

Contents	
☑ Ch. 1 Introduction to Ship Design	
☑ Ch. 2 Offshore Plant Design	
☑ Ch. 3 Hull Form Design	
Ch. 4 General Arrangement Design	
☑ Ch. 5 Naval Architectural Calculation	
☑ Ch. 6 Structural Design	
☑ Ch. 7 Outfitting Design	
Desian Theories of Ship and Offshore Plant. Fall 2015. Myung-II Roh	

2

Limitations of Size and Arrangement of Cargo Tank (1/4)

- ☑ Target: Oil tankers delivered on or after [1 January 2010]
- ☑ Objective: To provide adequate protection against oil pollution in the event of collision or stranding
- ☑ Regulation: MARPOL Annex I, Reg. 23 (Accidental Oil Outflow Performance)

For over 5,000 DWT, the mean oil outflow parameter shall be as follows:

ltem		Requirement
	$C \le 200,000 \text{ m}^3$	O _M ≤ 0.015
Mean oil outflow	200,000 m ³ ≤ C ≤ 400,000 m ³	$O_{\rm M} \le 0.012 + (0.003 / 200,000) \cdot (400,000 - C)$
	400,000 m³ ≤ C	O _M ≤ 0.012
* C: Total volume of	cargo oil, in m ³ , at 98% t	ank filling
* C: Total volume of	cargo oil, in m³, at 98% t	ank filling

Limitation Cargo Tan	s of Si k (2/4	ize and A	rrangement of
For less tha or one of th	n 5,000 e follow	DWT, the le	ngth of each cargo tank shall not exceed 10 m whichever is the greater.
	ltem		Calculation formula
No longitud	linal bulk argo tank	head inside s	(0.5 bi/B + 0.1)L, but not to exceed 0.2L
Centerline lo inside	ongitudin the cargo	al bulkhead tanks	(0.25 bi/B + 0.15)L
Two or	Wing	cargo tanks	0.2L
more	Center	bi/B ≥ 0.2L	0.2L
bulkheads	cargo tanks	bi/B < 0.2L	(0.5 bi/B + 0.1)L ; no centerline longitudinal bulkhead (0.25 bi/B + 0.15)L ; centerline longitudinal bulkhead
* b _i : The minim in question the assigne	um distanc measured d summer	e from the ship' inboard at right freeboard	s side to the outer longitudinal bulkhead of the tank angles to the centerline at the level corresponding to
esign Theories of Ship and Off	shore Plant, Fall	2015, Myung-Il Roh	YOLGU 33

Slop Tank
 ☑ Target: Oil tankers delivered on or after [31 December 1979] ☑ Regulation: MARPOL Annex I, Reg. 29 ☑ Purpose: To store polluted ballast water and cleansing water for tank
When void cargo hold at ballast condition is filled with sea water in an emergency, oil from dirty water generated by tank washing is separated and stored in slop tank.
 accept: 2% for such oil tankers where the tank washing arrangements are such that once the slop tank or tanks are charged with washing water, this water is sufficient for tank washing and, where applicable, for providing the driving fluid for eductors, without the introduction of additional water into the system; 2% where segregated ballast tanks or dedicated clean ballast tanks are provided in accordance with regulation 18 of this Annex, or where a cargo tank cleaning system using crude oil washing is fitted in accordance with regulation 33 of this Annex. This capacity may be further reduced to 1.5% for such oil tankers where the tank washing arrangements are such that once the slop tank or tanks are charged with washing water, this water is sufficient of additional water into the system; and 1% for combination carriers where oil cargo is only carried in tanks with smooth walls. This capacity may be further reduced to 0.8% where the tank washing arrangements are such that once the slop tank or tanks are charged with washing water, this water is sufficient for tank washing area is such that once the system; and 1% for combination carriers where oil cargo is only carried in tanks with smooth walls. This capacity may be further reduced to 0.8% where the tank washing arrangements are such that once the slop tank or tanks are charged with washing water, this water is sufficient for tank washing and, where applicable, for providing the driving fluid for eductors, without the introduction of additional water into the system.
Design Theories of Ship and Offshore Plant, Fall 2015. Myung-II Roh

 ☑ Target: Oil ta delivered on ☑ Regulation: I ☑ Impact: Decr 	ankers having or after [1 Au MARPOL Anne ease of fuel o	an aggregate fuel oil capacity of over 600 m ³ ugust 2010] ex I, Reg. 12A il volume, Reduction of cruising range
Iten	ı	Requirement
Capacity of individ	ual fuel oil tank	Less than 2,500 m ³ (at 98% filling)
Distance from	n bottom	h = B / 20 (m) or h = 2.0 m, whichever is the lesser, with a minimum value of 0.76 m
Distance from side	600 ~ 5,000 m ³	w = $0.4 + 2.4 \text{ C} / 20,000 \text{ (m)}$ with a minimum value of 1.0 m. However for individual tanks with an oil fuel capacity of less than 500 m ³ the minimum value is 0.76 m.
	Over 5,000 m ³	w = 0.5 + C / 20,000 (m) or w = 2.0 m, whichever is the lesser, with a minimum value of 1.0 m
Mean oil outflow	600 ~ 5,000 m ³	O _M < 0.0157 − 1.14·10 ⁻⁶ ·C
parameter (O _M)	Over 5,000 m ³	O _M < 0.010

Co by	mpartmer Watertigł	nt Arrangement Transverse	ent e and Longitudinal Bulkheads (2/2)	
5	 ☐ General Maxim secure Even th Simplif ☑ Consider 	concept ize the length of large cargo cap ne length of cap by the structure rations	of cargo tank as soon as possible to pacity rgo tank of cargo tank	
	ltem	Regulation	Design Point	
	Number of cargo tanks	-	- Total number of cargo tanks - Slop tank - Cargo segregation group	
	Length of cargo tank	MARPOL Annex I, Reg. 23	 Maximum rule length Maximum volume of cargo tank Consideration of loading condition 	
	Web spacing	-	 Structural strength Lightweight and manufacturability Consideration of design trend 	
Design T	heories of Ship and Offshore I	Plant, Fall 2015, Myung-Il Roh	ydlab	47

Cargo Mar	nifold (2,	/2)			
☑ Regulation Equipmen	n: Standard It by OCIMF	for Ta *	nker Manif	olds and Assoc	ciated
			В	с	D
Deadweight	16,000~25,0	00 25	,000~60,000	60,000~160,000	- Over 160,000
☑ Requirem	ents	·			
lte	m		F	Requirement	
Manifold	Position		Amids	hip of LOA, ± 3 m	
Distance for	m Ship Side			4.6 m	
Height from	Upper Deck		No	t exceed 2.1 m	
Spacing of	Manifolds		A: 1.5, B:	2.0, C: 2.5, D: 3.0 ((m)
Spill Tai	nk Size		Width: 1,80 Vertical p	0 mm, Depth: 300 positioning: 900 m	mm m
* Oil Companies International Mari	ne Forum Plant, Fall 2015, Myung-II Re	bh			ydlab 59

d to deterr	esign sta nine the	ige, the positio	e follow on of co	ing tab Ilision	le ca bulkh
Ship Type	LBP ≥ 250	1	LBP ≤ 250	Re	mark
Bulk carrier	0.03 L + 3.	0 0	0.02 L + 5.5		
Tanker	0.03 L + 3.	5 (0.02 L + 6.0	L: Rul	e Length
Container ship	0.03 L + 4.	0 (0.02 L + 6.5		
		- Basis of s - Intermedi	tructural design ate one among	and equipment : (0.96 Lwl at Ts, 0	selection 1.97 Lwl at T
osition of co	llision bul	khead of	actual s	hip Suezmax	14.00
Osition of co	Panamax Container	khead of Panamax B/C	actual s Aframax Tanker	hip Suezmax Tanker	VLCC

Determination procedures		
Step	Check Point	Remark
1	Distance between M/E bed and outer shell	Special web frame to be considered
2	Length of M/E	Dependent on M/E
3	Ballast pump and other space	about 5~6 frames
4	Installation space for cargo pump	about 4~5 frames
5	After space of M/E	
6	Option (if any)	e.g., Shaft generator
Final	Total summary and evaluation	

64

