
Microbial kinetics in reactors III

Today's lecture

- Further on example questions
- CSTR with settling and cell recycling

From flow mass balance: $Q^0 = Q^e + Q^w$

Assumptions

- Biodegradation of soluble substrates in the reactor only, no biodegradation in the settling tank $(S = S^e = S^w = S^r)$
- No active biomass in influent
- Steady state

Active biomass mass balance:

$$0 = 0 - (Q^{e}X_{a}^{e} + Q^{w}X_{a}^{w}) + r_{net}V$$

Substrate mass balance:

$$0 = Q^0 S^0 - (Q^e S + Q^w S) + r_{ut} V$$

 Two solve the mass balance equations, use the following relationships:

$$\theta_x = \frac{active\ biomass\ in\ the\ system}{production\ rate\ of\ active\ biomass} = \frac{X_a V}{Q^e X_a{}^e + Q^e X_a{}^e}$$

$$r_{ut} = \frac{rate\ of\ mass\ substrate\ utilized}{volume\ of\ reactor} = \frac{Q^0S^0 - Q^eS^e - Q^wS^w}{V}$$

$$=\frac{Q^0(S^0-S)}{V}=\frac{S^0-S}{\theta}$$

Solutions:

$$S = K \frac{1 + b\theta_{\chi}}{\theta_{\chi}(Y\hat{q} - b) - 1}$$

$$X_a = \frac{\theta_x}{\theta} \frac{Y(S^0 - S)}{1 + b\theta_x}$$

→ Compare with our solutions for CSTR without cell recycling