

Contents	
 ☑ Ch. 1 Introduction to Ship Design ☑ Ch. 2 Introduction to Offshore Plant Design ☑ Ch. 3 Hull Form Design ☑ Ch. 4 General Arrangement Design ☑ Ch. 5 Naval Architectural Calculation ☑ Ch. 6 Structural Design ☑ Ch. 7 Outfitting Design 	
	and to b
Design Theories of Ship and Offshore Plant, Fall 2015. Myung-Il Roh	

Tonnage
 ☑ Tonnage: normally, 100 ft³ (=2.83 m³) = 1 ton Basis of various fee and tax GT (Gross Tonnage): Total sum of the volumes of every enclosed space NT (Net Tonnage): Total sum of the volumes of every cargo space GT and NT should be calculated in accordance with "IMO 1969 Tonnage Measurement Regulation". CGT (Compensated Gross Tonnage) Panama and Suez canal have their own tonnage regulations.
Design Theories of Ship and Offshore Plant, Fall 2015, Myung-II Roh

Unit (1/2)

How does a ship float? (2/3)		
 Archimedes' Principle The magnitude of the buoyant force acting on a floating body in the fluid is equal to the weight of the fluid which is displaced by the floating body. The direction of the buoyant force is opposite to the gravitational force. 		
Buoyant force of a floating body = the weight of the fluid which is displaced by the floating body ("Displacem ➡ Archimedes' Principle	ent")	
✓ Equilibrium State ("Floating Condition") ■ Buoyant force of the floating body = Weight of the floating body • Condition")		
∴ Displacement = Weight G: Center of gravity B: Center of buoyancy W: Weight, ∆: Displacement p: Density of fluid V: Submerged volume of the floating body (Displacement volume V)	<u> </u>	

