 25 years)	\$ (%)	846,718 (100.0)	743,365 (87.8)	616,745 (72.8)	626,203 (74.0)	649,978 (76.8)	765,887 (90.5)	773,916 (91.4)	722,432 (85.3)	
* 1: GFRP(A B C-1 C-2 C-3 D-1 D-2 D-3 1: GFRP(Glass Fiber Reinforced Polymer), 2: CFRP(Carbon Fiber Reinforced Polymer), 3: CO, treatment cost 10												

Determination of the Optimal Principal Dimensions of a Propeller by Using the Lagrange Multiplier (2/5)

 $\frac{P}{2\pi n} = \rho \cdot n^2 \cdot D_p^{-5} \cdot K_Q \quad \cdots \quad \text{(a)} \quad \text{:The propeller absorbs the torque delivered by main engine}$

The constraint (a) is reformulated as follows:

$$C = \frac{K_Q}{J^5} = \frac{P \cdot n^2}{2\pi\rho \cdot V_A^5}$$

$$G(J, P_i / D_P) = K_Q - C \cdot J^5 = 0 \quad \dots \quad (a')$$

Propeller efficiency in open water η_0 is as follows.

$$F(J, P_i / D_P) = \eta_O = \frac{J}{2\pi} \cdot \frac{K_T}{K_O} \quad \dots \quad (b)$$

The objective F is a function of J and P_i/D_p .

in Ship Design Automation, Fall 2015, Myung-Il Roh

It is to determine the optimal principal dimensions (J and P_i/D_p) to maximize the propeller efficiency in open water satisfying the constraint (a').

rydlab 34

Determination of the Optimal Principal Dimensions of a Propeller by Using the Lagrange Multiplier (4/5)

Eliminate λ in the equation (1), (2), and (3), and rearrange as follows.

$$\left(\frac{\partial K_{\varrho}}{\partial (P_{i}/D_{p})}\right)\left\{J\cdot\left(\frac{\partial K_{T}}{\partial J}\right)-4K_{T}\right\}$$
$$+\left(\frac{\partial K_{T}}{\partial (P_{i}/D_{p})}\right)\left\{5K_{\varrho}-J\cdot\left(\frac{\partial K_{\varrho}}{\partial J}\right)\right\}=0\quad\dots\dots\quad(4)$$

$$K_Q - C \cdot J^5 = 0 \quad \cdots \quad (5)$$

in Ship Design Automation, Fall 2015, Myung-II Rol

By solving the nonlinear equation (4) and (5), we can determine J and P_i/D_p to maximize the propeller efficiency.

By definition $J = \frac{V(1-w)}{n \cdot D_p}$, if we have J, we can find D_p . Then P_i is obtained from P_i/D_p .

Thus, we can find the propeller diameter (D_p) and pitch (P_i) .

ydlab 36

Determination of Optimal Principal Dimensions of a Propeller - Problem Formulation								
Find	$P_i, A_E / A_O, n, V$	Design Variables						
Maximize	$\eta_O = \frac{J}{2\pi} \cdot \frac{K_T}{K_O}$	Objective Function						
Subject to	$\frac{P}{2\pi n} = \rho \cdot n^2 \cdot D_p^5 \cdot K_Q$	Constraints						
	$\frac{R_T}{1-t} = \rho \cdot n^2 \cdot D_p^4 \cdot K_T$: The condition that the propeller shou at a given ship's speed $A_E / A_O \ge K + \frac{(1.3+0.3Z) \cdot T_h}{D_p^2 \cdot (p_o + \rho \cdot g \cdot h - p_v)}$	Ild produce the required thrust						
Where	for non-cavitating criterion $J = \frac{V(1-w)}{n \cdot D_P}, K_T = f(J, P_i / D_P, A_E / A_O, K_E)$ $K_T = f(J, P_i / D_P, A_E / A_O, K_E)$,Z),						
➡ Opti 1 in	$\mathbf{R}_{Q} - J(\mathbf{G}, \mathbf{I}_{i} \mid \mathbf{D}_{P}, \mathbf{A}_{E} \mid \mathbf{A}_{Q}, \mathbf{Z}), \mathbf{I}_{h} = \mathbf{R}_{T} / ($ imization problem having 4 design variables, equality constraint	2 equality constraints, 40nd						

Optimizat	;						
	Unit	DDG-51	MFD	MS	GA	HYBRID w/o Refine	HYBRID with Refine
Pi	m	8.90	9.02	9.38	9.04	9.06	9.06
A _E /A _O	-	0.80	0.80	0.65	0.80	0.80	0.80
n	rpm	88.8	97.11	94.24	96.86	96.65	96.64
V*	kts	20.00	19.98	20.01	20.01	19.99	20.00
ηο	-	-	0.6439	0.6447	0.6457	0.6463	0.6528
Δ	LT	8,369	9,074	8,907	8,929	9,016	9,001
BHP	HP	13,601	14,654	14,611	14,487	14,447	14,443
lteration No	-	-	5	267	89	59	63
CPU Time	sec	-	0.88	38.07	41.92	40.45	41.39

Unit (1/2)		
☑ LT (Long Ton, British) = 1.016 [ton], ST (Short Ton, Amer 0.907 [ton], MT (Metric Ton, Standard) = 1.0 [ton]	ican) =	
 ✓ Density ➡ [ton/m³ or Mg/m³] ■ e.g., density of sea water = 1.025 [ton/m³], density of fresh water = [ton/m³], density of steel = 7.8 [ton/m³] 	= 1.0	
☑ 1 [knots] = 1 [NM/hr] = 1.852 [km/hr] = 0.5144 [m/sec]		
 ✓ 1 [PS] = 75 [kgf⋅m/s] = 75×10⁻³ [Mg]⋅9.81 [m/s²]⋅[m/s] = 0.73575 [kW] (Pferdestarke, German translation of horsepower) ■ NMCR of B&W6S60MC: 12,240 [kW] = 16,680 [PS] 		
 ✓ 1 [BHP] = 76 [kgf·m/s] = 76×10⁻³ [Mg]·9.81 [m/s²]·[m/s] = 0.74556 [KW] (British horsepower) 		
Fopics in Ship Design Automation. Fall 2015, Myung-Il Roh	rydlab	52

Unit (2/2)

How does a ship float? (2/3)									
 Archimedes' Principle The magnitude of the buoyant force acting on a floating body in the fluid is equal to the weight of the fluid which is displaced by the floating body. The direction of the buoyant force is opposite to the gravitational force. 									
Buoyant force of a floating body = the weight of the fluid which is displaced by the floating body ("Displacement → Archimedes' Principle	ent")								
 ✓ Equilibrium State ("Floating Condition") ■ Buoyant force of the floating body Weight of the floating body 	gV								
∴ Displacement = Weight G: Center of gravity B: Center of buoyancy W: Weight, Δ: Displacement p: Density of fluid V: Submerged volume of the floating body (Displacement volume, ∇)	<u>_</u>								

Economical Constraints : Required DF Propeller and Engine Selection	OC (Daily Fuel Oil Consumption)
① EHP (Effective Horse Power) $EHP = \boxed{R_T(v)} V_s$ (in calm water) ② DHP (Delivered Horse Power)	Resistance Estimation
$DHP = \frac{EHP}{\eta_D} (\eta_D : \text{Propulsive efficiency}) \\ \eta_D = \eta_0 \cdot \eta_n \cdot \eta_n \\ \eta_D : \text{Open water efficiency} \\ \eta_T : \text{Hull efficiency} \\ \eta_T : \text{Relative rotative efficiency} \\ \text{BHP (Brake Horse Power)} \\ BHP = \frac{DHP}{\eta_T} (\eta_T : \text{Transmission efficiency}) \\ \text{@ NCR (Normal Continuous Rating)} \\ \text{Sea Margine} \\ \end{bmatrix}$	Propeller Efficiency Thrust deduction and wake (due to additional resistance by propeller) Hull-propeller interaction
$NCR = BHP(1 + \frac{5Ce i Margine}{100})$ (5) DMCR (Derated Maximum Continuous Rating) $DMCR = \frac{NCR}{Engine Margin}$ (6) NMCR (Nominal Maximum Continuous Rating) $NMCR = \frac{DMCR}{Derating rate}$	Engine Selection

IMO Instruments	
 ✓ Conventions SOLAS / MARPOL / ICLL / COLREG / ITC / AFS / BWM ✓ Protocols MARPOL Protocol 1997 / ICLL Protocol 1988 ✓ Codes ISM / LSA / IBC / IMDG / IGC / BCH / BC / GC ✓ Resolutions Assembly / MSC / MEPC ✓ Circulars MSC / MEPC / Sub-committees 	
Copics in Ship Design Automation. Fall 2015. Myung-II Roh	88

Determination of the Optimal Principal Dimensions of a Ship by Using the Lagrange Multiplier (2/5) • Given: DWT, V_{H.rea}, D, T_s, T_d • Find: L, B, C_R • Minimize: Building Cost $f(L,B,C_B) = C_{PS} \cdot C'_s \cdot L^{2.0} \cdot (B+D) + C_{PO} \cdot C_a \cdot L \cdot B + C_{PM} \cdot C_{power}' \cdot (2 \cdot B \cdot T_d + 2 \cdot L \cdot T_d + L \cdot B) \cdot V^3$...(*d*) Subject to • Hydrostatic equilibrium (Simplified weight equation) $L \cdot B \cdot T_s \cdot C_B \cdot \rho_{sw} \cdot C_{\alpha} = DWT_{given} + LWT(L, B, D, C_B)$ $= DWT_{given} + C'_{s} \cdot L^{2.0} \cdot (B+D) + C_{o} \cdot L \cdot B + C_{power}' \cdot (2 \cdot B \cdot T_{d} + 2 \cdot L \cdot T_{d} + L \cdot B) \cdot V^{3}$...(a') $CC_{req} = C_{CH} \cdot L \cdot B \cdot D \quad \dots (b)$ $\frac{C_B}{(L/B)} < 0.15$...(c) rydlab 95 cs in Ship Design Automation, Fall 2015, Myung-II Ro

Determination of the Optimal Principal Dimensions of a Ship by Using the Lagrange Multiplier (3/5) By introducing the Lagrange multipliers λ₁, λ₂, u, formulate the Lagrange function H.

 $H(L, B, C_{B}, \lambda_{1}, \lambda_{2}, u, s) = f(L, B, C_{B}) + \lambda_{1} \cdot h_{1}(L, B, C_{B}) + \lambda_{2} \cdot h_{2}(L, B, D) + u \cdot g(L, B, C_{B}, s) \quad ...(e)$ $f(L, B, C_{B}) = C_{PS} \cdot C_{s}' \cdot L^{2} \cdot (B + D) + C_{PO} \cdot C_{o} \cdot L \cdot B + C_{PM} \cdot C_{power}' \cdot \{2 \cdot (B + L) \cdot T_{d} + L \cdot B\} \cdot V^{3}$ $h_{1}(L, B, C_{B}) = L \cdot B \cdot T_{s} \cdot C_{B} \cdot \rho_{sw} \cdot C_{a} - DWT_{given} - C_{s}' \cdot L^{20} \cdot (B + D) - C_{o} \cdot L \cdot B - C_{power}' \cdot \{2 \cdot (B + L) \cdot T_{d} + L \cdot B\} \cdot V^{3}$ $h_{2}(L, B, D) = C_{CH} \cdot L \cdot B \cdot D - CC_{req}$ $g(L, B, C_{B}, s) = \frac{C_{B}}{(L/B)} - 0.15 + s^{2}$ $L \to x_{1}, B \to x_{2}, C_{B} \to x_{3}$ $H(x_{1}, x_{2}, x_{3}, \lambda_{1}, \lambda_{2}, u, s)$ $= C_{PS} \cdot C_{s}' \cdot x_{1}^{2}(x_{2} + D) + C_{PO} \cdot C_{o} \cdot x_{1} \cdot x_{2} + C_{PM} \cdot C_{power}' \cdot \{2 \cdot (x_{2} + x_{1}) \cdot T_{d} + x_{1} \cdot x_{2}\} \cdot V^{3}$ $+ \lambda_{1} \cdot [x_{1} \cdot x_{2} \cdot T_{s} \cdot x_{3} \cdot \rho_{sw} \cdot C_{a} - DWT_{given} - C_{s} \cdot x_{1}^{2} \cdot (x_{2} + D) - C_{o} \cdot x_{1} \cdot x_{2} - C_{power}' \cdot \{2 \cdot (x_{2} + x_{1}) \cdot T_{d} + x_{1} \cdot x_{2}\} \cdot V^{3}]$ $+ \lambda_{2} \cdot (C_{CH} \cdot x_{1} \cdot x_{2} \cdot D - CC_{req})$ $+ u \cdot \{x_{3} / (x_{1} / x_{2}) - 0.15 + s^{2}\} \dots (f)$ Solution (find the order to the theorem (find the order to the order to the theorem (find the order to th

Determination of the Optimal Principal Dimensions of a Ship by Using the Lagrange Multiplier (5/5) $L \to x_1, B \to x_2, C_B \to x_3$ $H(x_{1}, x_{2}, x_{3}, \lambda_{1}, \lambda_{2}, u, s) = C_{PS} \cdot C'_{s} \cdot x_{1}^{2}(x_{2} + D) + C_{PO} \cdot C_{o} \cdot x_{1} \cdot x_{2} + C_{PM} \cdot C_{power} \cdot \{2 \cdot (x_{2} + x_{1}) \cdot T_{d} + x_{1} \cdot x_{2}\} \cdot V^{3}$ $+\lambda_1 \cdot [x_1 \cdot x_2 \cdot T_s \cdot x_3 \cdot \rho_{sw} \cdot C_{\alpha} - DWT_{given} - C_s \cdot x_1^2 \cdot (x_2 + D) - C_o \cdot x_1 \cdot x_2 - C_{power}' \cdot \{2 \cdot (x_2 + x_1) \cdot T_d + x_1 \cdot x_2\} \cdot V^3]$ $+\lambda_2\cdot \left(C_{CH}\cdot x_1\cdot x_2\cdot D - CC_{req}\right) + u\cdot \left\{x_3/\left(x_1/x_2\right) - 0.15 + s^2\right\} \dots (f)$ • Kuhn-Tucker necessary condition: $\nabla H(x_1, x_2, x_3, \lambda_1, \lambda_2, u, s) = 0$ $\frac{\partial H}{\partial x_3} = \lambda_1 \cdot x_1 \cdot x_2 \cdot T_s \cdot \rho_{sw} \cdot C_{\alpha} + u \cdot (x_2 / x_1) = 0 \qquad \dots (3)$ $\frac{\partial H}{\partial \lambda_1} = x_1 \cdot x_2 \cdot T_s \cdot x_3 \cdot \rho_{sw} \cdot C_{\alpha} - DWT_{given} - C_s \cdot x_1^2 \cdot (x_2 + D) - C_o \cdot x_1 \cdot x_2$ $-C_{power}' \cdot \{2 \cdot (x_2 + x_1) \cdot T_d + x_1 \cdot x_2\} \cdot V^3 \cdots (4)$ $\frac{\partial H}{\partial \lambda_2} = C_{CH} \cdot x_1 \cdot x_2 \cdot D - CC_{req} = 0 \quad ...(5)$ $\frac{\partial H}{\partial u} = x_3 \cdot x_2 / x_1 - 0.15 + s^2 = 0$...(6) $\frac{\partial H}{\partial s} = 2 \cdot u \cdot s = 0, \quad (u \ge 0) \quad \dots(7)$ $\nabla H(x_p, x_p, x_p, \lambda_p, \lambda_p, u, s)$: Nonlinear simultaneous equation having the 7 variables ((1)~(7)) and 7 equations It can be solved by using a numerical method! ydlab 💀 cs in Ship Design Automation, Fall 2015, Myung-II Roh

	lars of a deadw	eight 150,000 ton bulk carri	er (parent ship) and ship	owner's requirements
ltem		Parent Ship	Design Ship	Remark
	L _{OA}	abt. 274.00 m	max. 284.00 m	
L _{BP}		264.00 m		
Principal	B _{mld}	45.00 m	45.00 m	
Dimensions	D _{mld}	23.20 m		
	T _{mld}	16.90 m	17.20 m	
	T _{scant}	16.90 m	17.20 m	
De	Deadweight 150,960 ton 160,000 ton		at 17.20 m	
Speed		13.5 kts	13.5 kts	90 % MCR (with 20 % SM)
	TYPE	B&W 5S70MC		
M	NMCR	17,450 HP×88.0 RPM		Derating Ratio = 0.9
E	DMCR	15,450 HP×77.9 RPM		E.M = 0.9
	NCR	13,910 HP×75.2 RPM		
F	SFOC	126.0 g/HP.H		
c	TON/DAY	41.6		Based on NCR
Crui	sing Range	28,000 N/M	26,000 N/M	1
Mids	hip Section	Single Hull Double Bottom/Hopper /Top Side Wing Tank	Single Hull Double Bottom/Hopper /Top Side Wing Tank	
	Cargo	abt. 169,380 m ³	abt. 179,000 m ³	Including Hatch Coaming
Conneite	Fuel Oil	abt. 3,960 m ³		Total
capacity	Fuel Oil	abt. 3,850 m ³		Bunker Tank Only
	Ballast	abt. 48,360 m ³		Including F.P and A.P Tank

Determination of Optimal Principal Dimensions of a Bulk Carrier - Optimization Result

Minim	ization of Shipbuil	ding Cos	t						
		Unit	MFD ¹⁾	MS ²⁾	GA ³⁾	HYBRID ⁴⁾ w/o Refine	HYBRID ⁴⁾ with Refine		
G	DWT	ton		160,000					
	Cargo Capacity	m ³		179,000					
E	T _{max}	m		17.2					
Ν	V	knots		13.5					
	L	m	265.54	265.18	264.71	264.01	263.69		
	B m		45.00	45.00	45.00	45.00	45.00		
	D m		24.39	24.54	24.68	24.71	24.84		
	C _B	-	0.8476	0.8469	0.8463	0.8427	0.8420		
	D _P	m	8.3260	8.3928	8.4305	8.4075	8.3999		
P _i m 5.8129 5.8221		5.7448	5.7491	5.7365					
	A _E /A _O		0.3890	0.3724	0.3606	0.3618	0.3690		
E	Building Cost	\$	59,889,135	59,888,510	59,863,587	59,837,336	59,831,834		
	Iteration No	-	10	483	96	63	67		
	CPU Time ⁵⁾	sec	4.39	209.58	198.60	184.08	187.22		
MFD: Me	thod of Feasible Directions, Global-local hybrid optimiza	2) MS: Multi tion method	-Start local optimizatior , 5) 테스트 시스템: Pent	n method, 3) GA: Geneti ium 3 866Mhz, 512MB F	: Algorithm RAM		1		

Determination of Optimal Principal Dimensions of a Naval Ship

Mathematica Optimal Prin	I Formulation of a Problem for cipal Dimensions of a Naval S	or Determining Ship
Find	L, B, D, T, C_B	Design Variables
Minimize	BHP[HP](or FC[kg/h]) or	Objective Function
Subject to	* Equilibrium condition of displacement and weight $L \cdot B \cdot T \cdot C_p \cdot \rho \cdot (1 + \alpha) = \Delta = LWT$	Constraints + <i>VL</i>
	* Requirements for displacement(9,000ton class) $8,900 [LT] \le \Delta \le 9,100 [LT]$	
	* Requirements for speed-power $P/(2\pi n) = \rho \cdot n^2 \cdot D_P^5 \cdot K_Q$	
	$R_T / (1-t) = \rho \cdot n^2 \cdot D_P^4 \cdot K_T $ $(1.3+0.3Z) \cdot T_h$	
	$A_E / A_O \ge K + \frac{1}{D_P^2 \cdot (p_o + \rho \cdot g \cdot h - f_O^2)}$ * Miscellaneous design requirements	(p_v)
	$L^{l} \leq L \leq L^{u}, B^{l} \leq B \leq B^{u}, D^{l} \leq D \leq 0$	$E D^{u}, C_{B}^{l} \leq C_{B} \leq C_{B}^{u}$
Optimization of the optimization of the optimization	tion problem having 5 unknowns, 3 equality quality constraints	$\frac{7 D}{\text{constraints,}} = 1.02 \left(L + D \right)_{parent}$

Optimiza	ation	Result f	or				
the Mini	mizat	tion of F	uel Con	sumptio	n		
0.005 ((1) (1)				
CASE 1: M	Unit	DDG-51	MFD	MS	GA	HYBRID w/o Refine	HYBRID with Refine
L	m	142.04	157.68	157.64	157.60	157.79	157.89
В	m	17.98	20.11	19.69	19.47	19.60	19.59
D	m	12.80	12.57	12.67	12.79	12.79	12.74
Т	m	6.40	5.47	5.57	5.69	5.68	5.63
C _B	-	0.508	0.520	0.506	0.506	0.508	0.512
Pi	m	8.90	9.02	9.38	9.04	9.06	9.06
A _E /A _O	-	0.80	0.80	0.65	0.80	0.80	0.80
n	rpm	88.8	97.11	94.24	96.86	96.65	96.64
F.C (<i>f</i> ₁)	kg/h	3,391.23	3,532.28	3,526.76	3,510.53	3,505.31	3,504.70
H.S.W	LT	3,132	3955.93	3901.83	3910.41	3942.87	3,935.39
Δ	LT	8,369	9,074	8,907	8,929	9,016	9,001
Iteration No	-	-	6	328	97	61	65
CPU Time	sec	-	3.83	193.56	195.49	189.38	192.02
ics in Shin Design Aut	amation Fall 20	15 Muung-Il Poh					rydlab

Optimiza	ation	Result f	or		• • •		
he Mini	mizat	tion of F	Iull Stru	cture W	eight		
CASE 2: Mi	inimize I	null structur	e weight (f ₂)				
	Unit	DDG-51	MFD	MS	GA	HYBRID w/o Refine	HYBRID with Refine
L	m	142.04	157.22	155.92	155.78	155.58	155.56
В	m	17.98	20.09	20.09	20.12	20.10	20.09
D	m	12.80	12.72	12.66	12.63	12.66	12.67
Т	m	6.40	5.64	5.63	5.61	5.65	5.66
C _B	-	0.508	0.510	0.506	0.508	0.508	0.508
Pi	m	8.90	8.98	9.42	9.04	9.46	9.45
A _E /A _O	-	0.80	0.80	0.65	0.80	0.65	0.65
n	rpm	88.8	97.40	94.06	97.29	93.93	93.98
F.C	kg/h	3,391.23	3,713.23	3,622.40	3,618.71	3,603.89	3,602.60
H.S.W (<i>f</i> ₂)	LT	3,132	3,910.29	3,855.48	3,850.56	3,844.43	3,844.24
Δ	LT	8,369	9,097	9,014	9,008	9,004	9,003
Iteration No	-	-	7	364	95	64	68
CPU Time	sec	-	3.91	201.13	192.32	190.98	192.41
cs in Ship Design Auto	omation. Fall 20	15. Myung-Il Roh					rydlab

Optimiza	ation	Result f	or the N	/linimiza	tion of		
uel Con	sump	otion an	d Hull S	tructure	Weight	1	
<u></u>						-	* w ₁ = w ₂ = 0
CASE 3: MII	Unit	HYBRID	HYBRID				
L	m	142.04	157.37	157.02	156.74	156.54	156.51
В	m	17.98	19.99	19.98	19.82	19.85	19.82
D	m	12.80	12.70	12.69	12.73	12.82	12.84
Т	m	6.40	5.61	5.62	5.67	5.77	5.80
C _B	-	0.508	0.510	0.506	0.506	0.508	0.508
Pi	m	8.90	9.02	9.51	9.33	9.50	9.05
A _E /A _O	-	0.80	0.80	0.65	0.65	0.65	0.65
N	rpm	88.8	97.11	93.49	94.53	93.52	93.51
F.C (<i>f</i> ₁)	kg/h	3,391.23	3,589.21	3,583.56	3,556.15	3,551.98	3,551.42
H.S.W (<i>f</i> ₂)	LT	3,132	3,931.49	3,896.54	3,891.45	3,880.74	3,880.18
$w_1f_1 + w_2f_2$	-	3,261.62	3,760.35	3,740.05	3,723.80	3,716.36	3,715.80
Δ	LT	8,369	9,074	9,048	9,004	9,001	9,001
Iteration No	-	-	7	351	93	65	68
CPU Time	sec	-	3.99	201.63	191.28	190.74	193.22

			CASE 1	CASE 2	CASE 3	
	Unit	DDG-51	Minimize f ₁ (fuel consumption)	Minimize f ₂ (hull structure weight)	Minimize w ₁ f ₁ +w ₂ f ₂	
L	m	142.04	157.89	155.56	156.51	
В	m	17.98	19.59	20.09	19.82	
D	m	12.80	12.74	12.67	12.84	
Т	m	6.40	5.63	5.66	5.80	
CB	-	0.508	0.512	0.508	0.508	
Pi	m	8.90	9.06	9.45	9.05	
A _E /A _O	-	0.80	0.80	0.65	0.65	
n	rpm	88.8	96.64	93.98	93.51	
F.C	kg/h	3,391.23	3,504.70	3,602.60	3,551.42	
H.S.W	LT	3,132	3,935.39	3,844.24	3,880.18	
Objective	-	-	3,504.70	3,844.24	3,715.80	
Δ	LT	8,369	9,001	9,003	9,001	
Iteration No	-	-	65	68	68	
CPU Time	sec	-	192.02	192.41	193.22	

Mathematical Formulation of an Optimization Problem - Constraints (2/6)

☑ Maximum Permissible Deflection of the Hatch Cover

 $f \le 0.0056 \cdot l_g [m]$

where,

s in Ship Design Automation, Fall 2015, Myung-II Rol

f. deflection [m] of the hatch cover

 l_g : The largest span [m] of girders in the hatch cover

Mathematical Formulation of an Optimization Problem - Constraints (4/6)

☑ Minimum Section Modulus of Stiffeners of the Hatch Cover

$$M_{\min} \le M_{net} \ [cm^3]$$

where,

 M_{net} : net section modulus [cm³]

 M_{\min} : minimum section modulus, defined as

$$M_{net} = \frac{104}{R_{eH}} \cdot c \cdot l^2 \cdot p \ [cm^3]$$

cs in Ship Design Automation, Fall 2015, Myung-Il Roh

/ydlab 126

Mathematical Formulation of an Optimization Problem - Constraints (6/6)

☑ Geometric Limitations Related to the Shape of the Hatch Cover

$$N(2a+b) < W \quad d \le H \quad 0^\circ \le \theta \le 90^\circ$$

where,

W: width [m] of the hatch cover

D: depth [m] of the hatch cover

cs in Ship Design Automation, Fall 2015, Myung-Il Roh

 $\boldsymbol{\theta}\!\!\!$ angle between the plate and stiffener

➡ This optimization problem has total 8 inequality constraints.

rydlab 128

Optimization Program for the Hatch Cover Design - Components (1/5)

☑ Input Module

- The input module inputs some data for optimization of the hatch cover from a designer.
- The data includes the size (length, width, and depth) of the hatch cover, materials of plate and stiffeners, and so on.
- In addition, the input module generates initial values for design variables and transfers them to the optimization module.

cs in Ship Design Automation. Fall 2015. Myung-II Roh

Optimization Program for the Hatch Cover Design - Components (3/5)

☑ Preprocessor Module

s in Ship Design Automation, Fall 2015, Myung-Il Roh

- To calculate the structural responses by using a structural analysis program, a finite element model is required.
- The preprocessor module is used to generate the finite element model for the current values of the design variables.
- That is, the role of the module is the finite element modeling.
- In this module, an input file for the execution of the structural analysis program is generated with the current values of the design variables.
- The input file is transferred to the postprocessor module.

rydlab 134

Optimization Program for the Hatch Cover Design - Components (4/5)

Postprocessor Module

- In the post processor module, the structural analysis program is executed with the input file from the preprocessor module.
- That is, the role of the module is to perform the finite element analysis.
- In this study, the ANSYS which is one of commercial structural analysis programs was used for the structural analysis.
- After performing the finite element analysis with the structural analysis program, the structural responses such as the stress and deflection of the hatch cover can be acquired.
- The values of the structural responses are written in the output file by the structural analysis program.
- The postprocessor module parses the output file by the structural analysis program, and transfers the values of the structural responses to the optimization module.

rydlab 135

Topics in Ship Design Automation, Fall 2015, Myung-Il Roh

Optimization Program for the Hatch Cover Design
 Components (5/5)
 ✓ Output Module
 The output module outputs an optimization result from the optimization module.
 The result includes optimal dimensions (optimal values of the design variables), weight, maximum stress, maximum deflection of the hatch cover, and so on.

Hatch Cover Design of a Deadweight 180,000 ton Bulk Carrier - Mathematical Formulation Find t_p, t_s, b, a, d, N $\textit{Minimize} \quad \textit{Weight} = \left[\rho_p \cdot L \cdot W \cdot t_p + \rho_s \cdot L \cdot \left\{ (2a \cdot (\cos \theta)^{-1} + b + c) \cdot N + c \right\} \cdot t_s \right] \cdot 10^{-3} \; [ton]$ $= \left[7.85 \cdot 14.929 \cdot 8.624 \cdot t_p + 7.85 \cdot 14.929 \cdot \left\{ (2a \cdot (\cos \theta)^{-1} + b + c) \cdot N + c \right\} \cdot t_s \right] \cdot 10^{-3}$: weight of top plate and stiffeners Subject to $\sigma_v \leq 0.8 \cdot 315 [N/mm^2]$: maximum permissible stress $f \leq 0.0056 \cdot 3.138 \ [m]$: maximum permissible deflection $t_{\min} \leq t_p \ [mm]$: minimum thickness of a top plate $M_{\min} \leq M_{net} \ [cm^3]$: minimum section modulus of stiffeners : minimum shear area of stiffeners $A_{\min} \le A_{net} \ [cm^2]$: geometric limitation N(2a+b) < W: geometric limitation d < H $0^{\circ} < \theta \le 90^{\circ}$: geometric limitation Optimization problem having 6 design variables and 8 inequality constraints rydlab 138 Automation, Fall 2015, Myung-II Rol s in Ship D

ltem	Unit	Manual design	Optimization result
t _p	mm	16	14
t,	mm	8	8
b	m	0.170	0.160
а	m	0.120	0.111
d	m	0.220	0.198
Ν	-	8	8
Weight	ton	26.225	23.975
Maximum stress	MPa	218	252
Maximum deflection	mm	5.532	6.388

Volume and Displacement of Subma	rine ((2/3)	
 Pressure Hull Volume Watertight volume having important parts of submarine 	Pressure huli volume Outboard volume Everbuoyant volume		
 Outboard Volume Volume of weapons and propulsion systems which are installed outside of pressure hull 	Main ballast tanks De Submerged displacement Free flood volume		eductions
☑ Everbuoyant Volume	Envelop displacement		
Total volume related to buoyancy among volumes of submarine			
 Basis for calculating Normal Surface Condition Weight (NSCW) 			
NSCW = Ever buoyant volume / density of sea water			
ropics in Shio Desian Automation. Fall 2015, Mvuno-II Roh		<i>ydla</i> b	145

Compo ■ Ligh ■ Mos	sition of V tweight (LV t of displac : Estimatio	Veight (Displacement) VT) + Variable Load (VL, cargo weight) ement becomes the lightweight. n Method (SWBS* Group of US Navy)
Gro	up	ltem
10	0	Hull Structure
20	0	Propulsion
30	0	Electric Systems
40	0	Communication and Control
50	0	Auxiliary System
	0	Outfitting and Furnishing
60		

Mathematica Optimal Prin	l Formulatio cipal Dimen	on of a Problem sions of a Subm	for Determining narine	
Find	$\mathbf{X} = \{L_{bow}, L_{mid}, L_{aft}\}$	$, B, D, C_{man}, ASW, C4I, ISR$	$MCM, SPW, PSYS, BAT_{typ}, N_g$	
Maximize	F ₁ = Performance : Overall measure of	(X) and	Optimization problem having	g
Minimize	$F_2 = Cost(\mathbf{X})$ an	$d F_3 = Risk(\mathbf{X})$	11 inequality constraints, and	d
Subject to		. Overall measure of hisk	3 objective functions	
$g_1 = atr -$	$ata(\mathbf{X}) \leq 0$: Constraint about the allowable	area	
$g_2 = v f f_{\min}$	$-vff(\mathbf{X}) \leq 0$: Constraint about the minimum f	ree flood volume	
$g_3 = vff(X)$	$\mathbf{X}) - v f f_{\max} \le 0$: Constraint about the maximum	free flood volume	
$g_4 = wlea$	$d_{\min} - W_8(\mathbf{X}) \le 0$: Constraint about the minimum l	ead ballast	
$g_5 = W_8(\mathbf{X})$	$X - w lead_{max} \le 0$: Constraint about the maximum	ead ballast	
$g_6 = V s_{\min}$	$-Vs(\mathbf{X}) \leq 0$: Constraint about the minimum s	ustained speed	
$g_7 = KWg$	$T_{req} - KWg(\mathbf{X}) \le 0$: Constraint about the required e	ectrical power	
$g_8 = GM_n$	$_{\min} - GM(\mathbf{X}) \le 0$ g	$G_9 = GB_{\min} - GB(\mathbf{X}) \le 0$: (Constraints about the minimum GM and GB	
$g_{10} = E_{\min}$	$-E(\mathbf{X}) \leq 0$: Constraint about the minimum e	endurance range	
$g_{11} = Es_{min}$	$-Es(\mathbf{X}) \leq 0$: Constraint about the minimum s	print range	152

*	Command Window 🗢 🗕 🗖 💌
Weight Estimation of Floationg Offshore Structure usi	ng the GP 🐨
Genetic Programming (GP) is an evolutionary approach Through this GP symbolic regression, you could find out the estimating weight model for fl	 to optimization. pating offshore.
Firstly, you declare the terminal set by saving your Then, you also declare the function set that you want Lastly, input the genetic parameters for GP.	Jata in 'data.csv'. to use.
Press any key	
Define terminal set using user data saved as d	ata.csv
Enter total number of row of data : 10 Enter total number of column of data : 12 Enter number of first row of testing data : 10	1. Set input data.
Define function set used in genetic program	ing
['times', 'minus', 'plus', 'divide', 'sqroot', 'sin', If you use 'times' insert 1' else '0' : 1 If you use 'minus' insert 1' else '0' : 1 If you use 'divide' insert 1' else '0' : 1 If you use 'divide' insert 1' else '0' : 1 If you use 'sino' insert 1' else '0' : 1 If you use 'sin' insert 1' else '0' : 1 If you use 'cos' insert 1' else '0' : 1	'cos', 'exp'] 2. Define function set. Supported function set: plus, minus, multiply, divide square root, sine, cosine, exponential

Command W	/indow ↔ – □
Define genetic parameters for developing the estimation model	(
Enter the Population Size : 1000	3 Define genetic parameters
Enter the Max. Generation : 20	- Population size
The sum of rates should be equal to'1'	- Maximum generation
Enter the Reproduciotn rate : 0.6	- Reproduction, crossover, mutation rate
Enter the Crossover rate : 0.2	- Maximum depth of trees
Enter the Mutation rate : 0.2	· · · · ·
Enter the Max. depth of trees : 5	
Population size: 1000 Number of generations: 20 Tournament Size: 30 Max tree depth: 5 Using function set: TIMES MINUS PLUS RDIVIDE PSQROOT SIN COS EXP Number of inputs: 11 Constants range: [-20 20] Using fitness function: regressmulti_fitfun.m	4. Calculate.

Genera - Input	ieneration of Weight Estimation Model for FPSO Topsides Input (1/2)												
⊠ Pas	st re	corc	ls fo	or Fl	PSOs	from	the lite	erature	survey				
	L [m]	B [m]	D [m]	T [m]	Hull weight [ton]	DWT [ton]	Storage capacity [MMbbl]	Oil production [MMbopd]	Gas production [MMscf/d]	Water processing [MMbwpd]	Crew	Topsides weight [ton]	
Akpo	310	61	31	23	70,500	303,669	2.00	0.185	530.00	0.420	220	37,000	
USAN	310	61	32	24	75,750	353,200	2.00	0.160	500.00	0.420	180	27,700	
Kizomba A	285	63	32.3	24	56,300	340,660	2.20	0.250	400.00	0.420	100	24,400	
Kizomba B	285	63	32.3	25	56,300	340,660	2.20	0.250	400.00	0.420	100	24,400	
Greater Plutonio	310	58	32	23	56,000	360,000	1.77	0.220	380.00	0.400	120	24,000	
Pazflor	325	61	32	25	82,000	346,089	1.90	0.200	150.00	0.380	240	37,000	
CLOV	305	61	32	24	63,490	350,000	1.80	0.160	650.00	0.380	240	36,300	
Agbami	320	58.4	32	24	68,410	337,859	2.15	0.250	450.00	0.450	130	34,000	
Dalia	300	60	32	23	52,500	416,000	2.00	0.240	440.00	0.405	160	30,000	
Skarv-Idun	269	50.6	29	19	45,000	312,500	0.88	0.085	670.00	0.020	100	22,000	
		0.4	Deed		D i.u. oo	12 104 5 1	in Chain						
* Clarkson, 2012, Th * Kerneur, J., 2010, 2 Fopics in Ship Design	e Mobile 2010 Woi Automati	Ottshore Idwide S ion, Fall 2	Product urvey of 015, Myu	rion Unit: FPSO Ur ng-Il Roh	s Register 20 iits, Offshore	Magazine	ion, Clarkson				∕yd	173	

Inp	ut	t (2,	/2	2)	v	verg		LSU	ma	u		widat					
ন ব	ام:	PC	tia	n	of	: in	itial	inde	aner	nder	nt '	vari	ahles					
							ittai	ma	-per	idei		van	abies					
					Hull weight [ton]	DWT ton	Storage capacity p [MMbbi] [I	Oil roduction p Mbopd1 1	Gas production [MMscf/d]	Water processing [MMbwpd]		opsides [ton]		_				
Akpo	310	61	31	23	70,500	303,669	2.00	0.185	530.00	0.420	220	37,000						
USAN	310	61	32	24	75.750	353.200	2.00	0.160	500.00	0.420	180	27,700						
Kizomba A	285	65	52.5	24	56,300	340,660	2.20	0.250	400.00	0.420	100	24,400						
Kizomba B Greater	285	63	32.3	25	56,300	340,660	2.20	0.250	400.00	0.420	100	24,400						
Plutonio	310	58	32	23	56,000	360,000	1.77	0.220	380.00	0.400	120	24,000						
Paztlor	325	61	32	25	63,490	346,089	1.90	0.200	650.00	0.380	240	37,000						
Agbami	320	58.4	32	24	68,410	337,859	2.15	0.250	450.00	0.450	130	34,000						
Dalia	300	60	32	23	52,500	416,000	2.00	0.240	440.00	0.405	160	30,000						
Skarv-Idun	269	50.6	29	19	45.000	312,500	0.88	0.085	670.00	0.020	100	22,000						
								lten	าร			Inde	pendent	: Vari	ables	Dependent Variabl		
		Principal dimensions L, B, D, T, H_I						LWT,	DWT									
								Capacity					c, o_p, g	6_P, V	V_P	T_LWT (to be estimated)		
							Mi	scella	neou	S			CRE	W				
LWT: Hull P: Water p	l light proce	: wei ssinc	ght [1 [MI	ton], ∕Ibw	DWT: pd], T	Dead	weight [to Topsides v	n], S_C: S veight [to	torage ca	apacity [N /: Crew n	1Mbb umbe	bl], O_P: er	Oil production	n (MMbo	pd], GP: Gas	production [MMscf/d]		
		-					, -	5 1										

