2015 Fall

"Phase Transformation in Materials"

09.09.2015

Eun Soo Park

Office: 33-313

Telephone: 880-7221

Email: espark@snu.ac.kr

Office hours: by an appointment

Contents for previous class

Chapter 1 Thermondynamics and Phase Diagrams

- Equilibrium dG = 0
- Lowest possible value of G No desire to change ad infinitum
- Phase Transformation

$$\Delta G = G_2 - G_1 < 0$$

- Single component system

Gibbs Free Energy as a Function of Temp. and Pressure

$$\left[\left(\frac{\partial G}{\partial T}\right)_{P} = -S, \quad \left(\frac{\partial G}{\partial P}\right)_{T} = V\right] \quad \left(\frac{dP}{dT}\right)_{eq} = \frac{\Delta H}{T_{eq}\Delta V}$$

$$\left(\frac{dP}{dT}\right)_{eq} = \frac{\Delta H}{T_{eq}\Delta V}$$

- Classification of phase transition

First order transition: CDD/Second order transition: CCD

The First-Order Transitions

Latent heat

Energy barrier

Discontinuous entropy, heat capacity

- First Order Phase Transition at T_T:
 - G is continuous at T_T
 - First derivatives of G (V, S, H) are <u>discontinuous</u> at T_T

$$V = \left(\frac{\partial G}{\partial P}\right)_T \qquad S = -\left(\frac{\partial G}{\partial T}\right)_P \qquad H = G - T\left(\frac{\partial G}{\partial T}\right)_P$$

Second derivatives of G (α, β, C_p) are discontinuous at T_T

$$C_{P} = \left(\frac{\partial H}{\partial T}\right)_{P} \qquad \alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_{P} \qquad \beta = \frac{-1}{V} \left(\frac{\partial V}{\partial P}\right)_{T}$$

 Examples: Vaporization, Condensation, Fusion, Crystallization, Sublimation.

solid critical point triple point gas 0 K Temperature

The Second Order Transition

No Latent heat Continuous entropy

Second-order transition

- Second Order Phase Transition at T_T:
 - G is continuous at T_T
 - First derivatives of G (V, S, H) are <u>continuous</u> at T_T

$$V = \left(\frac{\partial G}{\partial P}\right)_{T} \qquad S = -\left(\frac{\partial G}{\partial T}\right)_{P} \qquad H = G - T\left(\frac{\partial G}{\partial T}\right)_{P}$$

Second derivatives of G (α, β, C_p) are <u>discontinuous</u> at T_T

$$C_{P} = \left(\frac{\partial H}{\partial T}\right)_{P} \qquad \alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_{P} \qquad \beta = \frac{-1}{V} \left(\frac{\partial V}{\partial P}\right)_{T}$$

 Examples: Order-Disorder Transitions in Metal Alloys, Onset of Ferromagnetism, Ferroelectricity, Superconductivity.

$$C_{P} = T \left(\frac{\partial S}{\partial T} \right)_{P,N} \to \infty$$

Melting and Crystallization are Thermodynamic Transitions

Contents for today's class

- Binary System mixture/ solution / compound
 Hume-Rothery Rules for Alloys
- Gibbs Free Energy in Binary System

 Ideal solution and Regular solution
- Chemical potential and Activity

Multi-component system: Binary system

Q1: "Mixture vs. Solution vs. Compound"?

- * Single component system One element (Al, Fe), One type of molecule (H_2O)
 - : Equilibrium depends on pressure and temperature.
- * Binary system (two components) → A, B
 - : Equilibrium depends on not only pressure and temperature but also composition.
 - Mixture; A-A, B-B; \rightarrow the physical combination of two or more substances on which the identities and boundaries are retained.

쌀 씻기

9

- Solution; A-A-A; \rightarrow atomic scale mixture/ Random distribution A-B-A Solid solution: substitutional or interstitial

A Brass, a substitutional alloy

B Carbon steel, an interstitial alloy

- Compound; A - B - A - B; \rightarrow fixed A, B positions/ Ordered state

Q2: What is "Alloying"?

Ordered Compounds or Solid Solutions

"Alloying": atoms mixed on a lattice Ordered Compounds and Solid Solutions

Ordered Substitutional and Interstititials Compounds

Substitutional element replaces host atoms in an orderly arrangement

e.g., Ni₃Al (hi-T yield strength), Al₃(Li,Zr) (strengthening)

Interstitial element goes into holes in an orderly arrangement

e.g., small impurities, clays ionic crystals, ceramics.

Intermetallic Compounds

Intermetallic compounds form lines - not areas - because stoichiometry (i.e. composition) is exact.

13

Two Possibilities for Solid Solutions: B atoms in A atoms

Substitutional 'new element replaces host atoms'

A Brass, a substitutional alloy

Interstitials 'new element goes in holes'

B Carbon steel, an interstitial alloy

Q3: "Solution vs. Intermetallic compound"?

Solid Solution vs. Intermetallic Compounds

Solid Solution vs. Intermetallic Compounds

Pt_{0.5}Ru_{0.5} – Pt structure (fcc)

PbPt – NiAS structure

Assumption: a simple physical model for "binary solid solutions"

: in order to introduce some of the basic concepts of the thermodynamics of alloys

Particles of New Phase in Solid-Solution Alloys

 Solid solution of B in A plus particles of a new phase (usually for a larger amount of B)

5) Microstructure control: ② Secondary phase control

c. Mechanism of Precipitation

Q4: "Solubility"?

Solubility

- Unlimited Solubility
 - Hume Rothery' Conditions
 - Similar Size
 - Same Crystal Structure
 - Same Valance
 - Similar Electronegativity
 - Implies <u>single phase</u>
- Limited Solubility
 - Implies <u>multiple phases</u>
- No Solubility
 - oil and water region

Cu-Ni Alloys

Cu-Ag Alloys

complete solid solution

limited solid solution

* Complete immiscibility of two metals does not exist.

: The solubility of one metal in another may be so low (e.g. Cu in Ge < 10⁻⁷ at%.) that it is difficult to detect experimentally, but there will always be a measure of solubility.

Fig. 53. Evolution of the limiting form of a binary eutectic phase diagram.

Fig. 54. Impossible form of a binary eutectic phase diagram.

Q5: Can we roughly estimate what atoms will form solid solutions?

"Hume-Rothery Rules"

Hume-Rothery Rules for Alloys (atoms mixing on a lattice)

Will mixing 2 (or more) different types of atoms lead to a solid-solution phase?

Empirical observations have identified 4 major contributors through:

Atomic Size Factor, Crystal Structure, Electronegativity, Valences

Hume-Rothery Rules for Mixing

Empirical rules for substitutional solid-solution formation were identified from experiment that are not exact, but give an expectation of formation. Briefly,

- 1) Atomic Size Factor The 15% Rule
 - If "size difference" of elements are greater than $\pm 15\%$, the lattice distortions (i.e. local lattice strain) are too big and solid-solution will not be favored.

DR%=
$$\frac{r_{\text{solute}} - r_{\text{solvent}}}{r_{\text{solvent}}} \times 100\%$$
 < ±15% will not disallow formation.

- 2) Crystal Structure Like elemental crystal structures are better For appreciable solubility, the crystal structure for metals must be the same.
- 3) Electronegativity DE ~ 0 favors solid-solution.

The more electropositive one element and the more electronegative the other, then "intermetallic compounds" (order alloys) are more likely.

4) Valences Higher in lower alright. Lower in higher, it's a fight.

A metal will dissolve another metal of higher valency more than one of lower valency.

Hume-Rothery Empirical Rules in Action

Is solid-solution favorable, or not?

Cu-Ni Alloys

Rule 1: $r_{Cu} = 0.128 \text{ nm}$ and $r_{Ni} = 0.125 \text{ nm}$.

DR%=
$$\frac{r_{solvent} - r_{solvent}}{r_{solvent}} x 100\%$$
 = 2.3% favorable $\sqrt{r_{solvent}}$

Rule 2: Ni and Cu have the FCC crystal structure. favorable $\sqrt{}$

Rule 3:
$$E_{Cu}$$
 = 1.90 and E_{Ni} = 1.80. Thus, DE%= -5.2% favorable $\sqrt{}$

Rule 4: Valency of Ni and Cu are both +2. favorable $\sqrt{}$

Expect Ni and Cu forms S.S. over wide composition range.

At high T, it does (helpful processing info), but actually phase separates at low T due to energetics (quantum mechanics).

Hume-Rothery Empirical Rules in Action

Is solid-solution favorable, or not?

Cu-Ag Alloys

Rule 1: $r_{Cu} = 0.128 \text{ nm}$ and $r_{Ag} = 0.144 \text{ nm}$.

DR%=
$$\frac{r_{solvent} - r_{solvent}}{r_{solvent}} x 100\%$$
 = 9.4% favorable $\sqrt{ }$

Rule 2: Ag and Cu have the FCC crystal structure. favorable $\sqrt{}$

Rule 3:
$$E_{Cu}$$
 = 1.90 and E_{Ni} = 1.80. Thus, DE%= -5.2% favorable $\sqrt{}$

Rule 4: Valency of Cu is +2 and Ag is +1. NOT favorable

Expect Ag and Cu have <u>limited solubility</u>.

In fact, the Cu-Ag phase diagram (T vs. c) shows that a solubility of only 18% Ag can be achieved at high T in the Cu-rich alloys.

31

Cu-Ni Alloys

Cu-Ag Alloys

complete solid solution

limited solid solution

High entropy alloy (HEA)

Conventional alloy system Ex) 304 steel - Fe74Cr18Ni8

High entropy alloy system Ex) Al20Co20Cr20Fe20Ni20

(1) Thermodynamic: high entropy effect

(2) Kinetics: sluggish diffusion effect

(3) Structure : severe lattice distortion effect

(4) Property : cocktail effect

Yong Zhang et al., Adv. Eng. Mat. P534-538, 2008

Q6: "Gibbs Free Energy of Binary Solutions"?

$$G_2 = G_1 + \Delta G_{mix}$$
 J/mol

Binary Solutions: binary solid solution/ a fixed pressure of 1 atm

2) Gibbs Free Energy of Binary Solutions

* Composition in mole fraction X_A , X_B $X_A + X_B = 1$

Step 1. bring together X_A mole of pure A and X_B mole of pure B

Step 2. allow the A and B atoms to mix together to make a homogeneous solid solution.

1.3 Binary Solutions

Gibbs Free Energy of The System

In Step 1

- The molar free energies of pure A and pure B

pure A;
$$G_A(T,P)$$

pure B;
$$G_B(T,P)$$

$$X_A$$
, X_B (mole fraction)

$$G_1 = X_A G_A + X_B G_B$$
 J/mol

Gibbs Free Energy of The System

$$G_2 = G_1 + \Delta G_{mix}$$
 J/mol

Since
$$G_1 = H_1 - TS_1$$
 and $G_2 = H_2 - TS_2$
And putting $\Delta H_{mix} = H_2 - H_1$ $\Delta S_{mix} = S_2 - S_1$

$$\Delta G_{mix} = \Delta H_{mix} - T \Delta S_{mix}$$

 $T = C_p$ T(K) Slope = -S G

 ΔH_{mix} : Heat of Solution i.e. heat absorbed or evolved during step 2

 ΔS_{mix} : difference in entropy between the mixed and unmixed state.

 \longrightarrow How can you estimate ΔH_{mix} and ΔS_{mix} ?

Q7: " ΔG_{mix} of ideal solid solution"?

$$\Delta G_{mix} = -T\Delta S_{mix} \qquad \Longrightarrow \qquad \Delta G^{mix} = RT(X_A \ln X_A + X_B \ln X_B)$$

Mixing free energy ΔG_{mix}

Ideal solution

Assumption 1;
$$\Delta H_{mix} = 0$$
:
; A & B = complete solid solution
(A,B; same crystal structure)
; no volume change
$$\Delta G_{mix} = \Delta H_{mix} - T\Delta S_{mix}$$

$$\Delta G_{mix} = -T\Delta S_{mix} J/mol$$

Entropy can be computed from randomness by <u>Boltzmann equation</u>, i.e.,

$$S = k \ln w$$

w: degree of randomness, k: Boltzman constant

- → thermal; vibration (no volume change)
- → Configuration; number of distinguishable ways of arranging the atoms

$$S = S_{th} + S_{config}$$

Excess mixing Entropy

If there is no volume change or heat change,

$$w_{config} = 1 \longrightarrow before _solution_(pureA_pureB)$$

$$w_{config} = \frac{(N_A + N_B)!}{N_A! N_B!} \rightarrow after_solution_(N_A, N_B) \longleftarrow$$

Number of distinguishable way of atomic arrangement

$$\Delta S^{mix} = S^{after} - S^{before} = k \ln \frac{(N_A + N_B)!}{N_A! N_B!} - k \ln 1$$

Since we are dealing with 1 mol of solution,

$$\rightarrow \mathcal{N}_{A} = \mathcal{X}_{A} \mathcal{N}_{0} , \ \mathcal{N}_{B} = \mathcal{X}_{B} \mathcal{N}_{0}, \mathcal{N}_{A} + \mathcal{N}_{B} = \mathcal{N}_{0}$$

using Stirling's approximation $\ln N! \approx N \ln N - N$

and
$$R = kN_0$$

$$= k[(N_o \ln N_o - N_o) - (X_A N_o \ln X_A N_o - X_A N_o) - (X_B N_o \ln X_B N_o - X_B N_o)]$$

Excess mixing Entropy

$$\Delta S^{mix} = -R(X_A \ln X_A + X_B \ln X_B)$$

$$\Delta G_{mix} = -T\Delta S_{mix}$$

$$\Delta G^{mix} = RT(X_A \ln X_A + X_B \ln X_B)$$

Fig. 1.9 Free energy of mixing for an ideal solution

Q8: "Molar Free energy for ideal solid solution"?

$$G_2 = G_1 + \Delta G_{mix} \qquad \Longrightarrow \qquad G = X_A G_A + X_B G_B + RT(X_A ln X_A + X_B ln X_B)$$

1) Ideal solution

Since $\Delta H_{mix} = 0$ for ideal solution,

$$G_2 = G_1 + \Delta G_{mix}$$

$$\rightarrow$$

$$G = X_A G_A + X_B G_B + RT(X_A ln X_A + X_B ln X_B)$$

Compare $G_{solution}$ between high and low Temp.

Fig. 1.10 The molar free energy (free energy per mole of solution) for an ideal solid solution. A combination of Figs. 1.8 and 1.9.

Q9: "Chemical potential"?

1) Ideal solution

$$G = H-TS = E+PV-TS$$

Chemical potential

The increase of the total free energy of the system by the increase of very small quantity of A, dn_A , will be proportional to μ_A .

➡ 소량 첨가에 의한 내부 에너지 변화 계산

$$dG' = \mu_A dn_A$$

$$dG' = \mu_A dn_A$$
 (T, P, n_B: constant)

 μ_{Δ} : partial molar free energy of A or chemical potential of A

$$\mu_{\mathsf{A}} = \left(\frac{\partial G'}{\partial n_{\mathsf{A}}}\right)_{\mathsf{T},\,\mathsf{P},\,n_{\mathsf{B}}}$$

$$\mu_{\text{A}} = \left(\frac{\partial G'}{\partial n_{\text{A}}}\right)_{\text{T, P, }n_{\text{B}}} \quad \mu_{\text{B}} = \left(\frac{\partial G'}{\partial n_{\text{B}}}\right)_{\text{T, P, }n_{\text{A}}}$$

-1.5

$$dG' = \mu_A dn_A + \mu_B dn_B$$

For variable T and P

$$dG' = -SdT + VdP + \mu_A dn_A + \mu_B dn_B$$

- Consider the chemical potential function over a hypothetical
 2D region shown in the figure.
- Particles will tend to move from regions of high chemical potential (shown as lighter shades in plot) to regions of low chemical potential (shown as darker shades in plot).
 [particles: W → B]
- Various themodynamic properties determine what the chemical potential is. For example, consider charged particles in a fluid.
- A concentration gradient in a fluid may promote movement of particles in one direction, and
- the electric potential gradient may promote movement of the particles in another.
- The chemical potential would account for both concentration and electric components and describe a potential distribution that determines net particle movement.

Q10: "Correlation between chemical potential and free energy"?

Correlation between chemical potential and free energy

For 1 mole of the solution (T, P: constant)

$$G = \mu_A X_A + \mu_B X_B \quad Jmol^{-1}$$

$$\begin{split} dG &= \mu_A dX_A + \mu_B dX_B \\ \frac{dG}{dX_B} &= \mu_B - \mu_A \\ \mu_A &= \mu_B - \frac{dG}{dX_B} \end{split} \qquad \begin{aligned} & G = \left(\mu_B - \frac{dG}{dX_B}\right) X_A + \mu_B X_B \\ &= \mu_B X_A - \frac{dG}{dX_B} X_A + \mu_B X_B \\ &= \mu_B - \frac{dG}{dX_B} X_A \\ &= \mu_B - \frac{dG}{dX_B} (1 - X_B) \end{aligned}$$

$$\mu_{B} = G + \frac{dG}{dX_{B}} X_{A}$$

Correlation between chemical potential and free energy

For 1 mole of the solution (T, P: constant)

$$G = \mu_A X_A + \mu_B X_B \quad Jmol^{-1}$$

Fig. 1.11 The relationship between the free energy curve for a solution and the chemical potentials of the components.

Correlation between chemical potential and free energy

For 1 mole of the solution

(T, P: constant)

1) Ideal solution

$$G = \mu_A X_A + \mu_B X_B \quad Jmol^{-1}$$

$$\mathbf{G}_{\mathsf{B}} \qquad \mu_{\mathsf{B}} = G + \frac{\mathsf{d}G}{\mathsf{d}X_{\mathsf{B}}} \, X_{\mathsf{A}}$$

$$\mu_{\rm B} \qquad \mu_{\rm B} = G + \frac{dG}{dX_{\rm B}} (1 - X_{\rm B})$$

$$\mu_{\text{A}} = \mu_{\text{B}} - \frac{dG}{dX_{\text{B}}}$$

$$= \mu_B - (X_A + X_B) \frac{dG}{dX_B}$$

$$= DA - DC - CB$$

1) Ideal solution

$$G = X_A G_A + X_B G_B + RT(X_A \ln X_A + X_B \ln X_B)$$
$$= (G_A + RT \ln X_A) X_A + (G_B + RT \ln X_B) X_B$$

Fig. 1.12 The relationship between the free energy curve and Chemical potentials for an ideal solution.

Contents for today's class

- Binary System mixture/ solution / compound
- Gibbs Free Energy in Binary System

$$G_1 = X_A G_A + X_B G_B$$
 J/mol $G_2 = G_1 + \Delta G_{mix}$ J/mol

$$G_2 = G_1 + \Delta G_{mix}$$
 J/mol

Ideal solution ($\Delta H_{mix} = 0$) $\Delta G^{mix} = RT(X_A \ln X_A + X_B \ln X_B)$

$$G = X_A G_A + X_B G_B + RT(X_A \ln X_A + X_B \ln X_B)$$

Regular solution
$$\Delta H_{mix} = P_{AB} \epsilon$$
 where $\epsilon = \epsilon_{AB} - \frac{1}{2} (\epsilon_{AA} + \epsilon_{BB})$

$$G = X_A G_A + X_B G_B + \Omega X_A X_B + RT (X_A \ln X_A + X_B \ln X_B)$$

- Chemical potential and Activity

$$\mu_{\mathsf{A}} = \left(\frac{\partial G'}{\partial n_{\mathsf{A}}}\right)_{\mathsf{T},\;\mathsf{P},\;\mathsf{n}_{\mathsf{B}}}$$

$$\mu_A = G_A + RT \ln a_A$$

•
$$\mu_A = G_A + RT \ln a_A$$
 $\ln \left(\frac{a_A}{X_A} \right) = \frac{\Omega}{RT} (1 - X_A)^2$

 $\frac{a_A}{X_A} = \gamma_A = \text{activity coefficient}$

 μ 는 조성에 의해 결정되기 때문에 dn_A 가 매우 작아서 조성변화 없어야