Dynamic Simulations

Yoo-Suk Hong Yoo-Suk Hong yhong@snu.ac.kr>
Dept of Industrial Engineering
Seoul National University

Seila et. al., Chapter 4

Introduction

Static vs. Dynamic Simulations

Static: observed at a single point in time.

Dynamic: describes the behavior of a system *over time*. *e.g.* Queueing system

Mechanisms for Time Advancing

Fixed time advancing: moves time by a fixed amount Δt . The time between t and $t + \Delta t$ is called a *period*.

Dynamic time advancing: moves time by a variable amount. *e.g.* discrete-even simulation

Queueing — Variability Interactions

Process-time variability Flow variability $\} \Rightarrow$ Performance $\begin{cases} WIP (L) \\ Cycle time (W) \\ Throughput (\lambda) \end{cases}$

A Single-Server Queueing System (SSQS)

- 1. An arrival process
- 2. A service process
- 3. A queue

Queueing Theory

Characterizing *performance measures* in terms of *descriptive* parameters.

- Descriptive parameters: λ (arrival rate), m (number of parallel machines), b (max number of jobs allowed), μ (service rate), etc.
- Performance measures: W_q , W, L, L_q , etc.

Kendall's Notation A/B/m/bB $A/B = \begin{cases} D \text{ (Deterministic)} \\ M \text{ (Markovian)} \\ G \text{ (General)} \end{cases}$ A m =Number of parallel m Queue machines Server

b = Buffer size

Fundamental Relations

Holds for all *single-station* systems

(i.e., regardless of the assumptions about arrival and process time distributions, number of machines, etc.).

Prob of server being busy:
$$\rho = \frac{\lambda}{\mu}$$
 (1)

Average time in the system: $W = W_q + \frac{m}{\mu}$ (2)

Average jobs in the system:
$$L = \lambda \times W$$
 (3)

Average jobs in the queue:
$$L_q = \lambda \times W_q$$
 (4)

Page 4–4, Y.-S. Hong^(C)

M/M/1 Queue

Assumptions:

- Exponential interarrival times
- A single machine with exponential process times
- FCFS
- Unlimited space for jobs waiting in queue

Memoryless Property: What information is needed to characterize the future (probabilistic) evolution of the system?

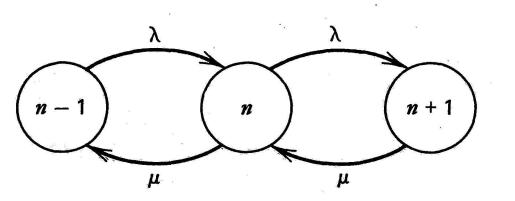
- { time since the last arrival time the current job has been in process } irrelevant!!
- Only the number of jobs currently in the system matters.
- State of the system: *n*.

State Transition Analysis — M/M/1

Transition Rates:

- Conditional rates (i.e., given the system is in state n): $\begin{cases}
 n \to (n+1): \lambda \\
 n \to (n-1): \mu
 \end{cases}$
- Unconditional (steady-state) rates: p

$$p_{n-1}\,\lambda\,=\,p_n\,\mu$$



$$\begin{cases} p_n = \frac{\lambda}{\mu} p_{n-1} = \rho p_{n-1} \\ p_0 = 1 - \rho \quad (\text{machine idle}) \end{cases} \Rightarrow p_n = \rho^n (1 - \rho) \\ L = \sum_{n=0}^{\infty} n p_n \\ = \sum_{n=0}^{\infty} n \rho^n (1 - \rho) \\ = \rho (1 - \rho) \sum_{n=1}^{\infty} n \rho^{n-1} \quad \Leftarrow \left(\sum_{n=1}^{\infty} n \rho^{n-1} = \frac{1}{(1 - \rho)^2} \right) \\ = \frac{\rho}{1 - \rho} \end{cases}$$

Page 4–7, Y.-S. $Hong^{\bigcirc}$

$$L(M/M/1) = \frac{\rho}{1-\rho} = \frac{\lambda}{\mu-\lambda}$$
$$W(M/M/1) = \frac{L(M/M/1)}{\lambda} = \frac{\frac{\lambda}{\mu-\lambda}}{\lambda} = \frac{1}{\mu-\lambda}$$
$$W_q(M/M/1) = W(M/M/1) - \frac{1}{\mu} = \frac{\lambda}{\mu(\mu-\lambda)}$$
$$L_q(M/M/1) = \lambda \cdot W_q(M/M/1) = \frac{\lambda^2}{\mu(\mu-\lambda)}$$
$$= \frac{\rho^2}{1-\rho}$$

Page 4–8, Y.-S. Hong[©]

406.311 Simulation

Performance Measures — M/M/1 (Continue)

Observations:

- 1. L, W, W_q , and L_q are all increasing in ρ . Busy systems $(\rho) \Rightarrow$ More congestion (L, L_q)
- 2. Slower machine $(\mu) \Rightarrow$ More waiting time (W, W_q)

3.
$$\frac{1}{1-\rho}$$
 terms \Rightarrow All measures explode as $\rho \rightarrow 1$.

 X_n = service time of the *n*th customer Y_n = time between the arrivals of the *n*th and (n+1)st customers W_n = waiting time in the queue for the *n*th customer

 $W_{n+1} = \max(0, W_n + X_n - Y_n)$

If the (n+1)st customer arrives

- (a) at the same time as the *n*th customer, i.e., $Y_n = 0$, he/she has to wait $W_n + X_n$.
- (b) after the *n*th customer has left, i.e., $Y_n > W_n + X_n$, he/she is served right away (that is, does not have to wait).

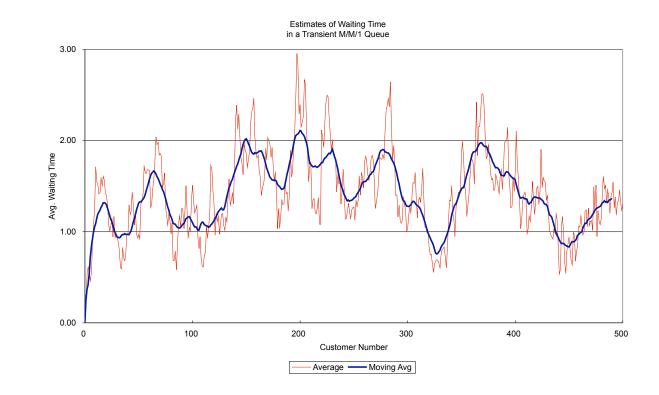
Spreadsheet Simulation of an M/M/1 Queue

	A	В	С	D	Е	F	G
3							
4	Mean service time:		0.7				
5	Mean interarrival time:		1.0				
6							
7							
		Customer	Waiting	Service	Interarrival		
8		number	Time	Time	Time		Busy/Idle
9		(n)	(W _n)	(X _n)	(Y _n)	$W_n + X_n - Y_n$	
10		0	0	0.4328	0.3852	0.0476	0
11		1	0.0476	0.1770	0.0454	0.1792	1
12		2	0.1792	1.3494	0.1230	1.4056	1
13		3	1.4056	0.4659	1.6279	0.2436	1
14		4	0.2436	0.3996	1.0828	-0.4395	1
15		5	0.0000	1.9593	2.8404	-0.8811	0
16		6	0.0000	0.1485	1.7174	-1.5689	0
17		7	0.0000	0.5877	0.2410	0.3467	0
18		8	0.3467	1.8964	1.6122	0.6310	1
19		9	0.6310	1.9285	0.0878	2.4717	1
20		10	2.4717	0.1926	1.5142	1.1500	1
21							

D10 =\$C\$3*LN(RAND()) F10 =C10+D10-E10 E10 =\$C\$4*LN(RAND()) G10 =IF(C10>0,1,0) C11 =IF(F10>0,F10,0)

Simulation Results (Transient)

Average waiting times over 20 replications consisting of 500 observations each:



Page 4–12, Y.-S. Hong[©]

Mean waiting time for a stable M/M/1 queue:

$$W_q = \frac{\lambda}{\mu \left(\mu - \lambda\right)} = \frac{1.0}{\frac{1}{.7} \left(\frac{1}{.7} - 1.0\right)} = 1.633$$

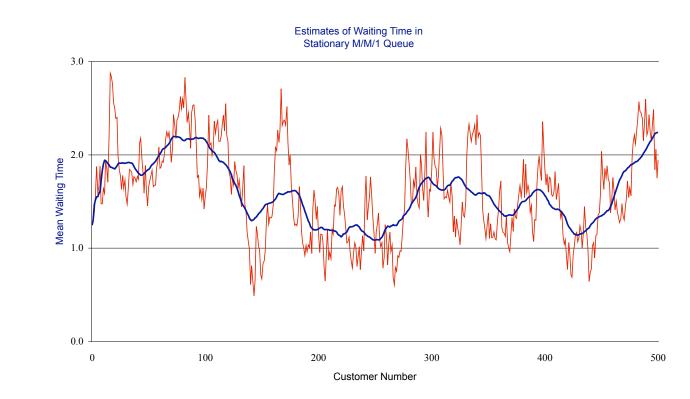
In the first 100 observations, much evidence of stationary behavior. However we cannot be sure exactly where!

Stationary distribution of waiting time:

$$P(W \le w) = \begin{cases} 1 - \rho & \text{if } w = 0\\ 1 - \rho e^{-(\mu - \lambda)w} & \text{if } w > 0 \end{cases}$$

If the *first* waiting time is chosen from above, all subsequent waiting times will be from the stationary distribution.

Simulation Results (Stationary)



 \Rightarrow Same general appearance as much of the previous results. \Rightarrow The previous graph was fairly close to the stationary behavior within the first 100 observations.

Page 4–14, Y.-S. Hong^C

Characteristics of Data from Dynamic Simulations

1. Initial condition bias

- Selecting the appropriate starting condition
- Discarding the observations recorded during the transient period of simulation
- Making very long runs (However, in general, longer runs, fewer replications)

2. Autocorrelated observations

In general, the data set $\{y_1, y_2, \ldots\}$ are *not* i.i.d.

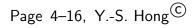
- Replication
- Batching
- etc.

Terminating: There is a natural event that ends the simulation.

- We typically do not run the terminating simulations long enough for any convergence to take place.
- All the collected data come from the *transient* distribution.
- Example: Bak with 5 tellers
 - Opens at 9:30 am and closes at 4:30 pm.
 - Stays open until all customers served.
 - Arrival rate of 1 per min; Service times 4 min.
 - Performance measure: Average customer delay.

Non-terminating: No natural event that ends the simulation.

- We are not interested in the transient distribution.
- We are interested in the *steady-state* distribution.



General Replication (Batching) Structure

Run Number	Y_1	Y_2		Y_m		Replication Statistic
1	y_{11}	y_{12}	• • •	y_{1m}	\rightarrow	X_1
2	y_{21}	y_{22}	•••	y_{2m}	\rightarrow	X_2
÷						:
n	y_{n1}	y_{n2}	• • •	y_{nm}	\rightarrow	X_n

- Rows are *not* IID, i.e., the data values $\{y_{i1}, y_{i2}, \cdots, y_{im}\}$ are autocorrelated.
- However, columns are IID. The data $\{y_{1j}, y_{2j}, \cdots, y_{nj}\}$ can be considered to be an independent sample from the distribution of random variable Y_j .

 \Rightarrow We have independence *across* runs.

Suppose we take n independent replications, each with the same initial condition and the same terminating event.

Let X_i be a *replication statistic* computed from the *i*th run:

 $X_i = f(Y_{i1}, Y_{i2}, \cdots, Y_{im}).$

For example, X_i can be average, sum, maximum, minimum value of the observations obtained from the *i*th run.

Then we can get a random sample X_1, X_2, \dots, X_n of size n.

- **Q:** How can we assume the "independence" of X_i 's?
- A: Simulation was replicated, each time with independent random numbers.

Obtaining a Specified Precision: Background

We've learned in Ch. 2 that the confidence interval for mean μ is

$$\overline{X} \pm t_{\alpha/2,n-1} \frac{S}{\sqrt{n}}$$
, where $S^2 = \sum_{i=1}^n \frac{(X_i - \overline{X})^2}{n-1}$.

If we want a $(1 - \alpha)$ probability that one estimate of μ differs by an amount no greater than β , how many replications do we need?

$$1 - \alpha = P(|\overline{X} - \mu| \le \beta) = P(\overline{X} - \beta \le \mu \le \overline{X} + \beta)$$

Thus, we want our $(1 - \alpha)100\%$ CI half width to be β .

$$\beta = t_{\alpha/2,n-1} \frac{S}{\sqrt{n}} \quad \Rightarrow \quad n = S^2 \left(\frac{t_{\alpha/2,n-1}}{\beta}\right)^2$$

Note: Both S and $t_{\alpha/2,n-1}$ are dependent on n.

406.311 Simulation

Page 4–19, Y.-S. Hong^(C)

Obtaining a Specified Precision: Procedure

From the initial n replications $(n \ge 30)$, compute S^2 .

And then, assume S^2 is fixed, i.e., it will not change significantly with additional replications.

Procedure

(a) Perform $n \ge 30$ replications and compute S^2 .

(b) Compute
$$n^* = \min_{i \ge n} \left\{ t_{\alpha/2, i-1} \frac{S}{\sqrt{i}} \le \beta \right\}.$$

(Increase i by 1 until a value of i is obtained.)

(c) Take additional $(n^* - n)$ replications and compute the CI.

Obtaining a Specified Precision: Example

From the initial 10 replications, the values for replication statistics X_i 's were obtained as $\{1.53, 1.66, 1.24, 2.34, 2.00, 1.69, 2.69, 2.86, 1.70, 2.60\}.$

Find n such that, with 95% probability, the absolute error is no greater than $\beta = 0.25$.

Half width $t_{0.05/2,i-1}$ Ż 11 1.833 .322 16 1.753 .253 .235 17 1.746

 $n^* = 17.$

We calculated $\overline{x} = 2.03$ and s = 0.555.

Output Analysis for Non-Terminating Simulations

We'd like to focus on the *steady-state* behavior of the system. \Rightarrow Data are usually obtained from a *single long* simulation run. \Rightarrow *Individual observations* are used, rather than replication stats. \Rightarrow The independence of data *cannot* be easily assumed.

3 approaches for analyzing non-terminating simulations:

- Replication
 - How to deal with the initial condition bias?
 - Wider confidence intervals due to fewer replications
- Batching
 - Pseudo-independence (if the batches are sufficiently large)
 - Robustness in deleting data for initial condition bias
- Using individual raw observations with autocorrelation
 - Auto-correlogram, etc.

Batch Means Method

- (1) Group observations into n equal, non-overlapping batches, each of size m.
- (2) Compute the sample mean of each batch. The *i*th batch mean is m_{i}

$$X_i = \frac{\sum_{j=1}^{m} Y_{ij}}{m}, \quad i = 1, 2, \cdots, n$$

If batches are sufficiently large, X_i 's are approximately independent, even though the observation at the end of batch i are correlated with the one at the beginning of batch i + 1.

(3) Compute the confidence interval from these batch means. (Traditional statistical methods can apply thanks to pseudo-independence.)

Some Remarks on Batch Means Method

Batch size should be

- 1. large enough that batch means are approximately uncorrelated. \Rightarrow Batch size to be at least 10 times as large as the largest lag
- 2. small enough that the maximum number of batches is formed. \Rightarrow Number of batches to be at least 10

Replication vs. Batching

- 1. Independent replications run through the transient period in *each replication*. Batch means method requires this *only once*.
- 2. Errors in determining the transient period will cause the sample mean in each replication to be biased. Batch means is robust in that the bias will reduce in successive batches.