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Introduction

Static vs. Dynamic Simulations

Static: observed at a single point in time.

Dynamic: describes the behavior of a system over time.
e.g. Queueing system

Mechanisms for Time Advancing

Fixed time advancing: moves time by a fixed amount ∆t.
The time between t and t + ∆t is called a period.

Dynamic time advancing: moves time by a variable amount.
e.g. discrete-even simulation
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Queueing — Variability Interactions

Process-time varaibility
Flow variability

}

⇒ Performance







WIP (L)
Cycle time (W )
Throughput (λ)

A SIngle-Server Queueing System (SSQS)

1. An arrival process
2. A service process
3. A queue

Queueing Theory
Characterizing performance measures in terms of descriptive
parameters.

• Descriptive parameters: λ (arrival rate), m (number of
parallel machines), b (max number of jobs allowed), µ
(service rate), etc.

• Performance measures: Wq, W , L, Lq, etc.
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Kendall’s Notation

A/B/m/b

A/B =







D (Deterministic)
M (Markovian)
G (General)

m = Number of parallel
machines

b = Buffer size

A

B

mQueue
Server
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Fundamental Relations

Holds for all single-station systems
(i.e., regardless of the assumptions about arrival and process time
distributions, number of machines, etc.).

Prob of server being busy: ρ =
λ

µ
(1)

Average time in the system: W = Wq +
m

µ
(2)

Average jobs in the system: L = λ × W (3)

Average jobs in the queue: Lq = λ × Wq (4)
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M/M/1 Queue

Assumptions:

• Exponential interarrival times
• A single machine with exponential process times
• FCFS
• Unlimited space for jobs waiting in queue

Memoryless Property: What information is needed to
characterize the future (probabilistic) evolution of the system?

•
{

time since the last arrival
time the current job has been in process

}

irrelevant!!

• Only the number of jobs currently in the system matters.
• State of the system: n.
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State Transition Analysis — M/M/1

Transition Rates:

• Conditional rates (i.e., given the system is in state n):
{

n → (n + 1) : λ
n → (n − 1) : µ

• Unconditional (steady-state) rates: pn−1 λ = pn µ
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Average Number of Jobs in the System (L)







pn =
λ

µ
pn−1 = ρ pn−1

p0 = 1 − ρ (machine idle)







⇒ pn = ρn (1 − ρ)

L =

∞
∑

n=0

n pn

=
∞
∑

n=0

nρn (1 − ρ)

= ρ (1 − ρ)
∞
∑

n=1

nρn−1 ⇐
(

∑∞
n=1 nρn−1 = 1

(1−ρ)2

)

=
ρ

1 − ρ
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Performance Measures — M/M/1

L(M/M/1) =
ρ

1 − ρ
=

λ

µ − λ

W (M/M/1) =
L(M/M/1)

λ
=

λ

µ − λ

λ
=

1

µ − λ

Wq(M/M/1) = W (M/M/1) − 1

µ
=

λ

µ (µ − λ)

Lq(M/M/1) = λ · Wq(M/M/1) =
λ2

µ (µ − λ)

=
ρ2

1 − ρ
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Performance Measures — M/M/1 (Continue)

Observations:

1. L, W , Wq, and Lq are all increasing in ρ.

Busy systems (ρ) ⇒ More congestion (L, Lq)

2. Slower machine (µ) ⇒ More waiting time (W , Wq)

3.
1

1 − ρ
terms ⇒ All measures explode as ρ → 1.
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Waiting Times in a SSQS: Lindley’s Formula

Xn = service time of the nth customer
Yn = time between the arrivals of the nth and (n + 1)st customers
Wn = waiting time in the queue for the nth customer

Wn+1 = max(0, Wn + Xn − Yn)

If the (n + 1)st customer arrives

(a) at the same time as the nth customer, i.e., Yn = 0,
he/she has to wait Wn + Xn.

(b) after the nth customer has left, i.e., Yn > Wn + Xn,
he/she is served right away (that is, does not have to wait).
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Spreadsheet Simulation of an M/M/1 Queue
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Mean service time: 0.7

Mean interarrival time: 1.0

Customer

number

Waiting 

Time

Service

Time

Interarrival

Time Busy/Idle

(n) (Wn) (Xn) (Yn) Wn+Xn-Yn

0 0 0.4328 0.3852 0.0476 0

1 0.0476 0.1770 0.0454 0.1792 1

2 0.1792 1.3494 0.1230 1.4056 1

3 1.4056 0.4659 1.6279 0.2436 1

4 0.2436 0.3996 1.0828 -0.4395 1

5 0.0000 1.9593 2.8404 -0.8811 0

6 0.0000 0.1485 1.7174 -1.5689 0

7 0.0000 0.5877 0.2410 0.3467 0

8 0.3467 1.8964 1.6122 0.6310 1

9 0.6310 1.9285 0.0878 2.4717 1

10 2.4717 0.1926 1.5142 1.1500 1

D10 =$C$3*LN(RAND()) F10 =C10+D10-E10

E10 =$C$4*LN(RAND()) G10 =IF(C10>0,1,0)

C11 =IF(F10>0,F10,0)
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Simulation Results (Transient)

Average waiting times over 20 replications consisting of 500
observations each:

Estimates of Waiting Time 

in a Transient M/M/1 Queue
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Initial Transient Period (“Warm-up Period”)

Mean waiting time for a stable M/M/1 queue:

Wq =
λ

µ (µ − λ)
=

1.0
1
.7 ( 1

.7 − 1.0)
= 1.633

In the first 100 observations, much evidence of stationary
behavior. However we cannot be sure exactly where!

Stationary distribution of waiting time:

P (W ≤ w) =

{

1 − ρ if w = 0

1 − ρ e−(µ−λ)w if w > 0

If the first waiting time is chosen from above, all subsequent
waiting times will be from the stationary distribution.
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Simulation Results (Stationary)

Estimates of Waiting Time in

Stationary M/M/1 Queue
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⇒ Same general appearance as much of the previous results.
⇒ The previous graph was fairly close to the stationary behavior
within the first 100 observations.
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Characteristics of Data from Dynamic Simulations

1. Initial condition bias

• Selecting the appropriate starting condition
• Discarding the observations recorded during the transient

period of simulation
• Making very long runs (However, in general, longer runs,

fewer replications)

2. Autocorrelated observations

In general, the data set {y1, y2, . . .} are not i.i.d.

• Replication
• Batching
• etc.
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Terminating vs. Non-terminating Simulations

Terminating: There is a natural event that ends the simulation.

• We typically do not run the terminating simulations long
enough for any convergence to take place.

• All the collected data come from the transient distribution.
• Example: Bak with 5 tellers

- Opens at 9:30 am and closes at 4:30 pm.
- Stays open until all customers served.
- Arrival rate of 1 per min; Service times 4 min.
- Performance measure: Average customer delay.

Non-terminating: No natural event that ends the simulation.

• We are not interested in the transient distribution.
• We are interested in the steady-state distribution.
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General Replication (Batching) Structure

Run Replication

Number Y1 Y2 · · · Ym Statistic

1 y11 y12 · · · y1m → X1

2 y21 y22 · · · y2m → X2
... ...
n yn1 yn2 · · · ynm → Xn

• Rows are not IID, i.e., the data values {yi1, yi2, · · · , yim} are
autocorrelated.

• However, columns are IID. The data {y1j, y2j, · · · , ynj} can be
considered to be an independent sample from the distribution
of random variable Yj.

⇒ We have independence across runs.
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Output Analysis for Terminating Simulations

Suppose we take n independent replications, each with the same
initial condition and the same terminating event.

Let Xi be a replication statistic computed from the ith run:

Xi = f(Yi1, Yi2, · · · , Yim).

For example, Xi can be average, sum, maximum, minimum
value of the observations obtained from the ith run.

Then we can get a random sample X1,X2, · · · , Xn of size n.

Q: How can we assume the “independence” of Xi’s?

A: Simulation was replicated, each time with independent random
numbers.
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Obtaining a Specified Precision: Background

We’ve learned in Ch. 2 that the confidence interval for mean µ is

X ± tα/2,n−1
S√
n
, where S2 =

n
∑

i=1

(Xi − X)2

n − 1
.

If we want a (1 − α) probability that one estimate of µ differs by
an amount no greater than β, how many replications do we need?

1 − α = P (|X − µ| ≤ β) = P (X − β ≤ µ ≤ X + β)

Thus, we want our (1 − α)100% CI half width to be β.

β = tα/2,n−1
S√
n

⇒ n = S2

(

tα/2,n−1

β

)2

Note: Both S and tα/2,n−1 are dependent on n.
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Obtaining a Specified Precision: Procedure

From the initial n replications (n ≥ 30), compute S2.

And then, assume S2 is fixed, i.e., it will not change significantly
with additional replications.

Procedure

(a) Perform n ≥ 30 replications and compute S2.

(b) Compute n∗ = min
i≥n

{

tα/2,i−1
S√
i
≤ β

}

.

(Increase i by 1 until a value of i is obtained.)

(c) Take additional (n∗ − n) replications and compute the CI.
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Obtaining a Specified Precision: Example

From the initial 10 replications, the values for replication statistics
Xi’s were obtained as
{1.53, 1.66, 1.24, 2.34, 2.00, 1.69, 2.69, 2.86, 1.70, 2.60}.

Find n such that, with 95% probability, the absolute error is no
greater than β = 0.25.

We calculated x = 2.03 and s = 0.555.

i t0.05/2,i−1 Half width

11 1.833 .322
...

16 1.753 .253
17 1.746 .235

n∗ = 17.
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Output Analysis for Non-Terminating Simulations

We’d like to focus on the steady-state behavior of the system.
⇒ Data are usually obtained from a single long simulation run.
⇒ Individual observations are used, rather than replication stats.
⇒ The independence of data cannot be easily assumed.

3 approaches for analyzing non-terminating simulations:

• Replication

– How to deal with the initial condition bias?
– Wider confidence intervals due to fewer replications

• Batching

– Pseudo-independence (if the batches are sufficiently large)
– Robustness in deleting data for initial condition bias

• Using individual raw observations with autocorrelation

– Auto-correlogram, etc.
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Batch Means Method

(1) Group observations into n equal, non-overlapping batches,
each of size m.

(2) Compute the sample mean of each batch. The ith batch
mean is

Xi =

m
∑

j=1

Yij

m
, i = 1, 2, · · · , n

If batches are sufficiently large, Xi’s are approximately
independent, even though the observation at the end of batch
i are correlated with the one at the beginning of batch i + 1.

(3) Compute the confidence interval from these batch means.
(Traditional statistical methods can apply thanks to
pseudo-independence.)
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Some Remarks on Batch Means Method

Batch size should be

1. large enough that batch means are approximately uncorrelated.
⇒ Batch size to be at least 10 times as large as the largest lag

2. small enough that the maximum number of batches is formed.
⇒ Number of batches to be at least 10

Replication vs. Batching

1. Independent replications run through the transient period in
each replication. Batch means method requires this only once.

2. Errors in determining the transient period will cause the sample
mean in each replication to be biased. Batch means is robust in
that the bias will reduce in successive batches.
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