Reactors II

Today's lecture

Plug flow reactor

- Concept
- PFR analysis for 1st order reaction
- PFR analysis for Monod kinetics

Continuous-stirred tank reactor

- CSTR analysis for 1st order reaction
- PFR vs. CSTR
- CSTR analysis for Monod kinetics

Reactor analysis: PFR

- Plug flow reactor (PFR)
 - assumption: no mixing in the direction of flow & completely mixed in the direction perpendicular to the flow
 - reactors get close to PFR as the length gets longer than the width and depth (e.g., rivers)

PFR, first-order reaction

• Take control volume as a thin plate perpendicular to the flow at z=z with a dimension of Δz in z dir.

PFR, first-order reaction

$$C/C_0 = e^{-k\theta}$$

Same form as the batch reactor (why??)

PFR, first-order reaction

- We model plug flow reactor as a movement of a "plug"
- The plug has a cross sectional area same as the reactor dimension and an infinitesimal dimension in z-dir (a thin plate)
- Complete mixing within the plug → batch reactor moving in the direction of flow

PFR, Monod kinetics

$$u\frac{dS}{dz} = -\frac{\hat{q}S}{K+S} \left[X_a^0 + Y(S^0 - S) \right]$$

Reactor analysis: CSTR, 1st order

At steady state,

$$C = \frac{C_0}{1 + k\theta}$$

PFR vs. CSTR

PFR shows better performance esp. at high HRTs

For 1st order reaction,

CSTR:

$$C = \frac{C_0}{1 + k\theta}$$

PFR:

$$C = C_0 e^{-k\theta}$$

Reactor analysis: CSTR, Monod kinetics

Assumption:

- Steady state
- X_a = 0 in the influent (negligible influent biomass)

$$S = K \frac{1 + b\theta}{Y\hat{q}\theta - (1 + b\theta)}$$

No S_0 or X_a in the equation!

$$X_a = Y \frac{S^0 - S}{1 + b\theta}$$