Chemical oxygen demand

Oxygen required to convert organic compounds to CO2

ex) COD for a bacterial cell: $C_5H_7O_2N + 5O_2 \rightarrow 5CO_2 + NH_3 + 2H_2O$ MW for $C_5H_7O_2N = 113$ g/mol (5 mol x 32 g COD/mol) / (113 g cells/mol) = 1.42 g COD/g cells (shown in Table 2.1)

Equation for true yield:

$$Y = f_s^0 \frac{(M_c \text{ g cells/mol cells})}{(n_e \text{ e}^- \text{ eq/mol cells})(8 \text{ g COD/e}^- \text{ eq donor})}$$

Generally concentration of substrates are expressed as COD because of complex nature of wastewater

$$f_s^0 = (e\text{-eq cells}) / (e\text{-eq donor})$$
$$Y = \frac{(e^- \text{ eq cells})}{(e^- \text{ eq donor})(n_e \text{ e}^- \text{ eq/mol cells})(8 \text{ g COD/e}^- \text{ eq donor})} = \frac{g \text{ cells}}{g \text{ COD}}$$

• <u>Why 8 g COD/e⁻ eq donor?</u>

For a COD reaction e.g., $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$ or $(1/6)C_6H_{12}O_6 + O_2 \rightarrow CO_2 + H_2O$ e⁻ donated by $C_6H_{12}O_6 = e^-$ accepted to O_2 $O_2 [0] \rightarrow CO_2 [-2]$ 32 g COD/4 e⁻ eq donor (=acceptor) = 8 g COD/e⁻ eq donor

• <u>Other parameters</u> for the equation $M_c = C_5 H_7 O_2 N \rightarrow 113 \text{ g/mol}$ $n_e \rightarrow C_5 H_7 O_2 N$, see p. 137 O-20: $n_e = 20$

Then, plug in the numbers for the case of $C_5H_7O_2N$ with NH₄ as nitrogen source (ammonia acid dissociation constant (pK_a) = 9.25 \rightarrow mostly in NH⁺ under normal pH conditions)

→ Y = $0.706 f_s^0$