Air pollution III

Today's lecture

- Adiabatic lapse rate
- Air stability
- Fate of air pollutants emitted from a point source

Adiabatic lapse rate

- → When air moves vertically in the atmosphere, how does its temperature change?
- This is close to the <u>adiabatic</u> expansion; the air adjust to the decreasing atmospheric pressure by expanding in volume, with a negligible exchange of heat between it and the surrounding air

Adiabatic lapse rate

First law of thermodynamics

$$dU = dQ - dW$$

change in internal energy of the system System

 $dQ - dW$

Change in energy due to work done by the system

For a adiabatic system,
$$dQ=0$$

$$dW=pdV \qquad \text{p=pressure; V=volume}$$

$$dU=C_v dT \qquad \begin{array}{c} \text{C}_{\text{v}}=\text{heat capacity;}\\ \text{T=temperature} \end{array}$$

So:
$$C_v dT = -p dV$$

As air moves up, $V \uparrow \Rightarrow T \downarrow$

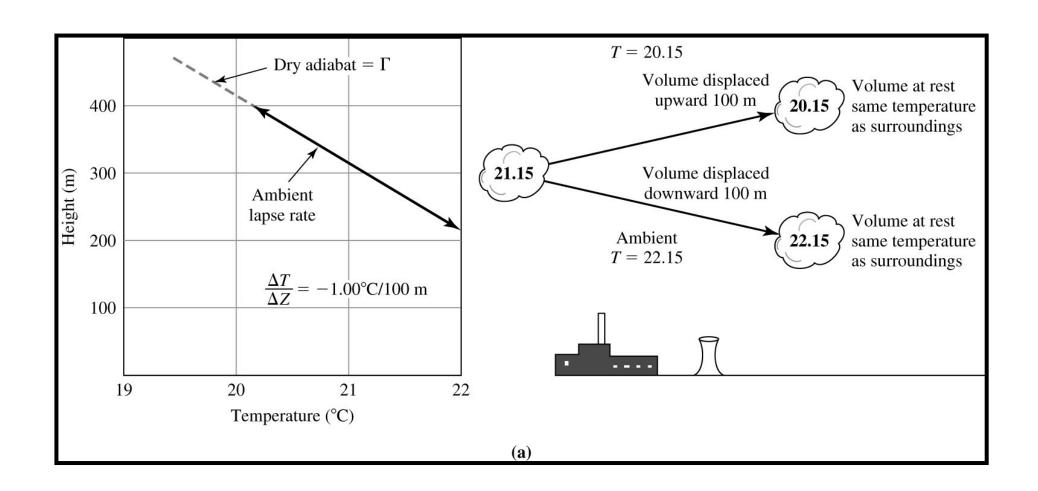
Adiabatic lapse rate and air stability

Dry adiabatic lapse rate

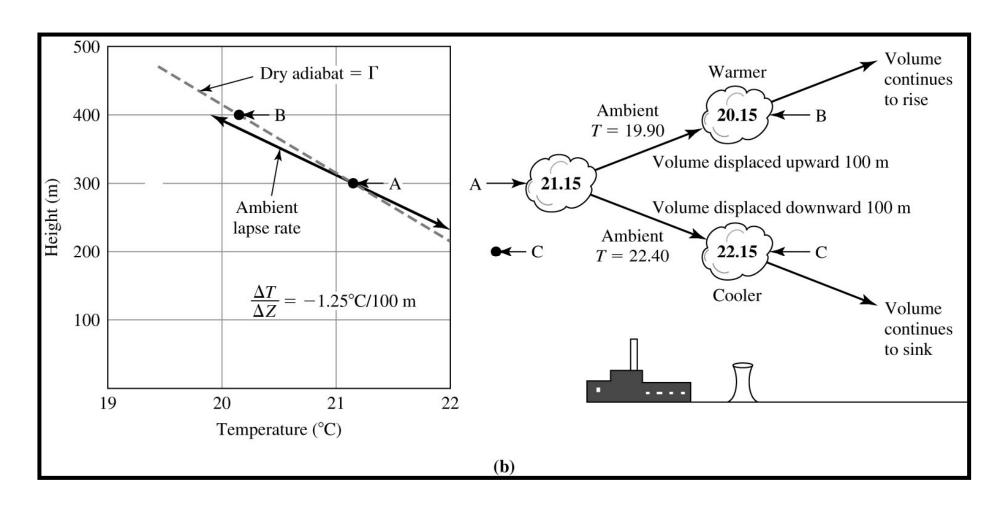
$$\Gamma = -\frac{dT}{dz} = 1^{o}C / 100 m$$

Air stability based on dry adiabatic lapse rate

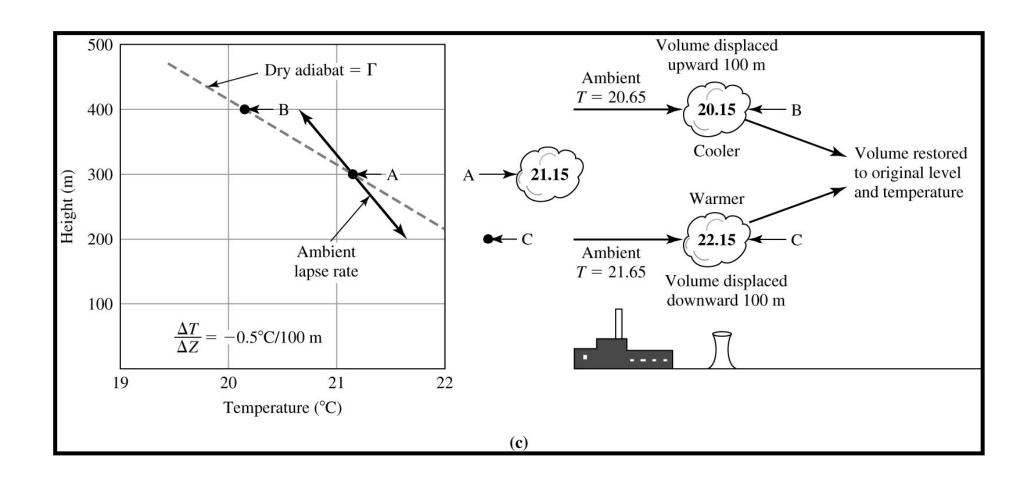
 $\Lambda = \Gamma$ Neutral stability

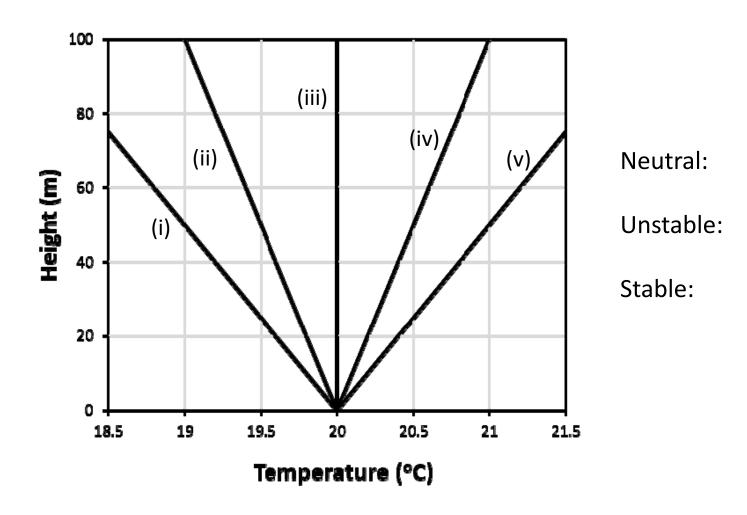

 $\Lambda > \Gamma$ Unstable atmosphere

 $\Lambda = \Gamma$ Stable atmosphere

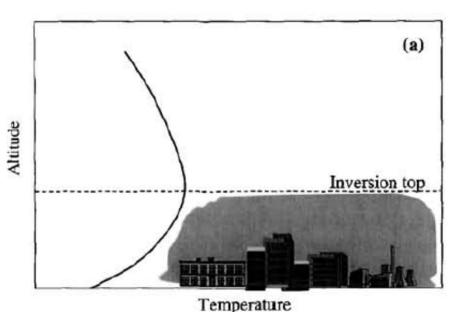

 $\Lambda = actual\ lapse\ rate\ of\ the\ atmosphere$

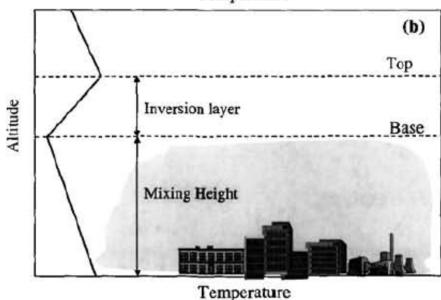
5


Neutral stability


Unstable

Stable



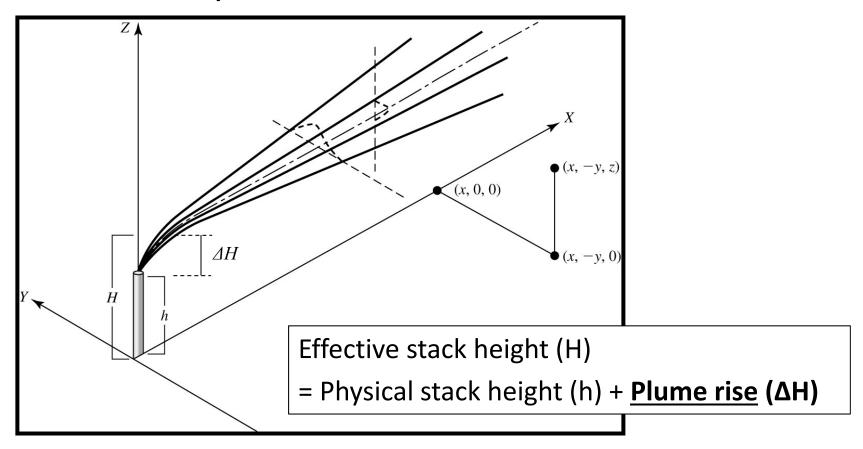

Air stability

Inversion layer

- Inversion: an increase in atmospheric temperature with height
- Radiation inversion: form by nighttime cooling of the ground
- Subsidence inversion: form by sinking (→ warming) of air



Atmospheric Chemistry and Physics, 1997


Plume behavior

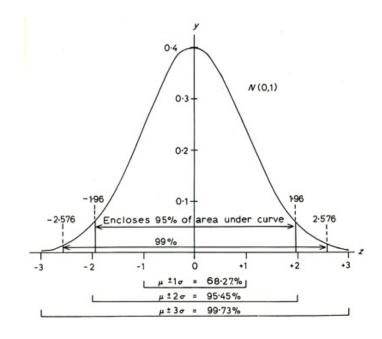
 Effect of atmospheric lapse rates on plume behavior

Slade, 1967

Coordination system

12

- Plume rise, ΔH
 - Due to <u>buoyancy</u> of the hot gas and <u>inertia</u> of the gas leaving the stack


$$\Delta H = \frac{v_s d}{u} \left[1.5 + \left(2.68 \times 10^{-2} \cdot P \cdot \left(\frac{T_s - T_a}{T_s} \right) \cdot d \right) \right]$$

```
v<sub>s</sub> = stack velocity (m/s)
d = stack diameter (m)
u = wind speed (m/s)
P = pressure (kPa)
T<sub>s</sub> = stack temperature (K)
```

T_a = air temperature (K)

We assume Gaussian (normal) distribution of pollutants

Gaussian distribution

$$y = \frac{1}{\sigma(2\pi)^{1/2}} exp\left[\frac{-(x-\mu)^2}{2\sigma^2}\right]$$

When the area of the curve is **1**

 μ = mean σ = standard deviation

... But in two directions (y and z) at a certain distance downwind

So, for a continuous point source of an air pollutant located at (x, y, z) = (0, 0, H):

$$C(x,y,z) = \left(\frac{E}{u}\right) \times \left(\frac{1}{\sigma_y(2\pi)^{1/2}} exp\left[\frac{-(y-0)^2}{2\sigma_y^2}\right]\right) \times \left(\frac{1}{\sigma_z(2\pi)^{1/2}} exp\left[\frac{-(z-H)^2}{2\sigma_z^2}\right]\right)$$

Total mass of pollutant between **x** m and **(x+1)** m

C = concentration (g/m³) E = emission rate (g/s) u = wind speed (m/s)

Therefore,

$$C(x, y, z) = \left(\frac{E}{2\pi u \sigma_y \sigma_z}\right) \left[exp\left(\frac{-y^2}{2\sigma_y^2}\right)\right] \left[exp\left(\frac{-(z-H)^2}{2\sigma_z^2}\right)\right]$$

where σ_y and σ_z are functions of x and atmospheric conditions (wind speed, stability, etc.)

How do we account for the ground?

1) No reflection: apply the equation we derived!

$$C(x, y, z) = \left(\frac{E}{2\pi u \sigma_y \sigma_z}\right) \left[exp\left(\frac{-y^2}{2\sigma_y^2}\right)\right] \left[exp\left(\frac{-(z-H)^2}{2\sigma_z^2}\right)\right]$$

2) Total reflection: assume a virtual source at (x, y, z) = (0, 0, -H)

$$C(x, y, z) = \left(\frac{E}{2\pi u \sigma_y \sigma_z}\right) \left[exp\left(\frac{-y^2}{2\sigma_y^2}\right)\right] \times \left(\left[exp\left(\frac{-(z-H)^2}{2\sigma_z^2}\right)\right] + \left[exp\left(\frac{-(z+H)^2}{2\sigma_z^2}\right)\right]\right)$$

2015-2

Concentration of a pollutant at the ground level with total reflection:

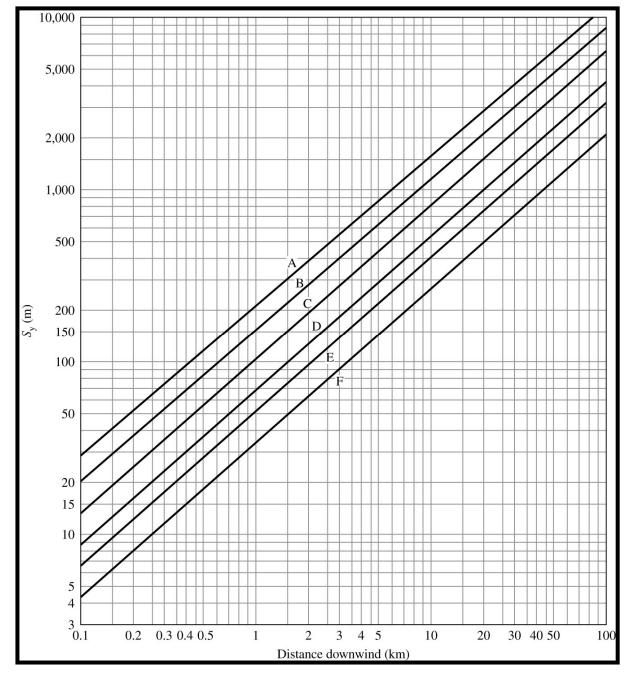
$$C(x, y, z) = \left(\frac{E}{\pi u \sigma_y \sigma_z}\right) \left[exp\left(\frac{-y^2}{2\sigma_y^2}\right)\right] \left[exp\left(\frac{-H^2}{2\sigma_z^2}\right)\right]$$

Eq. (12-18) of the textbook

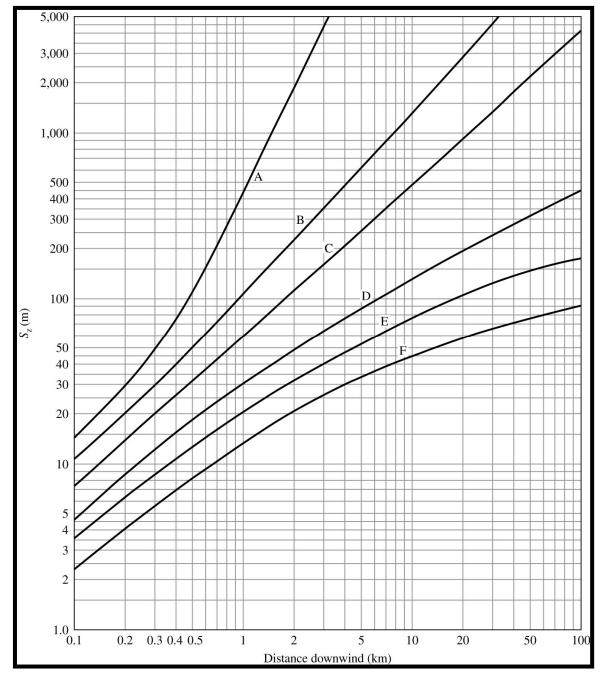
Now, how do we obtain σ_y and σ_z (functions of x and atmospheric stability)?

Key to stability of	categories					
	Day ^a			Night ^a		
Surface wind speed (at 10 m) (m/s)	Inco	ming solar rac	diation	Thinly overcast or		
	Strong	Moderate	Slight	≥ 1/2 Low cloud		
<2	А	A–B	В	_		
2–3	A–B	В	C	E	F	
3–5	В	B–C	C	D	E	
5–6 >6	C	C–D	D	D	D	
>6	C	D	D	D	D	

^aThe neutral class, D, should be assumed for overcast conditions during day or night. Note that "thinly overcast" is not equivalent to "overcast."


Notes: Class A is the most unstable and class F is the most stable class considered here. Night refers to the period from one hour before sunset to one hour after sunrise. Note that the neutral class, D, can be assumed for overcast conditions during day or night, regardless of wind speed.

"Strong" incoming solar radiation corresponds to a solar altitude greater than 60° with clear skies; "slight" insolation corresponds to a solar altitude from 15° to 35° with clear skies. Table 170, Solar Altitude and Azimuth, in the Smithsonian Meteorological Tables, can be used in determining solar radiation. Incoming radiation that would be strong with clear skies can be expected to be reduced to moderate with broken (5/8 to 7/8 cloud cover) middle clouds and to slight with broken low clouds.


(Source: Turner, 1967.)

$$\sigma_y = a x^{0.894}$$

$$\sigma_z = c x^d + f$$
 x = downwind distance (km)

0 1 117		$x \le 1 \text{ km}$			x > 1 km		
Stability class	a	с	d	f	c	d	f
A	213	440.8	1.941	9.27	459.7	2.094	-9.6
В	156	100.6	1.149	3.3	108.2	1.098	2
C	104	61	0.911	0	61	0.911	0
D	68	33.2	0.725	-1.7	44.5	0.516	-13.0
E	50.5	22.8	0.678	-1.3	55.4	0.305	-34.0
F	34	14.35	0.74.0	-0.35	62.6	0.18	-48.6

21

Q: A coal-fired power plants emits SO_2 at a rate of 1656 g/s. At 3 km downwind on an overcast summer afternoon, what is the concentration of SO_2 on the ground? The following parameters apply.

Stack parameters:

Height = 120 m

Diameter = 1.2 m

Exit velocity = 10 m/s

Temperature = 315°C

Atmospheric conditions:

Pressure = 95.0 kPa

Temperature = 25°C

Wind speed = 4.5 m/s

Reading assignment

Textbook Ch 12 p. 616-628