

# **Fluid Statics**





# **Chapter 2 Fluid Statics**

#### Contents

- 2.1 Pressure-Density-Height Relationship
- 2.2 Absolute and Gage Pressure
- 2.3 Manometry
- 2.4 Forces on Submerged Plane Surfaces
- 2.5 Forces on Submerged Curved Surfaces
- 2.6 Buoyancy and Floatation
- 2.7 Fluid Masses Subjected to Acceleration

Objectives

- Study hydrostatic pressure relationship
- Study forces on surfaces by hydrostatic pressure





Fluid statics

~ study of fluid problems in which there is <u>no relative motion</u> between fluid elements

- $\rightarrow$  no velocity gradients
- $\rightarrow$  no shear stress
- $\rightarrow$  only normal pressure forces are present











- Static equilibrium of a typical differential element of fluid
- vertical axis = z axis = direction parallel to the gravitational force field







$$p_{A} = p - \frac{\partial p}{\partial x} \frac{dx}{2} \quad p_{c} = p + \frac{\partial p}{\partial x} \frac{dx}{2} \qquad \text{with direction} \qquad (1)$$

$$p_{B} = p - \frac{\partial p}{\partial z} \frac{dz}{2} \quad p_{D} = p + \frac{\partial p}{\partial z} \frac{dz}{2} \qquad (2)$$

$$dW = \rho g dx dz = \gamma dx dz \qquad (3)$$

Substituting (1) and (3) into (2.1) yields

$$dF_{x} = \left(p - \frac{\partial p}{\partial x}\frac{dx}{2}\right)dz - \left(p + \frac{\partial p}{\partial x}\frac{dx}{2}\right)dz = -\frac{\partial p}{\partial x}dxdz = 0$$
  

$$\rightarrow \frac{\partial p}{\partial x} = 0$$
(A)





Substituting (2) and (3) into (2.2) yields

$$dF_{z} = \left(p - \frac{\partial p}{\partial z}\frac{dz}{2}\right)dx - \left(p + \frac{\partial p}{\partial z}\frac{dz}{2}\right)dx - \gamma dxdz = -\frac{\partial p}{\partial z}dzdx - \gamma dxdz = 0$$

$$\rightarrow \frac{\partial p}{\partial z} = \frac{dp}{dz} = -\gamma = -\rho g \text{ (partial derivative} \rightarrow \text{total derivative because of (A))}$$
$$\frac{\partial p}{\partial x} = 0 \text{ (} \therefore p = fn(z \text{ only})\text{)}$$

(1) 
$$\frac{OP}{\partial x} = 0$$

~ no variation of pressure with horizontal distance

~ pressure is constant in a horizontal plane in a static fluid

















(2.3)

# 2.1 Pressure-Density-Height Relationship

(2)  $\frac{dp}{dz} = -\gamma$  minus sign indicates that as *z* gets larger, the pressure gets smaller)

$$\rightarrow -dz = \frac{dp}{\gamma}$$
$$\int_{z_1}^{z_2} -dz = \int_{p_1}^{p_2} \frac{dp}{\gamma}$$

Integrate over depth

$$(z_2 - z_1) = -\int_{p_1}^{p_2} \frac{dp}{\gamma} = \int_{p_2}^{p_1} \frac{dp}{\gamma}$$
(2.4)





For fluid of constant density (incompressible fluid;  $\gamma$  const.)

$$z_{2} - z_{1} = h = \frac{p_{1} - p_{2}}{\gamma}$$
  

$$\therefore p_{1} - p_{2} = \gamma(z_{2} - z_{1}) = \gamma h$$
  

$$\therefore p_{1} = p_{2} + \gamma h$$
(2.5)

~ increase of pressure with depth in a fluid of constant density

#### → <u>linear increase</u>

- ~ expressed as a head h of fluid of specific weight  $\gamma$
- ~ heads in millimeters of mercury, meters of water;  $\frac{\Delta p}{\gamma} = h$  (m)







2) surface force - forces transmitted from the surrounding fluid and acting at right angles against sides of the fluid element

- pressure, shear force





• Manometer or Piezometer

*h* = height of a column of any fluid *h* (m of H<sub>2</sub>O) =  $\frac{p(kN/m^2)}{9.81 kN/m^3} = 0.102 \times p(kN/m^2)$  $\gamma_w$ 

• For a static fluid

$$\frac{p_1}{\gamma} + z_1 = \frac{p_2}{\gamma} + z_2 = \text{const.}$$

(2.6)

















- For a fluid of variable density (compressible fluid)
  - ~ need to know a relationship between p and  $\gamma$
  - ~ oceanography, meteorology

[IP 2.1] The liquid oxygen (LOX) tank of space shuttle booster is filled to a depth of 10 m with LOX at -196°C. The absolute pressure in the vapor above the liquid surface is 101.3 kPa. Calculate absolute pressure at the inlet valve.





#### [Sol]

```
From App. 2 (Table A2.1)

\rho of LOX at -196°C = 1,206 kg/m<sup>3</sup>

p_2 = p_{atm} + \gamma_{LOX} h

p_2 = 101.3 kPa+ (1,206 kg/m<sup>3</sup>) (9.81 m/s<sup>2</sup>) (10 m)

= 101.3 kPa+ 118,308 kg·m/s<sup>2</sup>/m<sup>2</sup>

= 101.3 kPa+ 118,308 kPa
```

= 219.6 kPa absolute











# 2.2 Absolute and Gage Pressure

1) absolute pressure =  $\int t dtmospheric pressure + gage pressure for <math>p > p_{atm}$ atmospheric pressure - vacuum for  $p < p_{atm}$ 

2) relative (gage) pressure  $\rightarrow p_{atm} = 0$ 

 Bourdon pressure gage ~ measure gage pressure ⇒ open U-tube manometer

 Aneroid pressure gage ~ measure absolute pressure ⇒ mercury barometer

- gage pressure is normally substituted by "pressure"





### 2.2 Absolute and Gage Pressure







# 2.2 Absolute and Gage Pressure

- Mercury barometer (Fig. 2.5)
  - ~ invented by Torricelli (1643) → measure absolute pressure/local atmospheric pressure
  - ~ filling tube with air-free mercury
  - ~ inverting it with its open end beneath the mercury surface in the receptacle

Gage

pressure

[IP 2.4] A Bourdon gage registers <u>a vacuum</u> of 310 mm of mercury;



Find absolute pressure.





[Sol] absolute pressure = 100 kPa - 310 mmHg=  $100 \text{ kPa} - 310 \left(\frac{101.3 \text{ kPa}}{760}\right) = 58.7 \text{ kPa}$ 

[Re] App. 1

760 mmHg = 101.3 kPa = 1,013 mb  $\rightarrow$  1 mmHg = 101,300 / 760 = 133.3 Pa 1 bar = 100 kPa = 10<sup>3</sup> mb 760 mmHg = 760×10<sup>-3</sup> m×13.6×9,800 N/m<sup>3</sup> = 101.3 kN/m<sup>2</sup> = 101,300 N/m<sup>2</sup> / 9,800 N/m<sup>3</sup> = 10.3 m of H<sub>2</sub>O





### 2.3 Manometry

~ more precise than Bourdon gage (mechanical gage)

#### (i) U-tube manometer

~ Over horizontal planes within continuous columns of the same fluid, pressures are equal.

$$\left( \because \frac{\partial p}{\partial x} = 0 \right)$$
  

$$\rightarrow p_1 = p_2$$
  

$$p_1 = p_x + \gamma l$$
  

$$p_2 = 0 + \gamma_1 h$$
  

$$p_1 = p_2; p_x + \gamma l = 0 + \gamma_1 h$$
  

$$\therefore p_x = \gamma_1 h - \gamma l$$











# 2.3 Manometry

(ii) Differential manometer

~ measure difference between two unknown pressures

$$p_4 = p_5$$

$$p_4 = p_x + \gamma_1 l_1 \quad p_5 = p_y + \gamma_2 l_2 + \gamma_3 h$$

$$p_x + \gamma_1 l_1 = p_y + \gamma_2 l_2 + \gamma_3 h$$

$$\therefore p_x - p_y = \gamma_2 l_2 + l_3 h - \gamma_1 l_1$$

If  $\gamma_1 = \gamma_2 = \gamma_w$  and x and y are horizontal

$$p_{x} - p_{y} = \gamma_{3}h + \gamma_{w}(l_{2} - l_{1}) - h$$
$$= \gamma_{3}h + \gamma_{w}(-h) = (\gamma_{3} - \gamma_{w})h$$
head: 
$$\frac{p_{x} - p_{y}}{\gamma_{w}} = \left(\frac{\gamma_{3}}{\gamma_{w}} - 1\right)h$$





### 2.3 Manometry

(iii) Inclined gages

~ measure the comparatively small pressure in low-velocity gas flows

 $p_x = \gamma h = \gamma l \sin \theta$ 

reading of l > reading of  $h \rightarrow$  accurate

(iv) Open-end manometer

$$p_{D} = p_{B} = p_{C}$$

$$p_{D} = p_{A} - \gamma_{A} z$$

$$p_{C} = p_{atm} + \gamma_{M} y$$

$$p_{A} = p_{atm} + \gamma_{M} y + \gamma_{A} z$$
head: 
$$\frac{p_{A}}{\gamma_{A}} = \frac{p_{atm}}{\gamma_{A}} + \frac{\gamma_{M}}{\gamma_{A}} y + z$$











# 2.3 Manometry

(v) Measure vacuum

$$p_{1} = p_{2}$$

$$p_{1} = p_{A} + \gamma_{A}z + \gamma_{M}y$$

$$p_{2} = p_{atm}$$

$$p_{A} + \gamma_{A}z + \gamma_{M}y = p_{atm}$$

$$p_{A} = p_{atm} - \gamma_{A}z - \gamma_{M}y$$

$$p_{A} < p_{atm} \rightarrow vacuum$$











# 2.3 Manometry

(vi) Differential manometer

$$p_{1} = p_{2}$$

$$p_{1} = p_{A} - \gamma z_{A}$$

$$p_{2} = p_{B} - \gamma z_{B} + \gamma_{M} y$$

$$\therefore p_{A} - \gamma z_{A} = p_{B} - \gamma z_{B} + \gamma_{M} y$$

$$p_{A} - p_{B} = \gamma (z_{A} - z_{B}) + \gamma_{M} y$$

$$= -\gamma y + \gamma_{M} y = (\gamma_{M} - \gamma) y$$

$$\frac{p_{A} - p_{B}}{\gamma} = \left(\frac{\gamma_{M}}{\gamma} - 1\right) y$$
If  $\gamma = \gamma_{w} \rightarrow \frac{p_{A} - p_{B}}{\gamma_{w}} = (s.g._{M} - 1) y$ 























# 2.3 Manometry

For measuring large pressure difference,

- $\rightarrow$  use heavy measuring liquid, such as mercury s.g. = 13.55  $\rightarrow$  makes y small
- For a small pressure difference, s.g. < 1
- $\rightarrow$  use a light fluid such as oil, or even air
- Practical considerations for manometry
- ① Temperature effects on densities of manometer liquids should be appreciated.
- ② Errors due to <u>capillarity</u> may frequently be canceled by selecting manometer tubes of uniform sizes.





#### 2.3 Manometry

[IP 2.5] The vertical pipeline shown contains oil of specific gravity 0.90. Find  $P_x$ 

$$p_{l} = p_{r}$$

$$p_{l} = p_{x} + (0.90 \times 9.8 \times 10^{3}) \times 3$$

$$p_{atm} = 0$$

$$p_{r} = (13.57 \times 9.8 \times 10^{3}) \times 0.375$$

$$\therefore p_{x} = 23.4 \text{ kPa (kN/m^{2})}$$










- Calculation of magnitude, direction, and location of the total forces on surfaces submerged in a liquid is essential.
- $\rightarrow$  design of dams, bulkheads, gates, tanks, ships
- Pressure variation for non-horizontal planes

$$\frac{\partial p}{\partial z} = -\gamma$$
  
$$\therefore p = \gamma h \tag{2.7}$$

 $\rightarrow$  The pressure varies linearly with depth.





















































- Pressure on the inclined plane
- Centroid of area  $A \sim at a depth h_c$

~ at a distance  $l_c$  from the line of intersection 0-0

#### (i) Magnitude of total force

First, consider differential force dF

| $dF = pdA = \gamma hdA$                     | (2.8)  |
|---------------------------------------------|--------|
| $h = l \sin \alpha$                         | (2.9)  |
| $\rightarrow dF = \gamma l \sin \alpha  dA$ | (2.10) |











Then, integrate *dF* over area *A* 

$$F = \int^{A} dF = \gamma \sin \alpha \int^{A} l dA$$
 (2.11)

in which  $\int^{A} l dA = \underline{1st \text{ moment of the area}} A$  about the line 0-0 =  $A \cdot l_c$ 

in which  $l_c$  = perpendicular distance from 0-0 to the centroid of area

$$\therefore F = \gamma A l_c \sin \alpha$$

Substitute  $h_c = l_c \sin \alpha$  (pressure at centroid) × (area of plane)  $F = \gamma h_c A$  (2.12)





(ii) Location of total force

Consider moment of force about the line 0-0

$$dM = dF \cdot l = \gamma l^2 dA \sin \alpha$$
  

$$M = \int^A dM = \gamma \sin \alpha \int^A l^2 dA$$
(2.13)

 $dF = \gamma l \sin \alpha dA$ 

where  $\int^{A} l^{2} dA = \text{second moment of the area } A$ , about the line  $0-0 = I_{0-0}$ 

 $\therefore M = \gamma \sin \alpha I_{0-0} \tag{a}$ 

unknown

By the way,

$$M = F \cdot l_p$$
 (total force × moment arm)





(b)

#### Combine (a) and (b)

$$Fl_{p} = \gamma I_{0-0} \sin \alpha \tag{C}$$

Substitue  $F = \gamma l_c \sin \alpha A$  into (c)

$$\gamma l_c \sin \alpha A l_p = \gamma I_{0-0} \sin \alpha$$
  
$$\therefore l_p = \frac{I_{0-0}}{l_c A} = \frac{I_c + l_c^2 A}{l_c A} = l_c + \frac{I_c}{l_c A}$$
(2.14)

 $\rightarrow$  Center of pressure is always <u>below the centroid</u> by  $\frac{I_c}{l_a A}$ 

$$l_p - l_c = \frac{I_c}{l_c A}$$

 $\rightarrow$  as  $l_c$  (depth of centroid) increases  $l_p - l_c$  decreases





Second moment transfer equation

$$I_{0-0} = I_c + l_c^2 A$$

- $I_c$  = 2nd moment of the area *A* about an axis through the centroid, parallel to 0-0
  - $\rightarrow$  Appendix 3





1) Rectangle

$$A = bh, \quad y_c = \frac{h}{2}, \quad I_c = \frac{bh^3}{12}$$
$$\therefore h_c = a + (h - y_c) = a + \frac{h}{2}$$
$$F = \gamma h_c A = \gamma \left(a + \frac{h}{2}\right)(bh)$$
$$h_p = h_c + \frac{I_c}{h_c A}$$
If  $a = 0; \quad h_c = \frac{h}{2}$ 
$$h_p = \frac{h}{2} + \frac{\frac{bh^3}{12}}{\frac{h}{2}} = \frac{h}{2} + \frac{h}{6} = \frac{2}{3}h$$









#### 2) Semicircle

$$I = \frac{\pi d^4}{128}, \ y_c = \frac{4r}{3\pi}$$
$$I = I_c + y_c^2 A$$
$$\therefore I_c = I - y_c^2 A$$
$$= \frac{\pi d^4}{128} - \left(\frac{4r}{3\pi}\right)^2 \left(\frac{\pi d^2}{8}\right)$$
$$= \left(\frac{\pi}{128} - \frac{1}{18\pi}\right) d^4 = 0.10976r^4$$











3) Quadrant

$$I = \frac{\pi d^4}{256}, y_c = \frac{4r}{3\pi}$$
$$I_c = I + y_c^2 A$$
$$= \frac{\pi d^4}{256} - \left(\frac{4r}{3\pi}\right)^2 \left(\frac{\pi d^2}{16}\right)^2$$
$$= \left(\frac{\pi}{256} - \frac{1}{36\pi}\right) d^4$$

$$= 0.05488r^4$$











(iii) Lateral location of the center of pressure for asymmetric submerged area

#### a. For regular plane

- (i) divide whole area into a series of elemental horizontal strips of area dA
- (ii) center of pressure for each strip would be at the midpoint of the strip
- (the strip is a rectangle in the limit)

(iii) apply moment theorem about a vertical axis 0-0

 $dF = \gamma h_c dA = \gamma l \sin \alpha dA \tag{a}$ 

$$dM = x_c dF = x_c \gamma l \sin \alpha dA$$

Integrate (a)

$$M = \int_A dM = \int x_c \gamma l \sin \alpha dA$$





(b)







By the way, 
$$M = x_p F$$

Equate (b) and (c)

$$x_p F = \int x_c \gamma l \sin \alpha dA$$
$$x_p = \frac{1}{F} \gamma \sin \alpha \int x_c l dA$$

#### b. For irregular forms

- ~ divide into simple areas
- ~ use methods of statics
- [Re] Moment theorem
- $\rightarrow$  The moment of the resultant force is equal to the sum of the moments
- of the individual forces.



(C)

(2.15)

[IP 2.9] A vertical gate: quarter circle

[Sol]

(i) Magnitude

$$y_{c})_{quadrant} = \frac{4r}{3\pi} = \frac{4}{3\pi} (1.8) = 0.764;$$
  
$$h_{c} = 0.3 + 0.764 = 1.064$$
  
$$F_{quad} = \gamma h_{c} A = 9,800(1.064) \left(\frac{\pi}{4} (1.8)^{2}\right) = 26.53 \text{ kN}$$











(ii) Vertical location of resultant force

$$\left(\frac{I_c}{l_c A}\right)_{quad} = \frac{0.05488(1.8)^4}{(1.064)\left(\frac{\pi}{4}(1.8)^2\right)} = 0.213 \,\mathrm{m}$$
$$\rightarrow l_p = 1.064 + 0.213 = 1.277 \,\mathrm{m}$$

(iii) Lateral location of the center of pressure

Divide quadrant into horizontal strips

Take a moment of the force on *dA* about *y*-axis





$$dM = \gamma h dA \cdot (\text{moment arm}) = 9800(y + 0.3)(x dy) \left(\frac{x}{2}\right)$$

$$\frac{9800}{2}(y+0.3)x^2dy = \frac{9800}{2}(y+0.3)(1.8^2 - y^2)dy$$

$$x^2 + y^2 = (1.8)^2$$

$$\therefore M = \int_0^{1.8} \frac{9800}{2} (y + 0.3)(1.8^2 - y^2) dy = 18575 \,\mathrm{N} \cdot \mathrm{m}$$

By the way,  $M = F_{quad} x_p$ 

 $x_p = 18575 / 26.53 \times 10^3 = 0.7m$  right to the *y*-axis

















- Resultant pressure forces on curved surfaces are more difficult to deal with because the incremental pressure forces vary continually in direction.
  - $\rightarrow \int$  Direct integration
    - <sup>L</sup>Method of basic mechanics
- 1) Direct integration
- Represent the curved shape functionally and integrate to find horizontal and vertical components of the resulting force
  - i) Horizontal component

$$F_{H} = \int dF_{H} = \int \gamma h b \, dz$$

where b = the width of the surface; dz = the vertical projection of the surface element dL





location of  $F_H$ : take moments of dF about convenient point, e.g., point C

$$z_p F_H = \int z \, dF_H = \int z \, \gamma h b \, dz$$

where  $z_p$  = the vertical distance from the moment center to  $F_H$ 

ii) Vertical component

$$F_V = \int dF_V = \int \gamma h b \, dx$$

where dx = the horizontal projection of the surface element dL





location of  $F_V$ : take moments of dF about convenient point, e.g., point C

$$x_p F_V = \int x \, dF_V = \int x \, \gamma h b \, dx$$

where  $x_p$  = the horizontal distance from the moment center to  $F_V$ 

- 2) Method of basic mechanics
- Use the basic mechanics concept of a free body and the equilibrium of a fluid mass
- Choose a convenient volume of fluid in a way that one of the fluid element boundaries coincide with the curved surface under consideration
- Isolate the fluid mass and show all the forces acting on the mass to keep it in equilibrium





• Static equilibrium of free body ABC

 $\sum F_{x} = F_{BC} - F_{H}' = 0 \qquad \therefore F_{H}' = F_{BC} = \gamma h_{c} A_{BC}$  $\sum F_{z} = F_{V}' - W_{ABC} - F_{AC} = 0 \qquad \therefore F_{V}' = F_{AC} + W_{ABC}$  $F_{AC} = \gamma h_{c} A_{AC} = \gamma H A_{AC} = W_{ACDE}$  $W_{ABC} = \text{weight of free body } ABC$  $\therefore F_{V}' = \text{weight of } ABDE$ 

Location

From the inability of the free body of fluid to support shear stress,

- $\rightarrow F_{H}$  must be colinear with  $F_{BC}$
- $\rightarrow F_{V}$  must be collinear with the resultant of  $W_{ABC}$  and  $F_{AC}$ .





[IP 2.10] p. 59

Oil tanker W = 330,000 tone  $= 330,000 \times 10^3$  kg

Calculate magnitude, direction, and location of resultant force/meter exerted by seawater (  $\gamma = 10 \times 10^3$  N/m<sup>3</sup>) on the curved surface *AB* (quarter cylinder) at the corner.

[Sol] Consider a free body ABC
















(i) Horizontal Comp.

$$F_{H}^{'} = F_{AC} = \gamma h_{c} A = 10^{4} \times \left(22.5 + \frac{1.5}{2}\right) \times (1.5 \times 1) = 348.8 \text{ kN/m}$$

$$l_p = l_c + \frac{I_c}{l_c A} = 23.25 + \frac{\frac{1 \times (1.5)^3}{12}}{23.25 \times 1.5} = 23.25 + 0.0081 = 23.258 \text{ m}$$

 $\therefore z_p = 23.258 - 22.5 = 0.758$  m below line OA

= 24 - 23.258 = 0.742 m above line BC





(ii) Vertical Comp.

$$\sum F_{z} = F_{BC} - F_{V} - W_{ABC} = 0$$
  

$$\therefore F_{V} = F_{BC} - W_{ABC} = \gamma h_{c} A - \gamma Vol.$$
  

$$= 10^{4} \times 24 \times (1.5 \times 1) - 10^{4} \left( 1.5 \times 1.5 - \frac{1}{4} \pi (1.5)^{2} \right) \times 1 = 355.2 \, kN \, / m$$

• To find the location of  $F_{v}$ , we should first find center of gravity of *ABC* using statics *OB* 

Take a moment of area about line

$$\frac{4(1.5)}{3\pi} \times \frac{1}{4}\pi (1.5)^2 + x_c \times 0.483 = 2.25 \times \frac{1.5}{2}$$

 $X_c = 1.1646 \text{ m}$ 



[Cf] From App. 3, for segment of square

$$x_c = \frac{2}{3} \frac{r}{4-\pi} = \frac{2}{3} \frac{1.5}{4-\pi} = 1.165 m$$

Now, find location of force  $F_V$ 

Take a moment of force about point O

$$F_V \times x_p = F_{BC} \times 0.75 - W_{ABC} \times 1.1646$$
  
 $355.2 \times x_p = 360 \times 0.75 - 4.83 \times 1.1646$   
 $\therefore x_p = 0.744$  m right of *OB*





[Summary]

i) Magnitude of Resultant force F

$$F = \sqrt{(348.8)^2 + (355.2)^2} = 497.8 \text{ kN/m}$$

ii) Direction  $\theta$ 

$$\theta = \tan^{-1} \left( \frac{F_V}{F_H} \right) = \tan^{-1} \left( \frac{355.2}{348.8} \right) = 45.5^{\circ}$$

iii) Location

Force acting through a point 0.742 m above line *BC* and 0.744 m right of *B* 





$$\alpha_1 = \tan^{-1} \left( \frac{0.744}{0.758} \right) = 44.47^\circ$$
$$\alpha_2 = \tan^{-1} \left( \frac{348.8}{355.2} \right) = 44.47^\circ$$

 $\alpha_1 = \alpha_2 \rightarrow F$  act through point *O*.

- Pressure acting on the cylindrical or spherical surface
  - The pressure forces are all normal to the surface.
  - For a circular arc, all the lines of action would pass through the center of the arc.
  - $\rightarrow$  Hence, the resultant would also pass through the center.











• Tainter gate (Radial gate) for dam spillway

All hydrostatic pressures are radial, passing through the trunnion bearing.  $\rightarrow$  only pin friction should be overcome to open the gate pin friction (radial gate) < roller friction (lift gate)











- Archimedes' principle
- I. A body immersed in a fluid is buoyed up by a force equal to the weight of fluid displaced.
- II. A floating body displaces its own weight of the liquid in which it floats.
- $\rightarrow$  Calculation of draft of surface vessels, lift of airships and balloons

(i) Immersed body

Isolate a free body of fluid with vertical sides tangent to the body  $\rightarrow F_1'$  = vertical force exerted by the lower surface (ADC) on the surrounding fluid











 $F_2'$  = vertical force exerted by the upper surface (ABC) on the surrounding fluid

$$F'_1 - F'_2 = F_B$$
  
 $F_B$  = buoyancy of fluid; act vertically upward.

For upper portion of free body

$$\sum F_{z} = F_{2}' - W_{2} - P_{2}A = 0 \tag{a}$$

For lower portion

$$\sum F_{z} = F_{1}' - W_{1} + P_{1}A = 0$$

(b)





Combine (a) and (b)  

$$F_B = F_1' - F_2' = (P_1 - P_2)A - (W_1 + W_2)$$

 $(P_1 - P_2)A = \gamma hA =$  weight of free body

 $W_1 + W_2 =$  weight of dashed portion of fluid

 $\therefore (P_1 - P_2)A - (W_1 + W_2) =$  weight of a volume of fluid equal to that of the body

#### ABCD

 $\therefore F_B = \gamma_{fluid}$  (volume of submerged object)

(2.16)





### (ii) Floating body

### For floating object

$$F_{B} = \gamma_{f} \text{ (volume displaced, ABCD)} \qquad F_{B} = \gamma_{f} ABCD$$
$$W_{ABCDE} = \gamma_{s} V_{ABCDE} \qquad W = \gamma_{s} ABCDE$$

where  $\gamma_s$  = specific weight of body

From static equilibrium:  $F_B = W_{ABCDE}$  $\gamma_f V_{ABCD} = \gamma_s V_{ABCDE}$ 

$$\therefore \quad V_{ABCD} = \frac{\gamma_s}{\gamma_f} V_{ABCDE}$$





#### *87/102*

# 2.6 Buoyancy and Floatation







#### [Ex] Iceberg in the sea

lce s.g.= 
$$0.9$$

```
Sea water s.g.= 1.03
```

$$V_{sub} = \frac{0.9(9800)}{1.03(9800)} V_{total} = 0.97 V_{total}$$

- Stability of submerged or floating bodies
  - $G_1 < M \rightarrow$  stable, righting moment
  - $G_2 > M \rightarrow$  unstable, overturning moment
  - $G_1, G_2$  = center of gravity
  - M = metacenter











- Fluid masses can be subjected to various types of <u>acceleration without</u> the occurrence of relative motion between fluid particles or between fluid particles and boundaries.
- $\rightarrow$  laws of fluid statics modified to allow for the effects of acceleration
- A whole tank containing fluid system is accelerated.
- Newton's 2nd law of motion (Sec. 2.1)

$$\sum F = Ma$$

(2.17)











#### First, consider force

$$\Sigma F_{x} = \left(p - \frac{\partial p}{\partial x}\frac{dx}{2}\right)dz - \left(p + \frac{\partial p}{\partial x}\frac{dx}{2}\right)dz = \left(-\frac{\partial p}{\partial x}\right)dxdz$$
(2.18a)  
$$\Sigma F_{z} = \left(-\frac{\partial p}{\partial z} - \gamma\right)dxdz$$
(2.18b)

Then, consider acceleration

mass

$$x: \left(-\frac{\partial p}{\partial x}\right) dx dz = \left(\frac{\gamma}{g} dx dz\right) a_x$$
$$z: \left(-\frac{\partial p}{\partial z} - \gamma\right) dx dz = \left(\frac{\gamma}{g} dx dz\right) a_z$$





where mass = 
$$\rho vol. = \frac{\gamma}{g} dx dz \times 1$$

$$\frac{\partial p}{\partial x} = -\frac{1}{g}a_x \tag{2.19}$$

$$\frac{\partial p}{\partial z} = -\frac{\gamma}{g}(g + a_z) \tag{2.20}$$

 $\rightarrow$  pressure variation through an accelerated mass of fluid











[Cf] For fluid at rest,

 $\frac{\partial p}{\partial x} = 0$  $\frac{\partial p}{\partial z} = -\gamma$ 

• Chain rule for the total differential for dp (App. 5)

$$dp = \frac{\partial p}{\partial x}dx + \frac{\partial p}{\partial z}dz$$
 (a)

Combine (2.19), (2.20), and (a)

$$dp = -\frac{\gamma}{g}a_{x}dx - \frac{\gamma}{g}(g + a_{z})dz$$
(2.21)





• Line of constant pressure dp = 0

$$-\frac{\gamma}{g}a_x dx - \frac{\gamma}{g}(g + a_z)dz = 0$$
$$\therefore \frac{dz}{dx} = -\left(\frac{a_x}{g + a_x}\right)$$

(2.22)

 $\rightarrow$  slope of a line of constant pressure











1) No horizontal acceleration:  $a_x = 0$ 

$$\frac{\partial p}{\partial x} = 0$$
$$\therefore \frac{dp}{dz} = -\gamma \left(\frac{g + a_z}{g}\right)$$

• For free falling fluid,  $a_z = -g$ 

$$\frac{dp}{dz} = 0$$

2) Constant linear acceleration

Divide (2.21) by dh

$$\frac{dp}{dh} = -\gamma \left( \frac{a_x}{g} \frac{dx}{dh} + \frac{g + a_z}{g} \frac{dz}{dh} \right)$$

(a)



(b.1)

(b.2)

# 2.7 Fluid Masses Subjected to Acceleration

#### Use similar triangles

$$\frac{dx}{dh} = \frac{a_x}{g'}$$
$$\frac{dz}{dh} = \frac{a_z + g}{g'}$$
$$g' = \left[a_x^2 + (a_z + g)^2\right]^{1/2}$$

Substitute (b) into (a)

$$\frac{dp}{dh} = -\gamma \frac{g}{g}$$

 $\rightarrow$  pressure variation along *h* is linear.





[IP 2.13] p. 70

An open tank of water is accelerated vertically upward at 4.5 m/s<sup>2</sup>. Calculate the pressure at a depth of 1.5 m.

[Sol]

$$\frac{dp}{dz} = -\gamma \left(\frac{g + a_z}{g}\right) = (-9,800 \text{ N/m}^3) \left(\frac{9.81 + 4.5}{9.81}\right) = -14,300 \text{ N/m}^3$$
$$dp = -14,300 dz$$

integrate

$$\int_{0}^{p} dp = \int_{0}^{-1.5} -14,300 dz$$

 $p = -14,300[z]_0^{-1.5} = 14,300(-1.5-0) = 21,450 \text{ N/m}^2 = 21.45 \text{ kPa}$ 





[Cf] For  $a_z = 0$ 

 $p = \gamma h = 9800(1.5) = 14.7$  kPa





Homework Assignment # 2

Due: 1 week from today

| Prob. 2.4  | Prob 259    |
|------------|-------------|
| Prob. 2.6  | Drob 2.62   |
| Prob. 2.11 | Prob. 2.03  |
| Prob. 2.26 | Prop. 2.76  |
| Prob. 2.31 | Prop. 2.91  |
| Prob. 2.39 | Prob. 2.98  |
| Prob 252   | Prob. 2.129 |



