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Objectives

- Study hydrostatic pressure relationship

- Study forces on surfaces by hydrostatic pressure

- Study buoyant forces
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2.1 Pressure-Density-Height Relationship

Fluid statics

~ study of fluid problems in which there is no relative motion between

fluid elements

→ no velocity gradients

→ no shear stress

→ only normal pressure forces are present
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2.1 Pressure-Density-Height Relationship

h

At center;
p, r
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2.1 Pressure-Density-Height Relationship

• Static equilibrium of a typical differential element of fluid

- vertical axis = - axis = direction parallel to the gravitational force field

- Newton's first law

z

0F∑ =

F = external force:

pressure, shear, gravity

Assume unit thickness

in y direction; =1

0 :xF∑ = 0x A cF p dz p dz∑ = − = (2.1)

0 :zF∑ = 0B Dp dx p dx dW∑ − − = (2.2)

in which ( , )p f x z=
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2.1 Pressure-Density-Height Relationship

2A
p dxp p
x
∂

= −
∂ 2c

p dxp p
x
∂

= +
∂

2B
p dzp p
z
∂

= −
∂ 2D

p dzp p
z
∂

= +
∂

(1)

(2)

= variation of pressure

with direction

p
x
∂
∂

dW gdxdz dxdzρ γ= = (3)

Substituting (1) and (3) into (2.1) yields

0
2 2x

p dx p dx pdF p dz p dz dxdz
x x x
∂ ∂ ∂   = − − + = − =   ∂ ∂ ∂   

0p
x

→
∂

=
∂

(A)
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2.1 Pressure-Density-Height Relationship

Substituting (2) and (3) into (2.2) yields

0
2 2z

p dz p dz pdF p dx p dx dxdz dzdx dxdz
z z z

γ γ∂ ∂ ∂   = − − + − = − − =   ∂ ∂ ∂   

p dp g
z dz

γ ρ∂
= = − = −→

∂ (partial derivative → total derivative because of (A))

0p
x
∂

=
∂

( )( )p fn z only∴ =

0p
x
∂

=
∂

(1)

~ no variation of pressure with horizontal distance

~ pressure is constant in a horizontal plane in a static fluid
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2.1 Pressure-Density-Height Relationship
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2.1 Pressure-Density-Height Relationship
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2.1 Pressure-Density-Height Relationship

dp
dz

γ= −

dpdz
γ

→ − =

2 2

1 1

z p

z p

dpdz
γ

− =∫ ∫

z(2) minus sign indicates that as gets larger, the pressure gets

smaller)

Integrate over depth

2 1

1 2
2 1( )

p p

p p

dp dpz z
γ γ

− = − =∫ ∫

(2.3)

(2.4)
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2.1 Pressure-Density-Height Relationship

γFor fluid of constant density (incompressible fluid; const.)

1 2
2 1

p pz z h
γ
−

− = =

1 2 2 1( )p p z z hγ γ∴ − = − =

1 2p p hγ∴ = + (2.5)

h γ

p h
γ
∆

=

~ increase of pressure with depth in a fluid of constant density

→ linear increase

~ expressed as a head of fluid of specific weight

~ heads in millimeters of mercury, meters of water; (m)
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2.1 Pressure-Density-Height Relationship

( )fn z or pγ =
no contact

[Cf] For compressible fluid,

[Re] External forces

1) body force - forces acting on the fluid element

- gravity force, centrifugal force, Corioli's force (due to

Earth’s rotation)

2) surface force - forces transmitted from the surrounding fluid and

acting at right angles against sides of the fluid element

- pressure, shear force
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2.1 Pressure-Density-Height Relationship

• Manometer or Piezometer

h = height of a column of any fluid

(m of H2O)h
2

2
3

(kN/m ) 0.102 (kN/m )
9.81 kN/m
p p= = ×

γw

• For a static fluid

1 2
1 2

p pz z
γ γ
+ = + = const. (2.6)
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2.1 Pressure-Density-Height Relationship
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2.1 Pressure-Density-Height Relationship
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2.1 Pressure-Density-Height Relationship

γp
• For a fluid of variable density (compressible fluid)

~ need to know a relationship between and

~ oceanography, meteorology

[IP 2.1] The liquid oxygen (LOX) tank of space shuttle booster is filled to

a depth of 10 m with LOX at -196°C. The absolute pressure in the vapor

above the liquid surface is 101.3 kPa. Calculate absolute pressure at the

inlet valve.
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2.1 Pressure-Density-Height Relationship

[Sol]

ρ

2 atm LOXp p hγ= +

2p

From App. 2 (Table A2.1)

of LOX at -196°C = 1,206 kg/m3

= 101.3 kPa+ (1,206 kg/m3) (9.81 m/s2) (10 m)

= 101.3 kPa+ 118,308 kg·m/s2/m2

= 101.3 kPa+ 118,308 kPa

= 219.6 kPa absolute
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2.1 Pressure-Density-Height Relationship

patm
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2.2 Absolute and Gage Pressure

1) absolute pressure = atmospheric pressure + gage pressure for p > patm

atmospheric pressure - vacuum for p < patm

0atmp =2) relative (gage) pressure →

Bourdon pressure gage ~ measure gage pressure ⇒ open U-tube

manometer

Aneroid pressure gage ~ measure absolute pressure ⇒ mercury

barometer

- gage pressure is normally substituted by "pressure"
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2.2 Absolute and Gage Pressure
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2.2 Absolute and Gage Pressure

• Mercury barometer (Fig. 2.5)

~ invented by Torricelli (1643) → measure absolute pressure/local 

atmospheric pressure

~ filling tube with air-free mercury

~ inverting it with its open end beneath the mercury surface in the receptacle

Gage
pressure

[IP 2.4] A Bourdon gage registers a vacuum of 310 mm of mercury;

100atmp = kPa, absolute.

Find absolute pressure.



22/102

2.2 Absolute and Gage Pressure

[Sol] absolute pressure = 100 kPa 310 mmHg−
101.3 kPa100 kPa 310

760
 = −  
 

58.7 kPa=

[Re] App. 1 

760 mmHg = 101.3 kPa = 1,013 mb → 1 mmHg = 101,300 / 760           

= 133.3 Pa

1 bar = 100 kPa = 103 mb

760 mmHg = 760×10-3 m×13.6×9,800 N/m3 = 101.3 kN/m2

= 101,300 N/m2 / 9,800 N/m3 = 10.3 m of H2O
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2.3 Manometry

~ more precise than Bourdon gage (mechanical gage)

(i) U-tube manometer

~ Over horizontal planes within continuous columns of the same fluid, 

pressures are equal. 

0p
x
∂ = ∂ 



1 2p p→ =

1 xp p lγ= +

2 10p hγ= +

1 2 1; 0xp p p l hγ γ= + = +

1xp h lγ γ∴ = −

Patm → 0
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2.3 Manometry

patm

z
g

x



25/102

2.3 Manometry

(ii) Differential manometer

~ measure difference between two unknown pressures
4 5p p=

4 1 1xp p lγ= + 5 2 2 3yp p l hγ γ= + +

1 1 2 2 3x yp l p l hγ γ γ+ = + +

2 2 3 1 1x yp p l l h l∴ − = γ + − γ

1 2 wγ γ γ= = x yIf   and      and are horizontal

3 2 1( )x y wp p h l lγ γ− = + −

3 3( ) ( )w wh h hγ γ γ γ= + − = −

head: 3 1x y

w w

p p
hγ

γ γ
−  

= − 
 

-h
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2.3 Manometry

(iii) Inclined gages

~ measure the comparatively small pressure in low-velocity gas flows

sinxp h lγ γ θ= =

l hreading of  >  reading of  → accurate 

(iv) Open-end manometer

head : 

D B Cp p p= =

D A Ap p zγ= −

C atm Mp p yγ= +

A atm M Ap p y zγ γ= + +
A atm M

A A A

p p y zγ
γ γ γ

= + +



27/102

2.3 Manometry
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2.3 Manometry

(v) Measure vacuum

1 2p p=

1 A A Mp p z yγ γ= + +

2 atmp p=

A A M atmp z y pγ γ+ + =

A atm A Mp p z yγ γ= − −

A atmp p vacuum< →
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2.3 Manometry
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2.3 Manometry

(vi) Differential manometer

1 2p p=

1 A Ap p zγ= −

2 B B Mp p z yγ γ= − +

A A B B Mp z p z yγ γ γ∴ − = − +

( )A B A B Mp p z z yγ γ− = − +

( )M My y yγ γ γ γ= − + = −

1A B Mp p yγ
γ γ

 −
= − 
 

wγ γ= ( . . 1)A B
M

w

p p s g y
γ

→
−

= −If 
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2.3 Manometry
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2.3 Manometry
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2.3 Manometry
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2.3 Manometry

. . 13.55s g = y
. . 1s g <

For measuring large pressure difference,

→ use heavy measuring liquid, such as mercury → makes small

For a small pressure difference,

→ use a light fluid such as oil, or even air

• Practical considerations for manometry

① Temperature effects on densities of manometer liquids should be

appreciated.

② Errors due to capillarity may frequently be canceled by selecting

manometer tubes of uniform sizes.
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2.3 Manometry

xp
[IP 2.5] The vertical pipeline shown contains oil of specific gravity 0.90.

Find

l rp p=
3(0.90 9.8 10 ) 3l xp p= + × × ×

3(13.57 9.8 10 ) 0.375rp = × × ×

23.4xp∴ = kPa (kN/m2)

[Sol]

. .f ws gγ γ= ×

0atmp =
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2.3 Manometry
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2.4 Forces on Submerged Plane Surfaces 

• Calculation of magnitude, direction, and location of the total forces on

surfaces submerged in a liquid is essential.

→ design of dams, bulkheads, gates, tanks, ships

p
z

γ∂
= −

∂

p hγ∴ =

• Pressure variation for non-horizontal planes

→ The pressure varies linearly with depth.

(2.7)
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2.4 Forces on Submerged Plane Surfaces 
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2.4 Forces on Submerged Plane Surfaces 

Spillway
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2.4 Forces on Submerged Plane Surfaces 

Arch dam
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2.4 Forces on Submerged Plane Surfaces 
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2.4 Forces on Submerged Plane Surfaces 
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2.4 Forces on Submerged Plane Surfaces 
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2.4 Forces on Submerged Plane Surfaces 
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2.4 Forces on Submerged Plane Surfaces 

Movable
weir with
gate

Fishway

Fixed weir
with no gate
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2.4 Forces on Submerged Plane Surfaces 

• Pressure on the inclined plane

A ch

cl

• Centroid of area ~ at a depth

~ at a distance from the line of intersection 0-0

(i) Magnitude of total force

First, consider differential force dF

(2.10)

(2.9)

(2.8)dF pdA= = hdAγ

sinh l α=

sindF l dAγ α→ =
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2.4 Forces on Submerged Plane Surfaces 

Center of 
resultant force
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2.4 Forces on Submerged Plane Surfaces 

in which  = perpendicular distance from 0-0 to the centroid of area

Then, integrate dF over area A

sin
A A

F dF ldAγ α= =∫ ∫ (2.11)

A
ldA∫

cA l= ⋅

in which = 1st moment of the area A about the line 0-0

cl

sincF Alγ α∴ =

Substitute sinc ch l α=

cF h Aγ=

(pressure at centroid) × (area of plane)

(2.12)
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2.4 Forces on Submerged Plane Surfaces 

(ii) Location of total force

Consider moment of force about the line 0-0
2 sindM dF l l dAγ α= ⋅ =

2sin
A A

M dM l dAγ α= =∫ ∫

sindF l dAγ α=

2A
l dA∫ 0 0I −=where = second moment of the area A, about the line 0-0

0 0sinM Iγ α −∴ =

By the way,

pM F l= ⋅

unknown

(total force × moment arm)

(a)

(b)

(2.13)
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2.4 Forces on Submerged Plane Surfaces 

Combine (a) and (b)

0 0 sinpFl Iγ α−=

(2.14)

(c)

sincF l Aγ α=Substitue into (c)

0 0sin sinc pl Al Iγ α γ α−=
2

0 0 c c c
p c

c c c

I I l A Il l
l A l A l A

− +
∴ = = = +

→ Center of pressure is always below the centroid by c

c

I
l A

c
p c

c

Il l
l A

− =

cl p cl l−→ as (depth of centroid) increases decreases
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2.4 Forces on Submerged Plane Surfaces 

2
0 0 c cI I l A− = +

• Second moment transfer equation

cI = 2nd moment of the area A about an axis through the centroid,

parallel to 0-0

→ Appendix 3
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2.4 Forces on Submerged Plane Surfaces 

1) Rectangle

If

,A bh= ,
2c
hy =

3

12c
bhI =

( )
2c c
hh a h y a∴ = + − = +

( )
2c
hF h A a bhγ γ  = = + 

 
c

p c
c

Ih h
h A

= +

0;a =
2c
hh =

3

212
2 2 6 3

2

p

bh
h h hh hh bh

= + = + =
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2.4 Forces on Submerged Plane Surfaces 
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2.4 Forces on Submerged Plane Surfaces 

2) Semicircle
4 4,

128 3c
d rI yπ

π
= =

2
c cI I y A= +

2
c cI I y A∴ = −

24 24
128 3 8

d r dπ π
π

  = −   
   

4 41 0.10976
128 18

d rπ
π

 = − = 
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2.4 Forces on Submerged Plane Surfaces 

yc

I

Ic
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2.4 Forces on Submerged Plane Surfaces 

3) Quadrant
4 4,

256 3c
d rI yπ

π
= =

2
c cI I y A= +

24 24
256 3 16

d r dπ π
π

  = −   
   

41
256 36

dπ
π

 = − 
 

40.05488r=
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2.4 Forces on Submerged Plane Surfaces 
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2.4 Forces on Submerged Plane Surfaces 

dA

a. For regular plane

(i) divide whole area into a series of elemental horizontal strips of area

(ii) center of pressure for each strip would be at the midpoint of the strip

(the strip is a rectangle in the limit)

(iii) apply moment theorem about a vertical axis 0-0

sincdF h dA l dA= γ = γ α

sinc cdM x dF x l dA= = γ α
(a)

Integrate (a)

sincA
M dM x l dA= = γ α∫ ∫ (b)

(iii) Lateral location of the center of pressure for asymmetric submerged area
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2.4 Forces on Submerged Plane Surfaces 

axis 0-0
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2.4 Forces on Submerged Plane Surfaces 

By the way, pM x F= (c)

Equate (b) and (c)

sinp cx F x l dA= γ α∫
1 sinp cx x ldA
F

= γ α∫ (2.15)

b. For irregular forms

~ divide into simple areas

~ use methods of statics

[Re] Moment theorem

→ The moment of the resultant force is equal to the sum of the moments

of the individual forces.
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2.4 Forces on Submerged Plane Surfaces 

[IP 2.9] A vertical gate: quarter circle

[Sol]

(i) Magnitude

4 4) (1.8) 0.764;
3 3c quadrant

ry
π π

= = =

0.3 0.764 1.064ch = + =

29,800(1.064) (1.8) 26.53 kN
4quad cF h A π = γ = = 

 



62/102

2.4 Forces on Submerged Plane Surfaces 

xp
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2.4 Forces on Submerged Plane Surfaces 

(ii) Vertical location of resultant force

4

2

0.05488(1.8) 0.213m
(1.064) (1.8)

4
1.064 0.213 1.277 m

c

c quad

p

I
l A

l

π
 

= =      
 

→ = + =

dA

(iii) Lateral location of the center of pressure

Divide quadrant into horizontal strips

Take a moment of the force on about y-axis
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2.4 Forces on Submerged Plane Surfaces 

2 2 2(1.8)x y+ =

dM hdAγ= ⋅ 9800( 0.3)( )
2
xy xdy  = +  

 

2 2 29800 9800( 0.3) ( 0.3)(1.8 )
2 2

y x dy y y dy+ = + −

1.8 2 2

0

9800 ( 0.3)(1.8 ) 18575N m
2

M y y dy∴ = + − = ⋅∫

(moment arm)

By the way, quad pM F x=

318575 / 26.53 10 0.7px m= × = right to the y-axis 
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2.5 Forces on Submerged Curved Surfaces
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2.5 Forces on Submerged Curved Surfaces
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2.5 Forces on Submerged Curved Surfaces

• Resultant pressure forces on curved surfaces are more difficult to deal

with because the incremental pressure forces vary continually in direction.

→ Direct integration

Method of basic mechanics

1) Direct integration

- Represent the curved shape functionally and integrate to find

horizontal and vertical components of the resulting force

i) Horizontal component

H HF dF hbdz= = γ∫ ∫
where b = the width of the surface; dz = the vertical projection of the

surface element dL
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2.5 Forces on Submerged Curved Surfaces

where zp = the vertical distance from the moment center to FH

location of FH : take moments of dF about convenient point, e.g., point C

p H Hz F z dF z hbdz= = γ∫ ∫

ⅱ) Vertical component

V VF dF hbdx= = γ∫ ∫

where dx = the horizontal projection of the surface element dL
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2.5 Forces on Submerged Curved Surfaces

location of FV: take moments of dF about convenient point, e.g., point C

p V Vx F x dF x hbdx= = γ∫ ∫
where xp = the horizontal distance from the moment center to FV

2) Method of basic mechanics

- Use the basic mechanics concept of a free body and the equilibrium of a

fluid mass

- Choose a convenient volume of fluid in a way that one of the fluid 

element boundaries coincide with the curved surface under consideration

- Isolate the fluid mass and show all the forces acting on the mass to keep 

it in equilibrium



70/102

2.5 Forces on Submerged Curved Surfaces

• Static equilibrium of free body ABC
' 0x BC HF F F∑ = − = '

H BC c BCF F h Aγ∴ = =

' 0z V ABC ACF F W F∑ = − − = '
V AC ABCF F W∴ = +

AC c AC AC ACDEF h A HA W= γ = γ =

ABCW = ABC

'
VF∴ = ABDE

weight of free body 

weight of 

• Location

From the inability of the free body of fluid to support shear stress,

'H
F BCF

'V
F ABCW ACF

→ must be colinear with

→ must be colinear with the resultant of and .
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2.5 Forces on Submerged Curved Surfaces

3330,000 tone 330,000 10 kgW = = ×

310 10γ = × AB

[IP 2.10] p. 59

Oil tanker

Calculate magnitude, direction, and location of resultant force/meter

exerted by seawater ( N/m3) on the curved surface (quarter

cylinder) at the corner.

ABC[Sol] Consider a free body 
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2.5 Forces on Submerged Curved Surfaces
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2.5 Forces on Submerged Curved Surfaces
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2.5 Forces on Submerged Curved Surfaces

(i) Horizontal Comp.

m below line OA

m above line BC

' 4 1.510 22.5 (1.5 1) 348.8
2H AC cF F h A  = = γ = × + × × = 

 
31 (1.5)

1223.25 23.25 0.0081 23.258
23.25 1.5

c
p c

c

Il l
l A

×

= + = + = + =
×

23.258 22.5 0.758pz∴ = − =

24 23.258 0.742= − =

kN/m

m
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2.5 Forces on Submerged Curved Surfaces

(ii) Vertical Comp.
' 0z BC V ABCF F F W∑ = − − =

' .V BC ABC cF F W h A Vol∴ = − = γ − γ

4 4 2110 24 (1.5 1) 10 1.5 1.5 (1.5) 1 355.2 /
4

kN mπ = × × × − × − × = 
 

ABC OB

• To find the location of Fv’, we should first find center of gravity of

using statics

Take a moment of area about line

24(1.5) 1 1.5(1.5) 0.483 2.25
3 4 2cxπ
π

× + × = ×

cx = 1.1646 m 
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2.5 Forces on Submerged Curved Surfaces

[Cf] From App. 3, for segment of square

2 2 1.5 1.165
3 4 3 4c

rx m
π π

= = =
− −

'
VF

O

Now, find location of force

Take a moment of force about point

m right of 

' 0.75 1.1646V p BC ABCF x F W× = × − ×

355.2 360 0.75 4.83 1.1646px× = × − ×

0.744px∴ = OB
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2.5 Forces on Submerged Curved Surfaces

F

[Summary]

i) Magnitude of Resultant force

kN/m2 2(348.8) (355.2) 497.8F = + =

θii) Direction 

1 1 355.2tan tan 45.5
348.8

V

H

F
F

θ − −   = = =   
  



BC B

iii) Location

Force acting through a point 0.742 m above line and 0.744 m right of
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2.5 Forces on Submerged Curved Surfaces

→ F act through point O.

1
1

0.744tan 44.47
0.758

α −  = = 
 



1
2

348.8tan 44.47
355.2

α −  = = 
 



1 2α α=

• Pressure acting on the cylindrical or spherical surface

- The pressure forces are all normal to the surface.

- For a circular arc, all the lines of action would pass through the center

of the arc.

→ Hence, the resultant would also pass through the center.
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2.5 Forces on Submerged Curved Surfaces
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2.5 Forces on Submerged Curved Surfaces

• Tainter gate (Radial gate) for dam spillway

All hydrostatic pressures are radial, passing through the trunnion bearing.

→ only pin friction should be overcome to open the gate

pin friction (radial gate) < roller friction (lift gate)
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2.5 Forces on Submerged Curved Surfaces

Trunnion pin
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2.6 Buoyancy and Floatation

• Archimedes' principle

I. A body immersed in a fluid is buoyed up by a force equal to the weight of 

fluid displaced.

II. A floating body displaces its own weight of the liquid in which it floats. 

→ Calculation of draft of surface vessels, lift of airships and balloons

(i) Immersed body

1F ′
Isolate a free body of fluid with vertical sides tangent to the body 

→ = vertical force exerted by the lower surface (ADC) on the surrounding  

fluid
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2.6 Buoyancy and Floatation
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2.6 Buoyancy and Floatation

= vertical force exerted by the upper surface (ABC) on the surrounding 

fluid

= buoyancy of fluid; act vertically upward.

For upper portion of free body

2F ′

1 2 BF F F′ ′− =

BF

'
2 2 2 0zF F W P A∑ = − − = (a)

(b)
For lower portion

'
1 1 1 0zF F W P A∑ = − + =
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2.6 Buoyancy and Floatation

Combine (a) and (b)

' '
1 2 1 2 1 2( ) ( )BF F F P P A W W= − = − − +

1 2( )P P A hA− = γ =

1 2W W+ =

1 2 1 2( ) ( )P P A W W∴ − − + =

hγ

weight of free body

weight of dashed portion of fluid

weight of a volume of fluid equal to that of the body

ABCD

B fluidF∴ = γ (volume of submerged object) (2.16)
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2.6 Buoyancy and Floatation

(ii) Floating body

For floating object

B fF = γ ABCD(volume displaced,  ) B fF ABCD= γ

ABCDE s ABCDEW V= γ
sW ABCDE= γ

sγwhere = specific weight of body

From static equilibrium: B ABCDEF W=

f ABCD s ABCDEV Vγ = γ

s
ABCD ABCDE

f

V Vγ
∴ =

γ
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2.6 Buoyancy and Floatation

E
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2.6 Buoyancy and Floatation

[Ex] Iceberg in the sea

Ice s.g.= 0.9

Sea water s.g.= 1.03

0.9(9800) 0.97
1.03(9800)sub total totalV V V= =

• Stability of submerged or floating bodies

→ stable, righting moment

→ unstable, overturning moment

= center of gravity

1G M<

2G M>

1 2,G G

M = metacenter
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2.6 Buoyancy and Floatation



90/102

2.7 Fluid Masses Subjected to Acceleration

• Fluid masses can be subjected to various types of acceleration without

the occurrence of relative motion between fluid particles or between fluid

particles and boundaries.

→ laws of fluid statics modified to allow for the effects of acceleration

• A whole tank containing fluid system is accelerated.

• Newton's 2nd law of motion (Sec. 2.1)

F Ma∑ = (2.17)
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2.7 Fluid Masses Subjected to Acceleration

2 2x
p dx p dx pF p dz p dz dxdz
x x x
∂ ∂ ∂     ∑ = − − + = −     ∂ ∂ ∂     

(2.18a)

First, consider force

z
pF dxdz
z
∂ ∑ = − − γ ∂ 

(2.18b)

Then, consider acceleration mass

: x
px dxdz dxdz a
x g

 ∂ γ − =   ∂   

: z
pz dxdz dxdz a
z g

 ∂ γ − − γ =   ∂   
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where  mass = . 1vol dxdz
g

ρ γ
= ×

x
p a
x g
∂ γ

= −
∂

( )z
p g a
z g
∂ γ

= − +
∂

(2.19)

(2.20)

→ pressure variation through an accelerated mass of fluid
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2.7 Fluid Masses Subjected to Acceleration

[Cf] For fluid at rest,

0p
x
∂

=
∂
p
z

γ∂
= −

∂

dp• Chain rule for the total differential for (App. 5)

p pdp dx dz
x z
∂ ∂

= +
∂ ∂

(a)

Combine (2.19) , (2.20), and (a)

( )x zdp a dx g a dz
g g
γ γ

= − − + (2.21)
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0dp =• Line of constant pressure

( ) 0x za dx g a dz
g g
γ γ

− − + =

x

x

dz a
dx g a

 
∴ = − + 

(2.22)

→ slope of a line of constant pressure
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2.7 Fluid Masses Subjected to Acceleration

1) No horizontal acceleration: 0xa =

0p
x
∂

=
∂

zdp g a
dz g

 +
∴ = −γ 

 

za g= −• For free falling fluid, 

0dp
dz

=

dh
2) Constant linear acceleration

Divide (2.21) by

x zdp a dx g a dz
dh g dh g dh

 +
= −γ + 

 
(a)
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2.7 Fluid Masses Subjected to Acceleration

Use similar triangles

'
xdx a

dh g
=

'
zdz a g

dh g
+

=

1/2' 2 2( )x zg a a g = + + 

(b.2)

(b.1)

Substitute (b) into (a)
'dp g

dh g
= −γ

→ pressure variation along h is linear.
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[IP 2.13] p. 70

An open tank of water is accelerated vertically upward at 4.5 m/s2.

Calculate the pressure at a depth of 1.5 m.

[Sol]
3 39.81 4.5( 9,800 N/m ) 14,300 N/m

9.81
zdp g a

dz g
 + + = −γ = − = −  

  

14,300dp dz= −

integrate
1.5

0 0
14,300

p
dp dz

−
= −∫ ∫

1.5 2
014,300[ ] 14,300( 1.5 0) 21,450 N/m 21.45 kPap z −= − = − − = =
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0za =

9800(1.5) 14.7 kPap h= γ = =

[Cf] For 
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2.7 Fluid Masses Subjected to Acceleration

Homework Assignment # 2

Due:  1 week from today

Prob. 2.4

Prob. 2.6

Prob. 2.11

Prob. 2.26

Prob. 2.31

Prob. 2.39

Prob. 2.52

Prob. 2.59

Prob. 2.63

Prob. 2.76

Prob. 2.91

Prob. 2.98

Prob. 2.129
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