

"Phase Equilibria in Materials"

10.19.2015 Eun Soo Park

1

Office: 33-313 Telephone: 880-7221 Email: espark@snu.ac.kr Office hours: by an appointment

Contents for previous class

"Ternary Phase diagram"

Ternary isomorphous system

- : "<u>Two-phase equilibrium</u>" between the liquid and a solid solution
- How to show in 2-dim. space?
 - **1 Projection** (liquidus & solidus surface/solid solubility surface)

 \rightarrow No information on 2 phase region

(2) Isothermal section \rightarrow most widely used \rightarrow F = C - P

Rules for tie line (i) Slope gradually changes. (ii) Tie lines cannot intersect. (iii) Extension of tie line cannot intersect the vertex of triangle. (iv) Tie lines at T's will rotate continuously.

Konovalov's Rule: $X_A^S > X_A^l$ when addition of A increases the T_m .

③ Vertical section

Solidification sequence: useful for effect of 3rd alloying element

However, it is not possible to draw horizontal tie lines across two-phase regions in vertical sections to indicate the true compositions of the co-existing phases at a given temperature.

④ Polythermal projection

8.4.1 Two-phase equilibrium between the liquid and a solid solution

(i) Slope gradually changes. (ii) Tie lines cannot intersect at constant temperature.

8.4.1 Two-phase equilibrium between the liquid and a solid solution

(iii) Extension of tie line cannot intersect the vertex of triangle.

8.4.1 Two-phase equilibrium between the liquid and a solid solution

(iv) Tie lines at T's will rotate continuously. (Konovalov's Rule)

: Clockwise or counterclockwise

Ternary Eutectic System

3 Vertical section: Solidification Sequence

- * The horizontal lines are not tie lines. (no compositional information)
- * Information for equilibrium phases at different tempeatures 6

- 8.4.2 Variants of the phase diagram (more complex system)
 - * Ternary <u>two-phase equilibrium</u> with a saddle point

S : saddle pt. where liquidus & solidus surfaces meet

Isothermal section (T=T_s)

8.4.3. <u>Two-phase equilibrium</u> between solid or liquid solutions: $\alpha_1 \rightleftharpoons \alpha_2$ or $l_1 \rightleftharpoons l_2$ Miscibility gap

 $\Delta H_{mix} \sim +26 \text{ kJ/mol}$

 $\Delta H_{mix} \sim +58 \text{ kJ/mol}$

- 8.4.3. <u>Two-phase equilibrium</u> between solid or liquid solutions: $\alpha_1 \rightleftharpoons \alpha_2$ or $I_1 \rightleftharpoons I_2$
 - a. Ternary system with a closed miscibility gap associated with a binary critical point c₁
 - effect of temperature

Miscibility gap

- 8.4.3. <u>Two-phase equilibrium</u> between solid or liquid solutions: $\alpha_1 \rightleftharpoons \alpha_2$ or $I_1 \rightleftharpoons I_2$ Miscibility gap
 - a. Ternary system with only a binary critical point
 - Isothermal section at room temp. х α_1 a2 в α_1^1 022 α_1^2 a. a, α_2^5 a3 в 02ª α_{1}^{5} m trivariant Tie lines are not parallel to the binary tie line. **bivariant** - Addition of C to a heterogeneous mixture of A & B monovariant in a ratio corresponding to the distribution of C (solubility) C : critical point

- 8.4.3. <u>Two-phase equilibrium</u> between solid or liquid solutions: $\alpha_1 \rightleftharpoons \alpha_2$ or $I_1 \rightleftharpoons I_2$
 - (a) Transformation in alloy X on cooling from the $\alpha_{1(2)}$ phase region
- (b) Changes in composition of the co-exisitng α_1 and α_2 phases

The course of the curves is defined by the relative position of the tie lines which skew round towards the side AB as the temperature decreases.

Curves changes along a line which is tangential to the solubility curve

b. A ternary system with a binary and a ternary critical point

c. ternary system with two miscibility gaps

c. Ternary system with three miscibility gaps

d. Ternary system with miscibility gap in three component region

Chapter 9. Ternary phase Diagrams

Three-Phase Equilibrium

9.1. PROPERTIES OF THREE-PHASE TIE TRIANGLES

Two phase equil. (f = 2)

- ideal system
- liquidus max. (or min.)
- miscibility gap

Three phase equil. (f = 1)

• Tie triangle

1 vertex of tie triangle

 \rightarrow composition of three phases

cf) *n* phase region is surrounded by $n \pm 1$ phase region

9.1. PROPERTIES OF THREE-PHASE TIE TRIANGLES

② tie triangle will be surrounded by 2 phase region

③ at vertex, single phase region will exist.

(4) rule for phase boundary between single and two phase regions

- extension of boundary (two)
- → <u>both should toward outside the triangle</u> <u>or inside the triangle</u>

① Coalescence of miscibility gap and two phase region

• How we can have 3 phase equil.?

Fig. 136. Production of a ternary three-phase equilibrium by the coalescence of two two-phase regions

① Coalescence of miscibility gap and two phase region

• When does not meet at critical point ?

• When two phase region does not overlapped onto same tie line in miscibility gap region?

Fig. 137. Conditions for the coalescence of two two-phase regions.(a) Initial contact of the phase regions with point *k* outside curve *ab*(b) initial contact with point k on curve *ab*.

Phase a and b lie on the same tie line and with fall in temperature these phases approach point k, which is the first point of contact with the second two-phase2region.

② Coalescence of two two-phase region

Fig. 138. Alternative method to Fig. 136 for the production of a ternary three-phase equilibrium by the coalescence of two two-phase regions

Degenerate tie triangle

 \rightarrow *n* component system, reaction between *n* phases occur then the temperature is max or min

 \rightarrow ternary system, 3 phases are in a straight line as three points.

Three isothermal sections

"Ternary Phase diagram"

- "Two phase equilibrium (f = 2)"
- 1) <u>Two-phase equilibrium</u> between the liquid and a solid solution
- 2) Ternary two-phase equilibrium with a saddle point
- 3) <u>Two-phase equilibrium</u> between solid or liquid solutions: $\alpha_1 \rightleftharpoons \alpha_2$ or $I_1 \rightleftharpoons I_2$
- * Tie lines are not parallel to the binary tie line.
- Addition of C to a heterogeneous mixture of A & B in a ratio corresponding to the distribution of C

Miscibility gap

28

"Three phase equilibrium (f = 1)"

- **①** Coalescence of miscibility gap and two phase region
- **②** Coalescence of two two-phase region

9.3. THREE-PHASE EQUILIBRIUM INVOLVING EUTECTIC REACTIONS

- 9.3.1. A eutectic solubility gap in one binary system
- One binary eutectic : AB Complete solid solution : BC, AC

9.3. THREE-PHASE EQUILIBRIUM INVOLVING EUTECTIC REACTIONS

9.3. THREE-PHASE EQUILIBRIUM INVOLVING EUTECTIC REACTIONS

 $T_c s_1 c s_2 T_c^-$ the solidus surface of β solid solution

The solidus surface and the solubility surface

The two-phase regions

a

Tc

b

Ь

9.3. THREE-PHASE EQUILIBRIUM INVOLVING EUTECTIC REACTIONS

9.3.1. A eutectic solubility gap in one binary system

• One binary eutectic : AB Complete solid solution : BC, AC

- Closed solid solubility loop
 - → minimum critical point c
 - : ternary α and β phases <u>become indistinguishable</u>.
- / → α + β in ternary composition range
 → three phase region
- Along ac : α composition along bc : β composition
 → / along ee₁
 - $\rightarrow e_1 \& c$ should be at same temperature
- Three phase region will start at binary eutectic temp.
- Three phase region will end at e₁e temp.

• Projection on concentration triangle ABC

Fig. 147. The ruled surfaces bounding the three-phase $(l+\alpha+\beta)$ region in Fig. 142. (a) The $\alpha\beta$ ruled surface; (b) the $l\alpha$ ruled surface; (c) the $l\beta$ ruled surface.

The ways in which three phase regions terminate in ternary systems:

