Microbial kinetics in reactors II

Today's lecture

- Nutrient & e⁻ acceptor consumption
- Hydrolysis
- Alternate rate expressions
- Example question

Nutrient consumption

 For the consumption of nutrients for biomass production:

$$r_n = \gamma_n \cdot Y_{obs} \cdot r_{ut} = \gamma_n \cdot Y \cdot r_{ut} \frac{1 + (1 - f_d)b\theta_x}{1 + b\theta_x}$$

 r_n = rate of nutrient consumption [M_nL⁻³T⁻¹] γ_n = the stoichiometric ratio of nutrient mass to VSS for biomass [M_nM_x⁻¹]

Using $C_5H_7O_2N$ as cell formula: $\gamma_N = 14 \text{ g N/}113 \text{ g VSS} = 0.124 \text{ g N/g VSS}$ $\gamma_P = 0.2 \times 0.124 = 0.025 \text{ g P/g VSS (generally P = 0.2N)}$

Nutrient consumption in a CSTR

Steady-state mass balance:

$$0 = QC_n^0 - QC_n + r_n V$$

$$C_n = C_n^0 + r_n \theta$$

if $C_n < 0$, nutrient-limiting

e-acceptor consumption

(e⁻ acceptor used in a reactor)

= [(total O.D. in the influent) - (total O.D. in the effluent)] x (conversion factor)

In terms of the use rate for a reactor $(\Delta S_a/\Delta t)$:

$$\frac{\Delta S_a}{\Delta t} = \gamma_a [Q(S^0 + 1.42X_v^0) - Q(S + SMP + 1.42X_v)]$$
$$= \gamma_a Q[S^0 - S - SMP + 1.42(X_v^0 - X_v)]$$

 γ_a = the stoichiometric ratio of acceptor mass to oxygen demand

for oxygen: 1 g O₂/g COD

for nitrate: 0.35 g NO₃-N/g COD

e-acceptor consumption

To estimate the required mass rate of acceptor supply (ex: aeration $[O_2]$ requirement), the calculated e^- acceptor use rate, $\Delta S_a/\Delta t$ can be written as:

$$\frac{\Delta S_a}{\Delta t} = \gamma_a \big[Q \big(S^0 + 1.42 X_v^{\ 0} \big) - Q \big(S + SMP + 1.42 X_v \big) \big]$$

$$= Q \big(S_a^{\ 0} - S_a \big) + R_a$$
(mass flow rate in) – Requirement of e-acceptor addition

Hydrolysis of particulates & polymers

- Particulates and polymeric substances account for a significant portion of BOD in wastewater
- >50% of BOD in typical sewage is particulates (SS)
- Particulates and large-MW compounds cannot penetrate the cell membrane
 - > needs to be hydrolyzed to smaller molecules
- Catalyzed by extracellular enzymes
- The mechanism and kinetics of hydrolysis it not fully understood

Hydrolysis of particulates & polymers

One simple way of describing hydrolysis is to assume first-order kinetics for particulates (or polymers):

$$r_{hyd} = -k_{hyd}S_p$$

 r_{hvd} = rate of accumulation of particulates (= dS_p/dt) [M_sL⁻³T⁻¹]

 k_{hvd} = first-order hydrolysis rate coefficient [T⁻¹]

 S_p = concentration of particulates [M_sL⁻³]

In a steady-state CSTR,

$$0 = Q(S_p^0 - S_p) - k_{hyd}S_pV$$

$$S_p = \frac{S_p^0}{1 + k_{hyd}\theta}$$

Hydrolysis of particulates & polymers

 Effect of hydrolysis on dissolved substrates mass balance in a steady-state CSTR

$$0 = Q(S^0 - S) - \frac{\widehat{q}S}{K + S}X_aV + k_{hyd}S_pV$$

$$0 = (S^0 - S) - \frac{\widehat{q}S}{K + S} X_a \theta + k_{hyd} S_p \theta$$

- \rightarrow Increase in S^0 by $k_{hyd}S_p\theta$
- → Increased biomass, but no change in dissolved substrates in the reactor

Alternate rate expressions

Contois equation

$$r_{ut} = -\frac{\hat{q}S}{BX_a + S}X_a$$

$$B = \text{constant } [M_s/M_x]$$

When
$$X_a \to \infty$$
, $r_{ut} = -\frac{\hat{q}}{B}S$

(at high biomass concentrations substrate utilization depends on S, not X_a)

Alternate rate expressions

Moser equation

$$r_{ut} = -\frac{\hat{q}S}{K + S^{-\gamma}}X_a$$
 $\gamma = \text{constant [unitless]}$

Tessier equation

$$r_{ut} = -\hat{q}(1 - e^{S/K})X_a$$

Just **REMEMBER** that Monod Eq. is **NOT** the only option!!!

Dual Monod equation

$$r_{ut} = -\hat{q} \frac{S}{K+S} \frac{A}{K_A + A} X_a$$

 $A = e^{-}$ acceptor concentration $[M_A/L^3]$ $K_A = \text{half-saturation coeff. for } e^{-}$ acceptor $[M_A/L^3]$

- e⁻ acceptor can also be limiting!
- Can be reduced to single Monod Eq. if $A >> K_A$
- Terms for other limiting substances can be added as well

Analyzing CSTR (Chemostat) Performance

Q: A chemostat having $V=2,000 \text{ m}^3$ receives a flow rate of $Q=1,000 \text{ m}^3/\text{d}$ of wastewater containing $S^0=500 \text{ mg BOD}_L/\text{L}$. Also included in the wastewater is the inert biomass $X_i^0=50 \text{ mg VSS/L}$. The following parameters are found for aerobic biodegradation:

$$\hat{q} = 20 \ g \ BOD_L / g \ VSS_a - d$$
 $Y = 0.42 \ g \ VSS_a / g \ BOD_L$
 $K = 20 \ mg \ BOD_L / L$
 $b = 0.15 / d$
 $f_d = 0.8$
 $k_1 = 0.12 \ g \ COD_p / g \ BOD_L$

$$k_{2} = 0.09 \ g \ COD_{p} / g \ VSS_{a} - d$$

$$\hat{q}_{UAP} = 1.8 \ g \ COD_{p} / g \ VSS_{a} - d$$

$$K_{UAP} = 100 \ mg \ COD_{p} / L$$

$$\hat{q}_{BAP} = 0.1 \ g \ COD_{p} / g \ VSS_{a} - d$$

$$K_{BAP} = 85 \ mg \ COD_{p} / L$$

Analyzing CSTR (Chemostat) Performance

Questions:

- 1. Calculate S_{min} , Θ_x^{min} , and Θ_x of the chemostat
- 2. Calculate effluent VSS, COD, and BOD,
- 3. Calculate the effluent N and P concentrations when influent concentrations are 50 mg NH_4^+ -N/L and 10 mg PO_4^{3-} -P/L, respectively.
- 4. Calculate the amount of O_2 that should be supplied to the reactor when influent and effluent DO are 6 and 2 mg/L, respectively.
- 5. Assuming that the influent also contains biodegradable particulate organic matter with a concentration of 100 mg COD/L and the hydrolysis rate coefficient is $k_{hyd} = 0.2/d$, recalculate the effluent VSS, COD, and BOD₁.