Bacterial energetics

Today's lecture

- Bacterial energetics overview
- Gibbs free energy of reaction
- Correlation of reaction energetics and yield coefficient

Bacterial energetics

 Microorganisms carry out redox reactions to obtain energy for growth and cell maintenance

Energetics and bacterial growth

- The bacterial cells grow more rapidly when:
 - More energy can be obtained by oxidation of (an e⁻ equivalent of) e⁻ donor
 - More energy can be obtained by reduction of (an e⁻ equivalent of) e⁻ acceptor
 - When conditions are favorable (abundance of e⁻ donor, e⁻ acceptor, nutrients, etc.; low concentration of inhibiting compounds)
 - → rapid utilization of substrates

Energetics and bacterial growth

• Consider:

$$Y_n = Y - b \frac{X_a}{-dS/dt}$$

- Larger Y_n when Y >> b: favorable e⁻ donor and acceptor
- Larger Y_n when X_a << -dS/dt: favorable conditions for substrate utilization

Gibbs free energy

- "Standard" free energy
 - $-\Delta G^0$, free energy at 25°C, 1 atm, and unit activity for any chemicals involved
 - $-\Delta G^{0\prime}$, standard free energy adjusted to pH=7
- Free energy of formation (ΔG_f)
 - Gibbs free energy that accompanies the formation of 1 mole of the substance from its component elements

Gibbs free energy

• Free energy change of reaction (ΔG_r)

$$\sum [(sum \ of \ product \ \Delta G_f) - (sum \ of \ reactant \ \Delta G_f)]$$

For a generic reaction written as

$$0 = \sum_{i=1}^{n} v_{ir} A_i$$
 v_{ir} = stoichiometric coefficient, (-) for reactants, (+) for products A_i = reaction constituent, reactants or products

$$\Delta G_r = \sum_{i=1}^n v_{ir} \Delta G_f$$

Reaction free energy

Q1: Calculate the standard free energy adjusted pH 7 for the half reaction of 2-chlorobenzoate formation. Use the values of free energy of formation for individual constituents listed in Appendix A.

Q2: Calculate the standard free energy adjusted pH 7 for overall energy reaction with ethanol as an e⁻ donor and oxygen as an e⁻ acceptor. Use the half reactions listed in Table 2.2 and 2.3.

Reaction free energy

For nonstandard conditions,

$$\Delta G_r = \Delta G_r^0 + RT \sum_{i=1}^n v_{ir} ln a_i$$

$$a_i = \text{activity of constituent } A_i$$

Caution:

- v_{ir} is negative for reactants and positive for products
- $\Delta G_r^{\ 0}$ is for standard conditions -- pH=0 From $\Delta G_r^{\ 0}$, we can calculate $\Delta G_r^{\ 0}$ by:

$$\Delta G_r^0 = \Delta G_r^{0'} - RT v_{H^+} ln[10^{-7}]$$

Reaction free energy

Q3: Calculate the free energy of reaction for denitrification of glucose at the following conditions: $T = 25^{\circ}C$, pH = 6.0, $[C_6H_{12}O_6] = 10^{-3} \text{ M}$, $[NO_3^{-1}] = 10^{-4} \text{ M}$, $P_{CO2} = 3 \times 10^{-4} \text{ atm}$, $P_{N2} = 0.78 \text{ atm}$.

Q4: Calculate the free energy of reaction for aerobic ethanol degradation at the following conditions: $T = 20^{\circ}C$, pH = 5.0, $[C_2H_5OH] = 2 \times 10^{-3} M$, $P_{CO2} = 3 \times 10^{-4} atm$, $P_{O2} = 0.21 atm$.

- The energy generated by energy reactions is spent to make ATP
- ATP is consumed to drive cell synthesis or cell maintenance
- Cell synthesis involves energy loss (bacteria are not 100% efficient engines!) to synthesize C source to an intermediate compound, and then the intermediate compound to cells

• Energy required to convert carbon source to pyruvate, ΔG_p (heterotrophic bacteria, ammonia as N source):

$$\Delta G_p = 35.09 - \Delta G_c^{0'}$$
 35.09 = reaction free energy for formation of pyruvate from CO₂ $\Delta G_c^{0'}$ = reaction free energy for formation of carbon source from CO₂

• Energy required to convert pyruvate to cells, $\Delta G_{pc} = 18.8 \text{ kJ/e}^{-} \text{ eq}$

• Energy required for cell synthesis from the carbon source, ΔG_s :

$$\Delta G_{S} = \frac{\Delta G_{p}}{\varepsilon^{n}} + \frac{\Delta G_{pc}}{\varepsilon}$$

 ε = energy transfer efficiency n = -1 for $\Delta G_p < 0$ (C-source is at higher energy state than pyruvate);

+1 for $\Delta G_p > 0$ (C-source is at lower energy state than pyruvate)

• If energy for cell maintenance is neglected (situation for true yield, Y, and f_s^0):

$$A\varepsilon\Delta G_r + \Delta G_S = 0$$

 $A = e^{-}$ equivalent of e^{-} donor used for energy production per equivalent of cells formed

• Solving for A: $A = \frac{\Delta G_p/\varepsilon^n + \Delta G_{pc}/\varepsilon}{\varepsilon \Delta G_r}$

• From A, we can calculate $f_s^{\ 0}$ and $f_e^{\ 0}$ as:

$$f_s^0 = \frac{1}{1+A}$$
 $f_e^0 = 1 - f_s^0 = \frac{A}{1+A}$

- Energy transfer efficiency, ε
 - 55-70% under optimal conditions
 - Use 0.6 for ordinary cases

Q5: Estimate f_s^0 and Y for aerobic oxidation of acetate assuming ε =0.4 and 0.6 at standard conditions except for a pH of 7.0. Ammonia is available for cell synthesis.