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g
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2.7 Fluid Masses Subjected to Acceleration
Objectives

- Study hydrostatic pressure relationship

- Study forces on surfaces by hydrostatic pressure

- Study buoyant forces




/102

2.1 Pressure-Density-Height Relationship
EEEEEES— _ _ _ —————————— .

Fluid statics

~ study of fluid problems in which there is no relative motion between

fluid elements
— no velocity gradients

— No shear stress

— only normal pressure forces are present
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2.1 Pressure-Density-Height Relationship

At center;
P, r
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2.1 Pressure-Density-Height Relationship
EEEEEES— _ _ _ —————————— .

« Static equilibrium of a typical differential element of fluid

- vertical axis = Z - axis = direction parallel to the gravitational force field

- Newton's first law _ _
F = external force:

Z F=0 pressure, shear, gravity
>F =0 YF =p,dz—p,dz=0 (2.1)
¥

Assume unit thickness

in y direction; =1

>F =0: X pgdx—py,dx—dwW =0 (2.2)

inwhich p=T(X,2)
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2.1 Pressure-Density-Height Relationship
EEEES—S—S—_—————————————.—. .

/ Z_p = variation of pressure
X

0, = _@d_x 0. = +8_p% with direction (1)
OX 2 oX 2

. opdz , _, . opdz (2)
Pe=pP——— Po=P¥% %

dW = pgdxdz = ydxdz (3)

Substituting (1) and (3) into (2.1) yields

——=0 (A)
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2.1 Pressure-Density-Height Relationship
EEEEEES— _ _ _ —————————— .

Substituting (2) and (3) into (2.2) yields
dF :(p—@%jdx—(p+8—pd?)dx— dxdz = ap dzdx —ydxdz =0

0
_p \_p =—y =-pP9 (partial derivative — total derivative because of (A))

P_o(p=
aX_O(..p fn(z only))

_6p_o
M OX

~ no variation of pressure with horizontal distance

~ pressure is constant in a horizontal plane in a static fluid
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2.1 Pressure-Density-Height Relationship

bh=DP,=DP;

A

.P

Rt

:,_;'"'_.-"‘v—“"" -""'._._..—:-ﬂ""j:___""::___,. ——— ,;,,.
...---,:.-—-—' W:_..v:,__.-:t-'-'—
—-*:':_‘__,,."—-_.';‘—-""5",-# =

=
————

'PA=PB=PC‘=‘DD:Pf;'=PF=PG=PHlm+IOgh
PniP(
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2.1 Pressure-Density-Height Relationship

Fi=PA,
'
B
O3 50 4
of hydrauliclift
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2.1 Pressure-Density-Height Relationship
EEEEEES— _ _ _ —————————— .

d
(2) —S=—7 minus sign indicates that as Z gets larger, the pressure gets

smaller)

— —dz =

J,

Integrate over depth

t,-2)=-[ =" @4

dp
y
dp 2.3
jy (2.3)

Py
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2.1 Pressure-Density-Height Relationship
EEEEEES— _ _ _ —————————— .

For fluid of constant density (incompressible fluid; 7 const.)

22—21=h= P — P,
Y
P - P, =y(z,-7)=yh

Sop=p,+yh (2.5)

~ increase of pressure with depth in a fluid of constant density

— linear increase

~ expressed as a head h of fluid of specific weight ¥

~ heads in millimeters of mercury, meters of water; ap_ h (m)
Y
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2.1 Pressure-Density-Height Relationship
EEEEEES— _ _ _ —————————— .

[Cf] For compressible fluid, y = fn(z or p)

[Re] External forces no contact

1) body force - forces acting on the fluid element
- gravity force, centrifugal force, Corioli's force (due to

Earth’s rotation)

2) surface force - forces transmitted from the surrounding fluid and

acting at right angles against sides of the fluid element

- pressure, shear force
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2.1 Pressure-Density-Height Relationship
EEEEEES— _ _ _ —————————— .

» Manometer or Piezometer

h = height of a column of any fluid

p (KN/m?)

9.81 kN/m*
N

h (m of H,0) = ~0.102x p(kN/m?)

T

* For a static fluid

Py _ P

L +7, ="2+7,=const. (2.6)
/4 Y
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2.1 Pressure-Density-Height Relationship

Open

P W
? _______ - |

Gage shows pressure, p
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2.1 Pressure-Density-Height Relationship

o, =y —-z)
I P, =y(H-2z,)
i . _pB:yH

1’.




16/102

2.1 Pressure-Density-Height Relationship
EEEEEES— _ _ _ —————————— .

* For a fluid of variable density (compressible fluid)

~ need to know a relationship between P and y

~ oceanography, meteorology

[IP 2.1] The liquid oxygen (LOX) tank of space shuttle booster is filled to
a depth of 10 m with LOX at -196°C. The absolute pressure in the vapor

above the liquid surface is 101.3 kPa. Calculate absolute pressure at the

inlet valve.
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2.1 Pressure-Density-Height Relationship
EEEEEES— _ _ _ —————————— .

[Sol]

From App. 2 (Table A2.1)
p of LOX at-196°C = 1,206 kg/m3
P2 = Pam + 71oxD
P,=101.3 kPa+ (1,206 kg/m3) (9.81 m/s?) (10 m)
= 101.3 kPa+ 118,308 kg-m/s?/m?
=101.3 kPa+ 118,308 kPa
= 219.6 kPa absolute
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2.1 Pressure-Density-Height Relationship
EEEEEES— _ _ _ —————————— .

Patm i

LOX




19/102

2.2 Absolute and Gage Pressure
I EEEE————————— e

1) absolute pressure = [atmospheric pressure + gage pressure forp >p_,..

atmospheric pressure - vacuum for p <p_,..

2) relative (gage) pressure - P, =0
Bourdon pressure gage ~ measure gage pressure = open U-tube
manometer
Aneroid pressure gage ~ measure absolute pressure = mercury

barometer

- gage pressure is normally substituted by "pressure”
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2 Absolute and Gage Pressure

2

datu
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2.2 Absolute and Gage Pressure
I EEEE————————— e

* Mercury barometer (Fig. 2.5)
~ invented by Torricelli (1643) - measure absolute pressure/local
atmospheric pressure
~ filling tube with air-free mercury

~ inverting it with its open end beneath the mercury surface in the receptacle

[IP 2.4] A Bourdon gage registers a vacuum of 310 mm of mercury;

¥

Gage
pressure

P.., =100 kPa, absolute.

Find absolute pressure.
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2.2 Absolute and Gage Pressure
I EEEE————————— e

[Sol] absolute pressure = 100 kPa —310 mmHg

~100 kPa —310(101'3 kpaj _58.7 kPa
[Re] App. 1
760 mmHg = 101.3 kPa=1,013 mb - 1 mmHg = 101,300/ 760
=133.3 Pa

1 bar =100 kPa =103 mb
760 mmHg = 760%10-3 mx13.6x9,800 N/m3 = 101.3 kN/m?
= 101,300 N/m? /9,800 N/m3=10.3 m of H,O
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2.3 Manometry

é

~ more precise than Bourdon gage (mechanical gage)

(i) U-tube manometer
~ Qver horizontal planes within continuous columns of the same fluid,

pressures are equal.

2

— P =P,
P = p% Py — 0
p,=0+yh

P,=P,, P +yI=0+yh
px:ylh_j/l
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2.3 Manometry
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2.3 Manometry
EEEEEES— ——— — — ———————————. ..

(ii) Differential manometer
~ measure difference between two unknown pressures
Ps = Ps
P, =P +7k Ps =P, +7,l,+75h
Py +7h =P, +7,l, + 75h
L= Py =Yl =yl

If n=7,=7, and X and y are horizontal

px_py:73h+7w(|2_lj)/ h

=y +7,(=h) = (7, — 7.,)h

head: P Py :£73 —1jh

Yw
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2.3 Manometry

é
(i) Inclined gages

~ measure the comparatively small pressure in low-velocity gas flows

p, =yh=ylsing
reading of | > reading of h - accurate

(iv) Open-end manometer

Po = Ps = Pc
Pp = Pa —7al
pC = patm+7/My

pA: patm+7/My+?/AZ
head: pA:patm+7/My+Z

Yo Va VA
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2.3 Manometry

26N | aiv-relief

velve
.
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2.3 Manometry

(v) Measure vacuum

P, =P,
PL=Pat+7Val+ruy
p2:patm

PaT7VaZtVuY = Pam
Pa= Pam = VAl =7y

Py < Pan —> Vacuum
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2.3 Manometry
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2.3 Manometry
—

(vi) Differential manometer
P.=D;
Pr=Pa =724
P, =P = 7Zg+7mY
S PaAT V=P VgtV Y
Pa—Pe=7(Za—Zg) +7mY
==yY+rmyY=0m-7)Y
M:V_M_ljy
/4 /4

iF 7 =7, o P

— (S'g'M _1)y

Y w
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2.3 Manometry
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3 Manometry

2
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2.3 Manometry
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2.3 Manometry
EEEEEES— ——— — — ———————————. ..

For measuring large pressure difference,
- use heavy measuring liquid, such as mercury s.g.=13.55 - makes y small
For a small pressure difference, s.9.<1

— use a light fluid such as oil, or even air

* Practical considerations for manometry
@® Temperature effects on densities of manometer liquids should be

appreciated.
@ Errors due to capillarity may frequently be canceled by selecting

manometer tubes of uniform sizes.
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2.3 Manometry
—

[IP 2.5] The vertical pipeline shown contains oil of specific gravity 0.90.
Find px

[Sol]

pl = pr ﬁ Ve =S8.0.X7,

P =P, +(o.90><9.8><103)><3ﬁ Pan =0

D =(13.57x9.8x10%) x 0.375

- p, =23.4kPa (kN/m2)




2.3 Manometry

i

Yo —

)

il (0.90)

3am

375 mm

nl
i F

Mercury
(13.57

P,

36/102
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2.4 Forces on Submerged Plane Surfaces
_— &

 Calculation of magnitude, direction, and location of the total forces on
surfaces submerged in a liquid is essential.

— design of dams, bulkheads, gates, tanks, ships

* Pressure variation for non-horizontal planes

P _
0z

S p=yh (2.7)

7

— The pressure varies linearly with depth.
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2.4 Forces on Submerged Plane Surfaces

 pressure prism

2 L : F

\P_:::Thz \

Pressure prism

Center of pressure
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2.4 Forces on Submerged Plane Surfaces

Spillway

foprey (H24%)
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2.4 Forces on Submerged Plane Surfaces
_— &

Arch dam

| o
i # e iy ;
T = ety
i
i e
’ TR
A
S
% ;
A
- :—I-
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2.4 Forces on Submerged Plane Surfaces

2ezd o= (E2lE ol E)
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2.4 Forces on Submerged Plane Surfaces
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2.4 Forces on Submerged Plane Surfaces
_— &
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2.4 Forces on Submerged Plane Surfaces
_— &

ML AT S
ﬂ L | i} ——s
A J; -ri,,,
= = |

O 4,58 #ulx
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2.4 Forces on Submerged Plane Surfaces
_— &

Fishway
Movable Fixed weir
weir with ith no qate
gate W 9

EHa+8E (2 Fadm)
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2.4 Forces on Submerged Plane Surfaces
_— &

* Pressure on the inclined plane

- Centroid of area A ~ at a depth h,

~ at a distance IC from the line of intersection 0-0

(i) Magnitude of total force

First, consider differential force dF
dF = pdA=yhdA (2.8)
h=Isina (2.9)
— dF =ylsinadA (2.10)
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2.4 Forces on Submerged Plane Surfaces

Center of
resultant force
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2.4 Forces on Submerged Plane Surfaces
_— &

Then, integrate dF over area A

A ] A
F=["dF =ysina[ 1dA (2.11)

A
in which J- IdA = 1st moment of the area A about the line 0-0

= Al

in which I = perpendicular distance from 0-0 to the centroid of area

- F=yAl sina

Substitute h, =1 sine

(pressure at centroid) x (area of plane)

F = yh A (2.12)
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2.4 Forces on Submerged Plane Surfaces
_— &

dF = ylsinadA

(i) Location of total force

Consider moment offorce about the line 0-0

dM =dF - I = yI°dAsina

M =jAd|v| =ysinajA|2dA (2.13)

where jAlsz = second moment of the area A, about the line 0-0 =1,

M =ysinal,_, (a)

unknown
By the way, /

M =F-l  (total force x moment arm) (b)
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2.4 Forces on Submerged Plane Surfaces
_— &

Combine (a) and (b)

FI, =yl SIna (c)

Substitue F =yl_sinaA into (c)
yI.sinaAl =yl sina

 Ldeo _LtBA
PTIAT LA LA (2.14)

C C

C

— Center of pressure is always below the centroid by A
I C
Ip —| ==

° 1A

—~as | (depth of centroid) increases |, -1, decreases
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2.4 Forces on Submerged Plane Surfaces
_— &

» Second moment transfer equation

_ 2
l,,=1.+17A

|, = 2nd moment of the area A about an axis through the centroid,

parallel to 0-0

- Appendix 3
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2.4 Forces on Submerged Plane Surfaces

g

1) Rectangle

h bh?
A=bh, y =—, | =L
e T T

hC:a+(h—yC):a+g

F=yh A= y(a+gj(bh)
I

h,=h, + C‘A
If a=0; hC:D
2
b
hpzn+#_zzh+hzgh
2 Ebh 2 6 3
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2.4 Forces on Submerged Plane Surfaces
_— &

W
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2.4 Forces on Submerged Plane Surfaces
_— &

2) Semicircle
zd* 4y
I = . yC = —
128 37
| =1+ yCZA

So=1-y2A

B d* _(ﬁjz 7d?
128 \ 3« 8

=( r 1 jd4=0.10976r4

128 187
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2.4 Forces on Submerged Plane Surfaces
_— &
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2.4 Forces on Submerged Plane Surfaces
#
3) Quadrant

md* ar
I = . yC = —
256 3

| =1+Yy2A

~d* _(4r jz 7rd?
256 3 16

(s
256 36rx

=0.05488r*
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2.4 Forces on Submerged Plane Surfaces

i ¥
bi2 : R T
I}
; i A C R l C, i

L/ [F- |
£ a ¥
bi2 R /_/
ad oy [ ] — ..!
al2 al2
A=ab, I, o=ab¥12 A=nR% I, ~=7RY4 A=mab, 1, o= mab%4
{a) Rectangle () Circle {¢) Ellipse
¥
¥ ¥
1
C b C
f' § ‘\_I:‘ X bl \li‘r"’
II
—k— 4r % 4l
3 3w
al2 al2
A=abl2, 1 o= ab¥36 A=aRY2, I, .=0.109757R* A=mabl2, 1, o=0.109757ab’

(d) Triangle (¢} Semicircle () Semiellipse
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2.4 Forces on Submerged Plane Surfaces
_— &

(iii) Lateral location of the center of pressure for asymmetric submerged area

a. For regular plane
(i) divide whole area into a series of elemental horizontal strips of area dA

(ii) center of pressure for each strip would be at the midpoint of the strip

(the strip is a rectangle in the limit)

(iii) apply moment theorem about a vertical axis 0-0
dF =vh,dA=vylsinadA (a)
dM = x_dF = x_ylsinodA

Integrate (a)

M =] dM = [xylsinadA (b)
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2.4 Forces on Submerged Plane Surfaces

axis 0-0

Moment axis
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2.4 Forces on Submerged Plane Surfaces
_— &

By the way, M =x F (c)

Equate (b) and (c)
X, F = J'xcylsin adA

X, =%ysina_[xcldA (2.15)

b. For irregular forms

~ divide into simple areas

~ use methods of statics
[Re] Moment theorem

— The moment of the resultant force is equal to the sum of the moments

of the individual forces.
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2.4 Forces on Submerged Plane Surfaces
_— &

[IP 2.9] A vertical gate: quarter circle

[Sol]
(i) Magnitude

_Ar
yc)quadrant _ 1

= 4 (1.8) =0.764,
3z

h =0.3+0.764 =1.064

T
Foaa =Y. A=9,800(1.064) (Z (1.8)2j =26.53 kN
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2.4 Forces on Submerged Plane Surfaces

Moment axis
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2.4 Forces on Submerged Plane Surfaces
_— &

(ii) Vertical location of resultant force

[ch _0.05488(1.8)* _ 0213
auad (1.064)(%(1.8)2)

—1,=1.064+0.213=1.277m

c

(iii) Lateral location of the center of pressure

Divide quadrant into horizontal strips

Take a moment of the force on dA about y-axis
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2.4 Forces on Submerged Plane Surfaces
_— &

dM = yhdA- (moment arm) =9800(y + 0.3)(xdy) (gj

X +y*=(1.8)°
98200 (y +0.3)x%dy = @(y +0.3)(1.8° — y*)dy

M = 01'8&200(y+0.3)(1.82 _ y?)dy =18575N-m

By theway, M =F_ ., X,

x, =18575/26.53x10° =0.7m right to the y-axis
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2.5 Forces on Submerged Curved Surfaces

dF = yhb dL
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2.5 Forces on Submerged Curved Surfaces

I

Horizontal projection
/ of the curved surface

Vertical projection
of the curved surface

Free-body diagram
of the cnclosed
liquid block
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2.5 Forces on Submerged Curved Surfaces
———————————————————————————————————————————————————
» Resultant pressure forces on curved surfaces are more difficult to deal
with because the incremental pressure forces vary continually in direction.
- [Direct integration
Method of basic mechanics
1) Direct integration
- Represent the curved shape functionally and integrate to find
horizontal and vertical components of the resulting force
i) Horizontal component

Fy = [dF, = [yhbdz

where b = the width of the surface; dz = the vertical projection of the

surface element dL
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2.5 Forces on Submerged Curved Surfaces
_— &

location of F,: take moments of dF about convenient point, e.g., point C

z F, =_[zdFH =j2yhbdz
where z, = the vertical distance from the moment center to F,

ii) Vertical component

R, = [dF, = [yhbdx

where dx = the horizontal projection of the surface element dL
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2.5 Forces on Submerged Curved Surfaces
_— &

location of F,,: take moments of dF about convenient point, e.g., point C
X, F, :deFV :Ithbdx
where x, = the horizontal distance from the moment center to F,,

2) Method of basic mechanics

- Use the basic mechanics concept of a free body and the equilibrium of a
fluid mass

- Choose a convenient volume of fluid in a way that one of the fluid
element boundaries coincide with the curved surface under consideration

- Isolate the fluid mass and show all the forces acting on the mass to keep

it in equilibrium
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2.5 Forces on Submerged Curved Surfaces
_— &

- Static equilibrium of free body ABC
>F =F.-F,=0 - F, =F. =yh A
SF,=F, W, —F,. =0 K =F +W,
Frc =Y Ay = YHA . =Wcpe
W,zc =weight of free body ABC
~.F, = weight of ABDE

* Location

From the inability of the free body of fluid to support shear stress,

- F,. must be colinear with F,.

— F,. must be colinear with the resultant of W, and F,..
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2.5 Forces on Submerged Curved Surfaces
_— &

[IP 2.10] p. 59

Oil tanker W =330,000 tone =330,000x10°kg

Calculate magnitude, direction, and location of resultant force/meter
exerted by seawater ( y =10x10°N/m?3) on the curved surface AB (quarter

cylinder) at the corner.

[Sol] Consider a free body ABC
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2.5 Forces on Submerged Curved Surfaces
_— &

Y

e 52 m




73/102

2.5 Forces on Submerged Curved Surfaces




74/102

2.5 Forces on Submerged Curved Surfaces
_— &

(i) Horizontal Comp.

F, =F,. =yh A=10" x(ZZ.S—I—%)x (1.5x1) =348.8 kN/m
1x(1.5)°

| =1+ —23254+— 12 _2325.0.0081=23.258m

: LA 23.25x1.5

.2, =23.238—-22.5=0.758 m below line OA

=24 —-23.258=0.742 m above line BC
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2.5 Forces on Submerged Curved Surfaces

é
(ii) Vertical Comp.

LF =Fy - |:\/I ~Woge =0
R, =Fy —W,5. = vh.,A—yVol.

=10*x24x(1.5x1) -10" (1.5><1.5—%7z(1.5)2j x1=355.2kN /m

* To find the location of F,’ we should first find center of gravity of
ABC using statics OB

Take a moment of area about line

4(1.5) in(us) +x x0.483= 22&%

3

X, =1.1646 m
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2.5 Forces on Submerged Curved Surfaces
_— &

[Cf] From App. 3, for segment of square

X g#:&i_llGS

“ 34-7 34_g

Now, find location of force F,

Take a moment of force about point O
K, X X, = Foe x0.75-W ;. x1.1646

392.2x X, =360x0.75-4.83x1.1646

. X, =0.744 mright of OB
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2.5 Forces on Submerged Curved Surfaces
—
[Summary]

i) Magnitude of Resultant force F

F =/(348.8)% + (355.2)? =497.8 kN/m

ii) Direction @

0 =tan™ i3 :tanl(—355'2j=455
F. 348.8

iii) Location

Force acting through a point 0.742 m above line BC and 0.744 m right of B
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2.5 Forces on Submerged Curved Surfaces
_— &

a, =tan™ (%j =44 47"
0.758

o, =tan™ (@j = 44 AT°
355.2

o, = a, — F act through point O.

 Pressure acting on the cylindrical or spherical surface
- The pressure forces are all normal to the surface.
- For a circular arc, all the lines of action would pass through the center

of the arc.

— Hence, the resultant would also pass through the center.
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2.5 Forces on Submerged Curved Surfaces

5
T
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2.5 Forces on Submerged Curved Surfaces
_— &

 Tainter gate (Radial gate) for dam spillway
All hydrostatic pressures are radial, passing through the trunnion bearing.

— only pin friction should be overcome to open the gate

pin friction (radial gate) < roller friction (lift gate)
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2.5 Forces on Submerged Curved Surfaces

o) 54 7157 Aoldd
g A4 ,
aw-ﬁ:%ﬂﬁ:ﬁﬁ g !.F_;ﬁ E %::p
S : IR
G, : e ' Trunnion pin
— T—‘——._._‘_‘_‘_‘_:T -
Ay g — o
] i)
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2.6 Buoyancy and Floatation
I ————————————————————,

« Archimedes' principle

|. A body immersed in a fluid is buoyed up by a force equal to the weight of
fluid displaced.

I1. A floating body displaces its own weight of the liquid in which it floats.

— Calculation of draft of surface vessels, lift of airships and balloons

(i) Immersed body

Isolate a free body of fluid with vertical sides tangent to the body

- F' = vertical force exerted by the lower surface (ADC) on the surrounding
fluid
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2.6 Buoyancy and Floatation
I ————————————————————,
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2.6 Buoyancy and Floatation
I ————————————————————,

F2' = vertical force exerted by the upper surface (ABC) on the surrounding
fluid

Fl’ - F2’ =Fg

., = buoyancy of fluid; act vertically upward.

For upper portion of free body

>F =F,-W,-P,A=0 (a)

For lower portion

>F, =F -W,+PA=0 (b)




2.6 Buoyancy and Floatation

Combine (a) and (b)

/=

Fo=F —F,=(R-P)A-(W,+W,)

(R, — P,)A=yhA = weight of free body

W, +W, = weight of dashed portion of fluid

86/102

- (R —PR,)A- (W, +W,) = weight of a volume of fluid equal to that of the body

ABCD

S Fs =Yqua (volume of submerged object)

(2.16)
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2.6 Buoyancy and Floatation
I ————————————————————,

(ii) Floating body

For floating object

F; =v; (volume displaced, ABCD) F, =v,ABCD
Wagcoe = YV ascoe W =y ABCDE
where Vs = specific weight of body

From static equilibrium: F, =W

Y +Vageo = VsV ascoe

ABCDE

Vs
VABCD — _VABCDE
V&
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2.6 Buoyancy and Floatation
I ————————————————————,

—_—

5: x .::;E._'.:.: ..:. ": ._ ;w

e c.g.of hﬂd

i B

— — — i BAEN
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2.6 Buoyancy and Floatation

é

[EX] Iceberg in the sea
lce s.g.= 0.9
Sea water s.g.= 1.03

~0.9(9800)

sub total — 097\/
1.03(9800)

total

« Stability of submerged or floating bodies

G, <M - stable, righting moment

G, > M - unstable, overturning moment

G,,G, = center of gravity

M = metacenter
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2.6 Buoyancy and Floatation
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2.7 Fluid Masses Subjected to Acceleration
EEEE——————————

* Fluid masses can be subjected to various types of acceleration without

the occurrence of relative motion between fluid particles or between fluid

particles and boundaries.

— laws of fluid statics modified to allow for the effects of acceleration

« A whole tank containing fluid system is accelerated.

* Newton's 2nd law of motion (Sec. 2.1)

> F =Ma (2.17)
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2.7 Fluid Masses Subjected to Acceleration

Z 4
(VA
|
dx
Eﬂ=(‘%)dxdz——**T dz —> 4
(9P
3F,=(- L) de dx
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2.7 Fluid Masses Subjected to Acceleration

é

First, consider force

mass

Then, consider acceleration

X: (—a—pj dxdz = (ldxdzjaX
9

Z: (_a_p — yj dxdz = (ldxdzjaZ

OX

0z g
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2.7 Fluid Masses Subjected to Acceleration
EEEE——————————

where mass = ,ovol.=ldxdz x1

g
%)
a_zz_éax (219)
5_P:_l(g+az) (2.20)
0z g

— pressure variation through an accelerated mass of fluid
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2.7 Fluid Masses Subjected to Acceleration
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2.7 Fluid Masses Subjected to Acceleration
EEEE——————————

[Cf] For fluid at rest,
P_y
OX
P _

0Z -7

« Chain rule for the total differential for dp (App. 5)

op op
dp=—dx+—dz
¥ OX +az @)

Combine (2.19) , (2.20), and (a)

dp=—éaxdx—é(9 +a,)dz (2.21)




96/102

2.7 Fluid Masses Subjected to Acceleration
EEEE——————————

* Line of constant pressure dp =0

~Ladx-L(g+a,)dz=0
g g

SR 2.22
dx g+a, (2:22)

— slope of a line of constant pressure
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2.7 Fluid Masses Subjected to Acceleration
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2.7 Fluid Masses Subjected to Acceleration
EEEE——————————

1) No horizontal acceleration: a, =0

P _y
OX

d +a
..._p:_y(g ]
dz g

* For free falling fluid, a, =-g@

9 _
dz

2) Constant linear acceleration
Divide (2.21) by dh

dp (ax dx  g+a, dz] (@)

g dh g dh




2.7 Fluid Masses Subjected to Acceleration o

g

Use similar triangles

dx a,

d_h_E (b.1)
dz _a,+g (b.2)
dh g

g =[a’+(a,+9)*]"

Substitute (b) into (a)

d__ 9
dh g

— pressure variation along h is linear.
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2.7 Fluid Masses Subjected to Acceleration

g

[IP 2.13] p. 70
An open tank of water is accelerated vertically upward at 4.5 m/s2.

Calculate the pressure at a depth of 1.5 m.

[Sol]
dp _ _y[ 94, j — (~9,800 N/m3)(9'81+ 45) — ~14,300 N/m°
dz g 9.81
dp = —14,300dz

integrate

["dp= j@ ~14,300dz
0 0

p =-14,300[z] ,*°=14,300(-1.5-0) = 21,450 N/m?* = 21.45 kPa
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2.7 Fluid Masses Subjected to Acceleration
EEEE——————————

[CflFor a,=0
D = yh = 9800(L.5) =14.7 kPa
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2.7 Fluid Masses Subjected to Acceleration
EEEE——————————

Prob.
Prob.
Prob.
Prob.
Prob.
Prob.
Prob.

2.4

2.6

2.11
2.26
2.31
2.39
2.52

Homework Assignment # 2

Due: 1 week from today

Prob. 2.59
Prob. 2.63
Prob. 2.76
Prob. 2.91
Prob. 2.98
Prob. 2.129
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