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Chapter 5 Flow of an Incompressible Ideal Fluid

Objectives

-Apply Newton’s 2nd law to derive equation of motion, Euler’s equation

-Introduce the Bernoulli and work-energy equations, which permit us to 

predict pressures and velocities in a flow-field

-Derive Bernoulli equation and more general work-energy equation based 

on a control volume analysis
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▪ What is ideal fluid?

- An ideal fluid is a fluid assumed to be inviscid.

- In such a fluid there are no frictional effects between moving fluid

layers or between these layers and boundary walls.

- There is no cause for eddy formation or energy dissipation due to

friction.

- Thus, this motion is analogous to the motion of a solid body on a

frictionless plane.

[Cf] real fluid – viscous fluid

Chapter 5 Flow of an Incompressible Ideal Fluid
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▪ Why we first deal with the flow of ideal fluid instead of real fluid?

- Under the assumption of frictionless motion, equations are

considerably simplified and more easily assimilated by the

beginner in the field.

- These simplified equations allow solution of engineering problems

to accuracy entirely adequate for practical use in many cases.

- The frictionless assumption gives good results in real situations

where the actual effects of friction are small.

[Ex] the lift on a wing

Chapter 5 Flow of an Incompressible Ideal Fluid
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Chapter 5 Flow of an Incompressible Ideal Fluid

▪ Incompressible fluid; 

~ constant density

~ negligibly small changes of pressure and temperature

~ thermodynamic effects are disregarded

0
( , , , )t x y z

ρ∂
=

∂
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5.1 Euler's Equation

g

sindW θ
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5.1 Euler's Equation

Euler (1750) first applied Newton's 2nd law to the motion of fluid particles.

Consider a streamline and select a small cylindrical fluid system

F ma∑ =




(i) ( ) sindF pdA p dp dA dW θ= − + −

dzdp dA gdAds
ds

ρ= − −

dp dA g dAdzρ= − −

dm dAdsρ=(ii) (density × volume)

Pressure force Gravitational force

sin dz
ds

θ =
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5.1 Euler's Equation

(iii) 
dV dV ds dVa V
dt ds dt ds

= = =

( ) dVdpdA gdAdz dsdA V
ds

ρ ρ∴− − =

dAρDividing by gives the one-dimensional Euler's equation

0dp VdV gdz
ρ
+ + =

Divide by g

1 0dp VdV dz
g

+ + =
γ

2

0
2

dp Vd dz
g

 
+ + = γ  

2( ) 2d V V dV=
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5.1 Euler's Equation

For incompressible fluid flow,

2

0
2

p Vd z
g

 
+ + = γ 

→ 1-D Euler's equation (Eq. of motion)
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5.2 Bernoulli's Equation

For incompressible fluid flow, integrating 1-D Euler's equation yields

Bernoulli equation
2

const.
2

p V z H
gγ

+ + = =

where H = total head

(5.1)

Between two points on the streamline, (5.1) gives
2 2

1 1 2 2
1 22 2

p V p Vz z
g gγ γ

+ + = + +

p
γ

= pressure head 
2 2

2 3
kg m/s kg m/s = m

m m
⋅ ⋅

z = potential head (elevation head), m
2

2
V

g = velocity head
2(m s) =m

m s
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5.2 Bernoulli's Equation

manometer

Pitot tube

Henri de Pitot 
(1695~1771)
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5.2 Bernoulli's Equation

Bernoulli Family:
Jacob
Johann - Nikolaus

Daniel
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5.3 Bernoulli Equation for the One-Dimensional flow

,p V z
Bernoulli Eq. is valid for a single streamline or infinitesimal streamtube across

which variation of and is negligible.

This equation can also be applied to large stream tubes such as pipes, canals.

Consider a cross section of large flow through which all streamlines are

precisely straight and parallel.
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5.3 Bernoulli Equation for the One-Dimensional flow

W
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5.3 Bernoulli Equation for the One-Dimensional flow

i) Forces, normal to the streamlines, on the element of fluid are in equilibrium

→ acceleration toward the boundary is zero.

2 1cos ( ) /z z hα = −

0F∑ =


1 2( ) cos 0p p ds hdsγ α− − =

1 2 2 1( ) ( )p p ds z z dsγ∴ − = −

1 2
1 2

p pz z
γ γ
+ = +

pz
γ

 
+ 

 

pz
γ

+

→ the same result as that in Ch. 2

→ quantity is constant over the flow cross section normal to the

streamlines when they are straight and parallel.

→ This is often called a hydrostatic pressure distribution

( = const. for fluid at rest).

(2.6)
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5.3 Bernoulli Equation for the One-Dimensional flow

V

1 2V V=

ii) In ideal fluid flows, distribution of velocity over a cross section of a flow

containing straight and parallel streamlines is uniform because of the

absence of friction.

→ All fluid particles pass a given cross section at the same velocity,

(average velocity)

2 2
1 1 2 2

1 22 2
p V p Vz z

g gγ γ
+ + = + +

Combine (i) and (ii)
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5.3 Bernoulli Equation for the One-Dimensional flow

→ Bernoulli equation can be extended from infinitesimal to the finite

streamtube.

→ Total head is the same for every streamline in the streamtube.

→ Bernoulli equation of single streamline may be extended to apply to 2- and

3-dimensional flows.

H

35Cp = 3 39.8 10 N/mγ = ×

[IP 5.1] p. 129

Water is flowing through a section of cylindrical pipe.

kPa,
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5.3 Bernoulli Equation for the One-Dimensional flow
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5.3 Bernoulli Equation for the One-Dimensional flow

[Sol]

A B C
A B C

p p pz z z
γ γ γ

+ = + = +

3 3 1.2( ) 35 10 (9.8 10 ) cos30 29.9 kPa
2A C C Ap p z zγ  = + − = × − × = 

 


3 3 1.2( ) 35 10 (9.8 10 ) cos30 40.1 kPa
2B C C Bp p z zγ  = + − = × + × = 

 


3

3
35 10 3.57 m
9.8 10

Cp
γ

×
= =

×
C→ The hydraulic grade line is above point .
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5.4 Applications of Bernoulli's Equation

2

const.
2

p V z H
gγ

+ + = =

• Bernoulli's equation

→ where velocity is high, pressure is low.

• Torricelli's theorem (1643)

~ special case of the Bernoulli equation.
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5.4 Applications of Bernoulli's Equation
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5.4 Applications of Bernoulli's Equation

2 2
1 1 2 2

1 22 2
p V p Vz z

g gγ γ
+ + = + +

1 0V ≅ 1 0atmp p= =

2
2 2

1 2 2
V pz z

g γ
= + +

2
2 2

1 2 2
p Vz z h

gγ
− = = +

(for very large reservoir); 

Apply Bernoulli equation to points 1 and 2

(a)
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5.4 Applications of Bernoulli's Equation

Apply Newton's 2nd law in the vertical direction at section 2
F ma∑ =

( )dF p dp dA pdA dAdz dpdA dAdzγ γ= − + + − = − −

dm dAdzρ=

a g= −

( )dAdp dAdz dAdz gγ ρ∴ − − = −

dp dz dzγ γ− − = −
0dp∴ =

→ no pressure gradient across the jet at section 2.

2A B Cp p p p= = =→

0 (gage)A atmp p∴ = = (b)
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5.4 Applications of Bernoulli's Equation

Thus, combining (a) and (b) gives
2

2

2
Vh

g
=

2 2V gh→ =

h~ equal to solid body falling from rest through a height .

[IP 5.2] p.131 Flow in the pipeline for water intake
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5.4 Applications of Bernoulli's Equation
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5.4 Applications of Bernoulli's Equation

1 2 3 4, , ,p p p pFind: and eleveation at point 6

ⓞ ⑤

[Sol]

(i) Bernoulli's Eq. between &
2 2

0 0 5 5
0 52 2

p V p Vz z
g gγ γ

+ + = + +

0 5 00, 0atmp p p V= = = =
2

590 60
2
V

g
→ = +

5 24.3 m/sV =

Calculate Q using Eq. (4.4)
2 324.3 (0.125) 0.3 m /s

4
Q AV π
= = × =
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5.4 Applications of Bernoulli's Equation

(ii) Apply Continuity equation, Eq. (4.5)

Continuity 
equation

(4.5)
2

1 1 5 5 1 5
125
300

AV Q AV V V = = ∴ =  
 

( )
4 422

51 125 125 30 0.9 m
2 300 2 300

VV
g g

   ∴ = = =   
   

1 3 40.9(2 9.8) 4.2 m/sV V V= × = = =

( )
4 422

52 125 125 30 4.58m,
2 200 2 200

VV
g g

   = = =   
   

2 4.58(2 9.8) 9.5 m/sV = × =
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5.4 Applications of Bernoulli's Equation

(iii) B. E. ⓞ & ①
2

1 190 72
2

p V
gγ

= + +

1 18 0.9 17.1 m
w

p
γ

∴ = − =

3
1 17.1(9.8 10 ) 167.5 kPap = × =

of H2O ← head

of H2O ← head

(iv) B. E. ⓞ & ②

2 290 87 4.58 1.58 mp p
γ γ

= + + ∴ = −
3

3
2

15.48 101.58(9.8 10 ) 15.48 kPa 116 mmHg
133.3

p − ×
= − × = − = =

below15.48 kPa atmp→

vacuum
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5.4 Applications of Bernoulli's Equation

[Re] 2 5 21 bar=1000 mb(millibar)=100 kPa=100 kN m =10 N m

5760 mmHg 101.325 kPa(10 pascal) 1013 mb 29.92 in. Hgatmp = = =

21 mmHg 133.3 Pa 133.3 N/m= =

(v) B. E. ⓞ & ③

390 0.9 78p
γ

= + +

3 12 0.9 11.1mp
γ

∴ = − =

3 108.8 kPap =



31/85

5.4 Applications of Bernoulli's Equation

4 31 0.9 30.1mp
γ

= − =

4 295.0p kPa=

6 24.3 cos30 21.0 m/sV =→ = 

221.0. 90 67.5m
2

El
g

∴ = − =

(vi) B. E. ⓞ & ④

(vii) Velocity at the top of the trajectory 

Apply B. E. ⓞ & ⑥

(5.2)

(5.3)



32/85

5.4 Applications of Bernoulli's Equation

Point 0 Point 1 Point 2 Point 3 Point 4

Pressure, kPa 0 167.5 -15.8 108.7 294.9

Velocity, m/s 0 4.22 4.61 4.22 4.22

Elevation, m 90 72 87 78 59
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5.4 Applications of Bernoulli's Equation

▪ Cavitation

As velocity or potential head increase, the pressure within a flowing fluid drops.

~ Pressure does not drop below the absolute zero of pressure. 

3( 10 millibar 100 kPa 0 100 kPa)atm abs gagep p p≈ = ∴ = ⇒ = −

~ Actually, in liquids the absolute pressure can drop only to the vapor pressure

of the liquid. 

vpFor water, 
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5.4 Applications of Bernoulli's Equation

Temperature

10 ℃ 1.23kPa 

15 ℃ 1.70kPa 

20 ℃ 2.34kPa 

vp
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5.4 Applications of Bernoulli's Equation

Bp
[IP 5.3] p.134 Cavitation at the throat of pipe constriction

= 96.5 kPa = barometric pressure.

What diameter of constriction can be expected to produce incipient

cavitation at the throat of the constriction?

Water at 40℃
39.73 k ;N/mγ = 7.38 kPavp =

3 2

3 3

7.38 10 N/m 0.76 m
9.73 10 N/m

vp
γ

×
= =

×
3 2

3 3

96.5 10 N/m 9.92 m
9.73 10 N/m

atmB pp
γ γ

×
= = =

×
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5.4 Applications of Bernoulli's Equation
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5.4 Applications of Bernoulli's Equation

(i) Bernoulli Eq. between ① and ©

Incipient cavitation

22
1 1

1 2 2
c c

c
p Vp Vz z

g gγ γ
+ + = + +

1 10, ,B c vV p p p p≈ = =

2

11 9.92 0 3 0.76
2

cV
g

∴ + + = + +

2

17.16 m 18.35 m s
2

c
c

V V
g
= → =
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5.4 Applications of Bernoulli's Equation

(ii) Bernoulli Eq. between ① and ②

2 2
1 1 2 2

1 22 2
p V p Vz z

g gγ γ
+ + = + +

1 1 20, BV p p p≈ = =

2
211 9.92 0 0 9.92

2
V

g
+ + = + +

2 14.69 m sV =
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5.4 Applications of Bernoulli's Equation

(iii) Continuity between ② and ©

2 2 c cQ A V AV= =

2 2(0.15) (14.69) (18.35)
4 4 cdπ π

=

0.134 m=134 mmcd∴ =

[Cp] For incipient cavitation,

critical gage pressure at point C is

) (9.92 0.76) 9.16 mc atm v
gage

p p p
γ γ γ

 
= − − = − − = − 

 
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5.4 Applications of Bernoulli's Equation

2 2
1 1 1 2 2 2

1 1
2 2

p V z p V zρ γ ρ γ+ + = + +

1p

2
1

1
2

Vρ

zγ

▪Bernoulli Equation in terms of pressure

= static pressure

= dynamic pressure

= potential pressure

▪ Stagnation pressure, Sp

Apply Bernoulli equation between 0 and S
2 2

0 0 0
1 1
2 2S S Sp V z p V zρ γ ρ γ+ + = + +
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5.4 Applications of Bernoulli's Equation
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5.4 Applications of Bernoulli's Equation

0 ; 0S Sz z V= ≈

2
0 0

1 0
2 Sp V pρ+ = +

0
0

2( )Sp pV
ρ
−

=

[IP 5.4] p.136 Pitot-static tube

What is the velocity of the airstream, V0?
3 31.23kg m 9810 N mair Wρ γ= =

1
2

0 0
2 ( )S

a

V p p
ρ
 

= − 
 
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5.4 Applications of Bernoulli's Equation
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5.4 Applications of Bernoulli's Equation

1 2p p=

1 2 00.15 ; 0.15S air wp p g p pρ γ= + = +

0 0.15( ) 0.15(9,810 1.23 9.81) 1,469.7 paS w airp p gγ ρ∴ − = − = − × =

0
2 (1,469.7) 48.9 m/s

1.23
V = =

By the way, 

air wγ γ γ= =

0Sp p hγ− =

0 2V gh∴ =

[Cf] If 

Then,
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5.4 Applications of Bernoulli's Equation

▪ Bernoulli principle for open flow

- Flow over the spillway weir: a moving fluid surface in contact with the

atmosphere and dominated by gravitational action

- At the upstream of the weir, the streamlines are straight and parallel

and velocity distribution is uniform.

- At the chute way, Section 2, the streamlines are assumed straight and

parallel, the pressures and velocities can be computed from the one-

dimensional assumption.



46/85

5.4 Applications of Bernoulli's Equation

[IP 5.6] p.139 Flow over a spillway

At section 2, the water surface is at elevation 30.5 m and the 60˚ spillway

face is at elevation 30.0 m. The velocity at the water surface at section 2 is

6.11 m/s.

[Sol]

Thickness of sheet flow = (30.5 30) / cos60 1 m− =

Apply 1-D assumption across the streamline at section ②
. .

. .
w s b

w s b
p pz z+ = +
γ γ

3
. .( ) 9.8 10 (0.5) 4.9 kPab w s bp z zγ∴ = − = × =

Elevation of energy line 
26.130.5 32.4 m

2
H

g
= + =
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5.4 Applications of Bernoulli's Equation
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5.4 Applications of Bernoulli's Equation

Velocity is the same at both

the surface and the bottom
2 2

2 2
22 2

b b
b

p V p Vz z
g gγ γ

+ + = + +

24.932.4 30.0 6.11m s
9.8 2

b
b

V V
g

= + + ∴ =

2
2 2 1 6.11 6.11 m sq h V= = × =

Apply B.E. between ② and ⓑ

per meter of spillway length
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5.4 Applications of Bernoulli's Equation

h1 = y1

2

1
1

1 6.1129.0 32.4
2

y
g y
 

+ + = 
 

1 3.22 my =

1
1

6.11 1.9 m s
3.22

qV
h

= = =

Apply Bernoulli equation between ① and ②
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5.5 The Work-Energy Equation

For pipelines containing pumps and turbines, the mechanical work-energy

equation can be derived via a control volume analysis.

•  pump = add energy to the fluid system 

turbine = extract energy from the fluid system

• Bernoulli equation = mechanical work-energy equation for ideal fluid flow
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5.5 The Work-Energy Equation
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5.5 The Work-Energy Equation

KE PE

dW dE=

Apply mechanical work-energy principle to fluid flow

→ work done on a fluid system is exactly balanced by the change in the sum 

of the kinetic energy ( ) and potential energy ( ) of the system. 

(1)

where dW = the increment of work done; dE = resulting incremental change

in energy

~ Heat transfer and internal energy are neglected.

[Cf] The first law of Thermodynamics

~ Heat transfer and internal energy are included.
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5.5 The Work-Energy Equation

Dividing (1) by dt yields

dW dE
dt dt

=

(i)Apply the Reynolds Transport Theorem to evaluate the rate of change of 

an extensive property, in this case energy

→ steady state form of the Reynolds Transport Theorem

(2)

. . . .c s out c s in

dE i v dA i v dA
dt

ρ ρ= ⋅ + ⋅∫∫ ∫∫
   

(3)

where i = energy per unit mass
2

2
Vi gz= +

Potential energy Kinetic energy
(4)
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5.5 The Work-Energy Equation

Substituting (4) into (3) gives
2 2

. . . .2 2c s out c s in

dE V Vgz v dA gz v dA
dt

ρ ρ
   

= + ⋅ + + ⋅   
   

∫∫ ∫∫
   

(5)

dE
dtwhere  = the rate of energy increase for the fluid system

→ Even in steady flow, the fluid system energy can change with time 

because the system moves through the control volume where both 

velocity and elevation can change.

Since the velocity vector is normal to the cross sectional area and the 

velocity is uniform over the two cross sections, integration of RHS of (5) 

yields



55/85

5.5 The Work-Energy Equation

2 2
2 1

2 2 2 1 1 1

2 2
2 1

2 2 2 1 1 1

2 2

2 2

dE V Vgz V A gz V A
dt

V Vg z V A g z V A
g g

ρ ρ

ρ ρ

   
= + − +   

   
   

= + − +   
   

(6)

Continuity equation is

2 2 1 1Q V A V A= =

Substituting the Continuity equation into (6) gives

2 2
2 1

2 12 2
dE V VQ z z
dt g g

γ
    

= + − +    
    

(7)

(5.4)
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5.5 The Work-Energy Equation

(ii)Now, evaluate the work done by the fluid system (   )

1) Flow work done via fluid entering or leaving the control volume

→ Pressure work Distance

2) Shaft work done by pump and turbine

3) Shear work done by shearing forces action across the boundary of the

system

→ for inviscid fluid0shearW =

Areap= × ×

dW

• Pressure work

~ consider only pressure forces at the control surface, p1A1 and p2A2

→ Net pressure work rate = pressure forceⅹdistance / time = pressure

forceⅹvelocity
1 1 1 2 2 2p AV p A V= − (8)



57/85

5.5 The Work-Energy Equation

• Shaft work
0TW ≥

0pW ≤

(energy is extracted from the system)
(energy is put in)

→ Net shaft work rate = P TQ E Q Eγ γ− (9)

( )P TE E =where work done per unit weight of fluid flowing

Combining the two net-work-rate equations, Eqs. (8) and (9), yields

1 2
P T

p pQ E Eγ
γ γ

 
− + − 

 
Net work rate =

Equating Eqs. (5.4) and (5.5), we get
2 2

2 1 1 2
2 12 2 P T

V V p pQ z z Q E E
g g

γ γ
γ γ

      
+ − + = − + −      

     

(5.5)

(5.6)
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5.5 The Work-Energy Equation

Collecting terms with like subscripts gives
2 2

1 1 2 2
1 22 2P T

p V p Vz E z E
g gγ γ

+ + + = + + +

Head, m

→ Work-energy equation

(5.7)

pE TE
~ used in real fluid flow situations

~ Work-energy W/O and is identical to the Bernoulli equation for ideal

fluid.

• Addition of mechanical energy ( ) or extraction ( ) cause abrupt rises

of falls of energy line.
pE TE
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5.5 The Work-Energy Equation

• Power of machines

work Force distance
Power

time time
. .W m g E vol g E vol E E Q

t t t t
ρ× × ×  = = = = = = γ × = γ 

 

Kilowatts (kW) of machine = 

Horsepower (hp) of machine = 

1000
P TE or EQγ

550
P TE or EQγ

(5.8a)

(5.8b)

1 hp 0.746 Wk=→
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5.5 The Work-Energy Equation

[IP 5.7] p.145 Work done by pump

The pump delivers a flowrate of 0.15 m3/s of water. How much power must

the pump supply to the water to maintain gage readings of 250 mm of

mercury vacuum on the suction side of the pump and 275 kPa of pressure

on the discharge side?

[Sol] 1 250 mm of Hg 760 mmHgp = − <
2250 133.3 N/m= − × 233,325 N/m= −

1 33,325 3.39 m
9800

p −
= = −

γ

2 275 kPa 100 kPap = >
3

2 275 10 28.1 m
9800

p
γ

×
= =
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5.5 The Work-Energy Equation
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5.5 The Work-Energy Equation

( )
1

2

0.15 4.8 m s
0.2

4

V π= =

2 2
1 4.8 1.16 m

2 2 9.8
V

g
∴ = =

×

( )
2

2

0.15 8.5 m s
0.15

4

V π= =

2 2
2 8.5 3.68 m

2 2 9.8
V

g
∴ = =

×

1 1 2 2Q AV A V= =

Apply Continuity Equation
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5.5 The Work-Energy Equation

Apply Work-Energy equation between ① & ②
2 2

1 1 2 2
1 22 2p T

p V p Vz E z E
g gγ γ

+ + + = + + +

3.39 1.16 0 28.1 3.68 3pE− + + + = + +

37.0 mpE∴ =

(5.7)

( ) 0.15(9800)(37.0) 54.4 W
1000 1000

pQ E
k

γ
= = =Pump power (5.8b)

• The local velocity in the pump passage may be considerably larger

than the average velocity in the pipes.

→ There is no assurance that the pump will run cavitation-free.
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5.6 Euler's Equations for Two-Dimensional Flow

• Two-Dimensional Flow

~ The solution of flowfield problems is much more complex than the

solution of 1D flow.

~ Partial differential equations for the motion for real fluid are usually

solved by computer-based numerical methods.

~ present an introduction to certain essentials and practical problems

dxdz

• Euler’s equations for a vertical two-dimensional flowfield may be

derived by applying Newton's 2nd law of motion to differential

system .

F ma∑ =



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5.6 Euler's Equations for Two-Dimensional Flow
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5.6 Euler's Equations for Two-Dimensional Flow

Force:
x

pdF dxdz
x
∂

= −
∂

z
pdF dxdz gdxdz
z

ρ∂
= − −

∂

Acceleration for steady flow: 
for unsteady flow

u
t

∂
+
∂

x
u ua u w
x z
∂ ∂

= +
∂ ∂

z
w wa u w
x z

∂ ∂
= +

∂ ∂
p u udxdz dxdz u w
x x z

ρ∂ ∂ ∂ − = + ∂ ∂ ∂ 
p w wdxdz gdxdz dxdz u w
z x z

ρ ρ∂ ∂ ∂ − − = + ∂ ∂ ∂ 

x - direction: 

z - direction: 
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5.6 Euler's Equations for Two-Dimensional Flow

Euler's equation for 2-D flow
1 p u uu w

x x zρ
∂ ∂ ∂

− = +
∂ ∂ ∂

1 p w wu w g
z x zρ
∂ ∂ ∂

− = + +
∂ ∂ ∂

(5.9a)

(5.9b)

• Equation of Continuity for 2-D flow of ideal fluid

0u w
x z
∂ ∂

+ =
∂ ∂

(4.11)

, ,p u wUnknowns:

Equations: 3

→ simultaneous solution for non-linear PDE
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5.7 Bernoulli's Equation for Two-Dimensional Flow 

Bernoulli’s equation can be derived by integrating the Euler's equations

for a uniform density flow.

(a)+(b): 

(a)

(b)

1 p u udx u w dx
x x zρ

 ∂ ∂ ∂ × − = + ×  ∂ ∂ ∂  

1 p w wdz u w g dz
z x zρ

 ∂ ∂ ∂ × − = + + ×  ∂ ∂ ∂  

1 p p u u w wdx dz u dx w dx u dz w dz gdz
x z x z x zρ
∂ ∂ ∂ ∂ ∂ ∂ − + = + + + + ∂ ∂ ∂ ∂ ∂ ∂ 
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5.7 Bernoulli's Equation for Two-Dimensional Flow 

u u w wu dx u dz w dx w dz
x z x z
∂ ∂ ∂ ∂   = + + +   ∂ ∂ ∂ ∂   

w u u wu dz u dz w dx w dx gdz
x z z x

∂ ∂ ∂ ∂
+ − + − +

∂ ∂ ∂ ∂

u du wdw

( ) ( )w uudz wdx udz wdx
x z

ξ∂ ∂ − − = − ∂ ∂ 
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5.7 Bernoulli's Equation for Two-Dimensional Flow 

By the way,
p pdp dx dz
x z
∂ ∂

= +
∂ ∂

u udu dx dz
x z
∂ ∂

= +
∂ ∂

w wdw dx dz
x z

∂ ∂
= +
∂ ∂

w u
x z

ξ ∂ ∂
= −
∂ ∂

2( ) 2
2 2

d u u du u uu dx u dz
x z
∂ ∂

= = +
∂ ∂
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5.7 Bernoulli's Equation for Two-Dimensional Flow 

Incorporating these terms and dividing by      givesg

(c)2 21 1( ) ( )
2

dp d u w udz wdx dz
g g

ξ
γ

− = + + − +

Integrating (c) yields

2 21 1( ) ( )
2

p u w z H udz wdx
g g

ξ
γ
+ + + = − −∫ (d)

H =where constant of integration

Substituting resultant velocity, V

2 2 2V u w= +
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5.7 Bernoulli's Equation for Two-Dimensional Flow 

2 1 ( )
2

p V z H udz wdx
g g

ξ
γ
+ + = − −∫

0ξ =

(5.10)

(i) For irrotational (potential) flow
2

2
p V z H

gγ
∴ + + =

→ Constant H is the same to all streamlines of the 2-D flowfield.

(5.11)

0ξ ≠ ( ) 0udz wdxξ − ≠∫(ii) For rotational flow (  ) : 

0w dz udz wdx
u dx
= → − =

However, along a streamline for steady flow,

(5.12)

(e)
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5.7 Bernoulli's Equation for Two-Dimensional Flow 

[Re]

For ideal incompressible fluid, for larger flow through which all streamlines 

are straight and parallel (irrotational flow)

→ Bernoulli equation can be applied to any streamline. 

Substituting (e) into (5.10) gives
2

2
p V z H

g
+ + =

γ

H→ is different for each streamline.

(5.13)
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5.8 Stream Function and Velocity Potential

The concepts of the stream function and the velocity potential can be

used for developing of differential equations for two-dimensional flow.

5.8.1 Stream function

Definition of the stream function is based on the continuity principle and

the concept of the streamline.

→ provides a mathematical means of solving for two-dimensional

steady flowfields.
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5.8 Stream Function and Velocity Potential
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5.8 Stream Function and Velocity Potential

ψ

dψ ψ+

Consider streamline A: no flow crosses it

→ the flowrate across all lines OA is the same.

→ is a constant of the streamline.

→ If can be found as a function of x and y, the streamline can be plotted.

The flowrate of the adjacent streamline B will be

The flowrates into and out of the elemental triangle are equal from

continuity concept.

ψ

ψ

d vdx udyψ = − +

( , )x yψ

(a)

Total derivative of is

d dx dy
x y
ψ ψψ ∂ ∂

= +
∂ ∂

(5.14)
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5.8 Stream Function and Velocity Potential

Compare (a) & (5.14)

u
y
ψ∂

=
∂

v
x
ψ∂

= −
∂

(5.15a)

(5.15b)

ψ =where stream function

→ If is known u, v can be calculated.ψ

Integrate (5.14)

dx dy C
x y
ψ ψψ ∂ ∂

= + +
∂ ∂∫ ∫

vdx udy C= − + +∫ ∫
→ If u, v are known can be calculated.ψ

(b)
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5.8 Stream Function and Velocity Potential

▪ Property of stream function

1) The equation of continuity

0u v
x y
∂ ∂

+ =
∂ ∂

(4.11)

Substitute (5.15) into (4.11)

0
x y y x

ψ ψ ∂ ∂ ∂ ∂ − =  ∂ ∂ ∂ ∂  
2 2

x y y x
ψ ψ∂ ∂

∴ =
∂ ∂ ∂ ∂

→ Flow described by a stream function satisfies the continuity equation.
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5.8 Stream Function and Velocity Potential

2) The equation of vorticity

v u
x y

ξ ∂ ∂
= −
∂ ∂

(3.10)

Substitute (5.15) into (3.10)

2 2

2 2x x y y x y
ψ ψ ψ ψξ

 ∂ ∂ ∂ ∂ ∂ ∂ = − − + = − −   ∂ ∂ ∂ ∂ ∂ ∂   

For irrotational flow, 0ζ =
2 2

2
2 2 0

x y
ψ ψ ψ∂ ∂

∴ + =∇ =
∂ ∂

→ Laplace Eq.

→ The stream function of all irrotational flows must satisfy the Laplace equation. 
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( , )x yφSuppose that another function is defined as

x yV grad e e
x y
φ φφ φ

 ∂ ∂
≡ −∇ ≡ = − + ∂ ∂ 

  

(a)

By the way,

x yV ue ve= +
  

Comparing (a) and (b) gives

(b)

u
x
φ∂

= −
∂

v
y
φ∂

= −
∂

(5.16)

velocity potentialφ =where

(5.17)

5.8.2 Velocity Potential

5.8 Stream Function and Velocity Potential
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5.8 Stream Function and Velocity Potential

▪ Property of stream function

1) The equation of continuity

Substitute Eq. (5.16) into continuity Eq.

→ Laplace Eq.

x x y y
φ φ ∂ ∂ ∂ ∂ − + −   ∂ ∂ ∂ ∂   

2 2

2 2 0
x y
φ φ∂ ∂

= + =
∂ ∂

(5.18)

φ
→ All practical flows which conform to the continuity Eq. must satisfy the

Laplace equation in terms of .
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5.8 Stream Function and Velocity Potential

2) Vorticity Eq.

Substitute Eq. (5.16) into vorticity eq.

2 2

0
x y y x x y y x

φ φ φ φξ
 ∂ ∂ ∂ ∂ ∂ ∂ = − − − = − + =  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

→ The vorticity must be zero for the existence of a velocity potential.

→ irrotational flow = potential flow

→ Only irrotational flowfields can be characterized by a velocity

potential .φ
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5.8 Stream Function and Velocity Potential

2y xψ = −

0, 1, 2ψ =

V

[IP 5.14] p164

A flowfield is described by the equation .

1) Sketch streamlines .

2) Derive an expression for the velocity at any point.

3) Calculate the vorticity.

[Sol]

1) 20 0 y xψ = → = −
2 parabolay x∴ = →

21 1y xψ = → = +
22 2y xψ = → = +
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5.8 Stream Function and Velocity Potential

3) 

2) 2( ) 1∂ ∂
= = − =
∂ ∂

u y x
y y
ψ

2( ) 2v y x x
x x
ψ∂ ∂

= − = − − =
∂ ∂

2 2 2 2 2(2 ) 1 4 1V u v x x∴ = + = + = +

1(2 ) (1) 2( )v u x s
x y x y

ξ −∂ ∂ ∂ ∂
= − = − =
∂ ∂ ∂ ∂

0ξ∴ ≠ → The flowfield is rotational.
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5.8 Stream Function and Velocity Potential

Prob. 5.6

Prob. 5.11

Prob. 5.24

Prob. 5.30

Prob. 5.46

Prob. 5.48

Prob. 5.59

Homework Assignment # 5

Due:  1 week from today

Prob. 5.89

Prob. 5.98

Prob. 5.104

Prob. 5.119

Prob. 5.123

Prob. 5.149

Prob. 5.157
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