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Differential equations are of basic importance in engineering mathematics because many
physical laws and relations appear mathematically in the form of a differential equation.
In Part A we shall consider various physical and geometric problems that lead to
differential equations, with emphasis on modeling, that is, the transition from the physical
situation to a “‘mathematical model.; In this chapter the model will be a differential

equation, and as we proceed we shall explain the most important standard methods for

solving such equations.

W A~ 3 4% ;\’ Part A concerns ordinary differential equations (ODEs), whose unknown functions

depend W\Wable.differential equations (PDEs), involving unknown
functions of several varigbles, follow in Part C.

ODEs are very well suited for computers. Numeric methods for ODEs can be studied
directly after Chaps. 1 or 2. See Secs. 21.1-21.3, which are independent of the other
sections on numerics.



1.1 Basic

CHAPTER]

First-Order ODEs

In this chapter we begin our program of studying ordinary differential equations (ODE:)
by deriving them from physical or other problems (modeling), solving them by standard
methods, and interpreting solutions and their graphs in terms of a given problem. Questions
of existence and uniqueness of solutions will also be discussed (in Sec. 1.7).

We begin with the simplest ODEs, called ODEs of the first order because they involve
only the first derivative of the unknown function, no higher derivatives. Our usual
notation for the unknown function will be y(x), or y(7) if the independent variable is
time 7.

If you wish, use your computer algebra system (CAS) for checking solutions, but make

sure that you gain a conceptual understanding.of the basic terms, such as ODE, direction

field, and initial value problem.

COMMENT. Numerics for first-order ODEs can be studied immediately after this
chapter. See Secs. 21.1-21.2, which are independent of other sections on numerics.

Prerequisite: Integral calculus.
Sections that may be omitted in a shorter course: 1.6, 1.7.
References and Answers to Problems: App. | Part A, and App. 2

Concepts. Modeling

If we want to solve an engineering problem (usually of a physical nature), we first have
to formulate the problem as a mathematical expression in terms of variables, functions,
equations, and so forth. Such an expression is known as a mathematical modgl of the
given problem. The process of sefting up a_model. solying it mathen_;;ﬁEally, and
interpreting the result in physical or other terms is called mathematical modeling or, briefly,
mogdeling. We shall illustrate this process by various examples and problems because
modeling requires experience. (Your computer may help you in solving but hardly in
setting up models.)

Since many physical concepts, such as velocity and acceleration, are derivatives, a
model is very often an equation containing derivatives of an unknown function. Such
a model is called a differential equation. Of course, we then want to find a solution
(a function that satisfies the equation), explore its properties, graph it, find values of it,
and interpret it in physical terms so that we can understand the behavior of the physical
system in our given problem. However, before we can turn to methods of solution we

must first define basic concepts needed throughout this chapter.
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Basic Concepts. Modeling
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Displacement y

Y
Water level h
Falling stone Parachutist /
Outflowing water
¥" =g = const. mv’ = mg - bv” h*=-kVh
(Sec. 1.1) (Sec. 1.2) (Sec. 1.3)
i b
R
(k)
C E
L

Beats of a vibrating

Current I in an

Vibrating mass system RLC circuit
on a spring LI"+RI'+ LI=FE
my” +ky=0 y"+m§y=cos wt, 0,=® 2l
(Secs. 2.4, 2.8) (Sec. 2.8) (Sec. 2.9)
v
|
| Nsa
0 Fnk ’
¥ Lotka-Volterra
—_—
<~ predator—prey model
Deformation of a beam Pendulum yi=ay,~byy,
Ely" = f(x) Lo"+gsin@=0 yy=kyy,~ly,
(Sec. 3.3) (Sec. 4.5) (Sec. 4.5)

Fig. 1.

Some applications of differential equations
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An ordinary differential equation (ODE) is an equation that contains one or several
derivatives of an unknown function, which we usually call y(x) (or sometimes y(7) if the
independent variable is time 7). The equation may also contain y itself, known functions

of x (or 1), and constants. For example, o = /?(? 2, 3"90 rah lg'"rx') X )

12y (1) y' = cos x,

23 () ' y'+9y =0,

32) 3) 2"y + 2e%y" = (6% + 2)y?
: sod

are ordinary differential equations (ODEs). The term ordinary distinguishes them from
partial a’z%erennal equations (PDEs), which involve partial derivatives of an unknown
function of two or more variables. For instance, a PDE with unknown function u of two
variables x and y is
-5:'0’ lr\f)(; :2}1’2' v i a2, 5% -
OT(“fsifﬁ'a ar° 2%, Pl B

B ATRE b T 0y 0t

) a""M; 22" %’DES are more complicated than ODEs; they will be considered in Chap. 12.

An ODE is said to be of order n if the nth derivative of the unknown function y is the
wﬁmw The concept of order gives a useful classification
into ODE:s of first order, second order, and so on. Thus, (1) is of first order, (2) of second
order, and (3) of third order.

In this chapter we shall consider first-order ODEs. Such equations contain only the
first derivative y’ and may contain y and any given functions of x. Hence we can write
them as

4) F(x, y, y') =0

or often in the form

y' = flx, y).

This is called the explicit form, in contrast with the mplicit form (4). For instance, the

implicit ODE x™%y" — 4y = 0 (where x # 0) can be written explicitly as y' = 4x%2

Concept of Solution

A function
y = h(x)
is called a solution of a given ODE (4) on some open interval ¢ < if A(x) is defined
‘—_—'WW
d dlffere tiable thr ut the i d is such that the equation becomes an identity

if y and y" are replaced with and h » respectively. The curve (the 1e graph) of A is called
a solution curve.
ere, open interval @ < x < b means that the endpoints @ and b are not regarded as
points belonging to the interval. Also, a < x < b includes jnfinite_intervals —o < x < b,
a<x<® —w<y<oo((the real line) as special cases.
——— ey
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EXAMPLE 1

AN

EXAMPLE 2

EXAMPLE 3

Verification of Solution
e P e e ey Tt
y = h(x) = ¢/x (¢ an arbitrary constant, x # 0) is a solution of _ry' = —y. To verify this, differentiate,
y' = h'(x) = —c/x% and multiply by x to get xy' = —c¢/x = —y. Thus, xy' = —y, the given ODE. |
Solution Curves
The ODE y' = dy/dx = cos x can be solved directly by integration on both sides. Indeed, using calculus, we
obtain y = [ cos x dx = sin x + ¢, where ¢ is an arbitrary constant. This is a family of solutions. Each value
of ¢, for instance, 2.75 or 0 or —8, gives one of these curves. Figure 2 shows some of them, for ¢ = —3, —2
=150, 2:304. i
y
v /\/
k //\\ |
_n\/(l u\/ R %
v /\/
e s b
Fig. 2. Solutions y = sin x + ¢ of the ODE y' = cos x
I T——————— T T N ——————r
Exponential Growth, Exponential Decay
From calculus we know that y = ce® (¢ any constant) has the derivative (chain rule!)
dy
' 3t
_— e = Z = 3 F-
¥ 0 3ee By
This shows that y is a solution of y' = 3y. Hence this ODE can model exponential growth, for instance, of
animal populations or colonies of bacteria. It also applies to humans for SP&!I populations in a large country
(e.g., the United States in early times) and is then known as Malthus’s law.” We shall say more about this topic
in Sec. 1.5.
Similarly, y* = —0.2y (with a minus on the right!) has the solution y = ce %2 Hence this ODE models
- . . - . . i S .
exponential decay, for instance, of a radioactive substance (see Example 5). Figure 3 shows solutions for some
positive ¢. Can you find what the solutions look like for negative ¢? Bl
Y
2.5
2
15
1
0.5
0 \W

0 2 4 6 8 10 Mgl (s %

Fig. 3. Solutions of y' = —0.2y in Example 3

!Named after the English pioneer in classic economics, THOMAS ROBERT MALTHUS (1766-1834).
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We see that each ODE in these examples has a solution that contains an arbitrary constant
¢. Such a solution containing an arbitrary constant c is called a maj_s&l_gmof the
ODE.

(We shall see that ¢ is sometimes not completely arbitrary but must be resfricted o
some interval to avoid complex expressions in the solution.)

We shall develop methods that will give general solutionsniqguely (perhaps except for
notation). Hence we shall say( rhngeneral solution of a given ODE (instead of/@ Jeneral
solution).

Geometrically, the general solution of an ODE is a family of infinitely many solution
curves, one for each value of the constant c. If we choose a specific ¢ (e.g., ¢ = 6.45 or
0 or —2.01) we obtain what is called a ]:_oar;iculg: solution of the ODE. A particular
solution does not contain any arbitrary constants.

In most cases, general solutions exist, and every solution not containing an arbitrary constant
is obtained as a particular solution by assigning a suitable value to c¢. Exceptions to these
rules occur but are of minor interest in applications; see Prob. 16 in Problem Set 1.1.

Initial Value Problem

In most cases the unique solution of a given problem, hence a particular solution, is
obtained from a general solution by an initial condition y(xy) = y,, with given values
e = e Ny e .
xo and y,, that is used to determine a value of the arbitrary constant c. Geometrically
this condition means that the solution curve shouldeEQiﬂLLM) in
the xy-plane. An ODE together with an initial condition is called an_initial value
problem. Thus, if the ODE is explicit, y’ = f(x, y), the initial value problem is of the
form

5 Yy = f&x ), ¥(xo) = Yo-

Initial Value Problem

Solve the initial value problem

J:Q:g,- (0) = 5.7
& i Ys B,

Solution. The general solution is y(x) = e see Example 3. From this solution and the initial condition
we obtain y(0) = ce® = ¢ = 5.7. Hence the initial value problem has the solution y(x) = i._'lgfii[_h_is_ is a

Ear[icular solution. w

Modeling

The general importance of modeling to the engineer and physicist was emphasized at the
beginning of this section. We shall now consider a basic physical problem that will show
the typical steps of modeling in detail: Step 1 the transition from the physical situation
(the physical system) to_its mathematical formulation (its mathematical model); Step 2
the solution by a mathematical method; and Step 3 the physical interpretation of the result.
This may be the easiest way to obtain a first idea of the nature and purpose of differential
equations and their applications. Realize at the outset that your computer (your CAS) may
perhaps give you a hand in Step 2, but Steps 1 and 3 are basically your work. And Step 2
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EXAMPLE 5

-

requires.a.solid knowledge and good understanding of solution methods available to you—
you have to choos r work by hand or by the computer. Keep this in
mind, and always check computer results for errors (which may result, for instance, from

false inputs).
Radioactivity. Exponential Decay

Given an amount of a radioactive substance, say, 0.5 g (gram), find the amount present at any later time.
Physical Information. Experiments show that at each instant a radioactive substance decomposes at a rate

proportional to the the amount present.
h,

Step 1. Setting up a mathematical model (a differential equation) of the physical process. Denote by y(1) the
amount of substance still present at any time . By the physical law, the time rate of change y'(r) = dy/dt is
proportional to y(f). Denote the constant of proportionality by k. Then

6) e
( TR
"
The value of k is known from experiments for various radioactive substances (e.g., k = —1.4- 10" sec ™,

approximately, for radium EﬂRazzs). k is negative because y(f) decreases with time, The given initial amount is
0.5 g. Denote the corresponding time by r = 0. Then the initial condition is y(0) = 0.5. This is the instant at
which the process begins; this motivates the term initial condition (which, hoWever, is also used more generally
when the independent variable is not time or when you choose a ¢ other than 1 = 0). Hence the model of the

process is the initial value problem

(7) ';j; = ky, ¥(0) = 0.5.

Step 2. Mathematical solution. As in Example 3 we conclude that the ODE (6) models exponential decay and
has the general solution (with arbitrary constant ¢ but definite given k)

(8) ¥1) = ce’®,

[ i

We now use the initial condition to determine ¢. Since y(0) = ¢ from (8). this gives y(0) = ¢ = 0.5. Hence the
particular solution governing this process is

(9) W5 = 0.5¢" (Fig. 4).

—————

Always check your result—it may involve human or computer errors! Verify by differentiation (chain rule!)
that your solution (9) satisfies (7) as well as y(0) = 0.5:

d
73: = 05ke®t = k~0.5¢" = ky, y(0) = 0.5¢° = 0.5.

Step 3. Interpretation of result. Formula (9) gives the amount of radioactive substance at time r. It starts from
the correct given initial amount and decreases with time because k (the constant of proportionality, depending
on the kind of substance) is negative. The limit of y as t — % is zero.

0.5
0.4
0.3
0.2
0.1

0 ! | 1 ! I
0 0.5 1 1.5 2 25 Lk

Fig. 4. Radioactivity (Exponential decay,
y = 0.5 €, with k = —15 as an example)
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EXAMPLE 6 A Geometric Application

Geometric problems may also lead to initial value problems. For instance, find the curve through the point
(L._1)in the xy-plane having at each of its points the slope —y/x.

Solution. The slope y' should equal —y/x. This gives the ODE y' = —y/x. Its general solution isy =y
(see Example 1). This is a family of hyperbolas with the coordinate axes as asymptotes.

Now, for the curve to pass through (1, 1), we must have y = 1 when x = 1. Hence the initial condition is
y(1) = 1. From this condition and y = ¢/x we get y(1) = ¢/1 = 1; that is, ¢ = 1. This gives the particular
solution y = 1/x (drawn somewhat thicker in Fig. 5).

[1%] Qi &
| T

Fig. 5.

PROBLEM SET 1.1

CALCULUS

Solve the ODE by integration.
L.y = —sin mx 2.y =e?"
3.yl = xe* 2 4. y'

@ VERIFICATION OF SOLUTION

State the order of the ODE. Verify that the given function

is a solution. (a, b, ¢ are arbitrary constants.)
r

y = I + }!2‘
y' + @y = 0,
y" + 2y + 10y =0, y = 4e " sin3x

Sy 2y =Ac+1)E y=5e%+ 1%+ 2 + 1

m
y = cos X,

INITIAL VALUE PROBLEMS

Verify that y is a solution of the ODE. Determine from y
the particular solution satisfying the given initial condition.
Sketch or graph this solution.

cosh 4x

y = tan (x + ¢)
y = a cos wx + b sin mx

© %N o

y = —sinx +ax® + bx + ¢

105" =05y, v =cetF @) = 2

11. y' =1 + 4y%2, y=1tan 2x + ¢), y(0) =0
12. y =y—x, y=ce* +x+ 1, y0) =3
13. y' + 2y =0, y= ce™*, y(l) = lle

14) y) = ytanx, y =csecx, y0) = 3w

Solutions of y' = —y/x (hyperbolas)

N

Particular solutions and singular
solution in-Problem 16

Fig. 6.

15. (Existence) (A) Does the ODE y'2 = —1 have a (real)
solution?

(B) Does the ODE |y'| + [y| = 0 have a general
solution?

{Singular solution) An ODE may sometimes have an

additicnal solution that cannot be obtained from the
general solution and is then called a singular solution.
The ODE y'2 — xy’ + y = 0 is of the kind. Show by
differentiation and substitution that it has the general
solution y = ex — ¢ and the singular solution y = x%/4.
Explain Fig. 6.

MODELING, APPLICATIONS

The following problems will give you a first impression of
modeling. Many more problems on modeling follow
throughout this chapter.

17. (Falling body) If we drop a stone, we can assume air
resistance (“drag”) to be negligible. Experiments show
that under that assumption the acceleration y” = d*y/d*
of this motion is constant (equal to the so-called
acceleration of gravity g = 9.80 m/sec® = 32 ft/sec?).
State this as an ODE for y(1), the distance fallen as a
function of time #. Solve the ODE to get the familiar
law of free fall, y = gr?/2.
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18,

19.

20.

21.

1.2 Geometric Meaning of y’

(Falling body) If in Prob. 17 the stone starts at t = 0
from initial position y, with initial velocity v = vy,
show that the solution is y = gr*/2 + vot + y,. How
long does a fall of 100 m take if the body falls from
rest? A fall of 200 m? (Guess first.)

(Airplane takeoff) If an airplane has a run of 3 km,
starts with a speed 6 m/sec, moves with constant
acceleration, and makes the run in 1 min, with what
speed does it take off?

(Subsonic flight) The efficiency of the engines of
subsonic airplanes depends on air pressure and usually
is maximum near about 36 000 ft. Find the air pressure
y(x) at this height without calculation. Physical
information. The rate of change y'(x) is proportional
to the pressure, and at 18 000 ft the pressure has
decreased to half its value y, at sea level.

(Half-life) The half-life of a radioactive substance is
the time in which half of the given amount disappears.
Hence it measures the rapidity of the decay. What

(Direction Fields>

A first-order ODE

(1)

22.

is the half-life of radium ggRa??® (in years) in
Example 57

(Interest rates) Show by algebra that the investment y(r)
from a deposit y, after ¢ years at an interest rate r is

Ya(D) = yol1 + 7]*

¥4 = yoll + (/365)]°%
(Interest compounded daily).

(Interest compounded annually)

Recall from calculus that

[1+ (1/n)]"— eas n— o=
hence [1 + (#/n)]™ — €™; thus
¥ (1) = yge™ (Interest compounded continuously).

What ODE does the last function satisfy? Let the
initial investment be $1000 and r = 6%. Compute the
value of the investment after 1 year and after 5 years
using each of the three formulas. Is there much
difference?

=%y,

"= fxy)

has a simple geometric interpretation. From calculus you know that W

of y(x) is the slope of

(x). Hence a solution curve of (1) that passes through a point

(Xo» Yo) must have at that point the slope y'(xo) equal to w at that point; that is,

Lo nlne) '7)%,7) S

¥y : (x0) =

Read this paragraph again before yo

It follows that you can indicateldirectio

f(xos yo). <=— 7(. (}

and think about it,
of solution curves of (1) by drawing short

straight-line segments (lineal elements) in the xy-plane (as in Fig. 7a) and then fitting
(approximate) solution curves through the direction field (or slope field) thus obtained.
This method is important for two reasons.

1. You need not solve (1). This is essential because many ODEs have complicated

solution formulas or none at all.

form, the whole family of solutions and their typical

properties. The accuracy is somewhat limited, but in most cases this does not matter.

2. The method shows, in

Let us illustrate this method for the ODE

(2)

'

N =
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Direction Fields by a CAS (Computer Algebra System). A CAS plots lineal elements

at the points of a square grid, as in Fig. 7a for (2), into which you can fit solution curves.
ecrease sh size of the grid in regi whe i idly.

Direction Fields by Using Isoclines (the Older Method). Graph the curves
f(x, y) = k = const, called isoclines (meaning curves of equal inclination). For (2) these
are the hyperbolas f(x, y) = xy = k = const (and the coordinate axes) in Fig. 7b. By (1),
these are the curves along which the derivative y" is constant. These are not yet solution
curves—don’t get confused. Along each isocline draw many parallel line elements of the
corresponding slope k. This gives the direction field, into_which you can now graph
roximate solution curves.

We mention that for the ODE (2) in Fig. 7 we would not need the method, because we
shall see in the next section that ODEs such as (2) can easily be solved exactly. For the
time being, let us verify by substitution that (2) has the general solution

y(x) = ce™ P (c arbitrary).

Indeed, by differentiation (chain rule!) we get y’ = x(cexz"z) = xy. Of course, knowing
the solution, we now have the advantage of obtaining a feel for the accuracy of the
method by comparing with the exact solution. The particular solution in Fig. 7 through
(x,y) = (1, 2) must satisfy y(1) = 2. Thus, 2 = ce'? ¢ =2/Ve=1213,and the particular
solution is y(x) = l.213€1£i

A famous ODE for which we do need direction fields is

' X
(3) y =011 — x?) — ; :

(Tt is related to the van der Pol equation of electronics, which we shall discuss in Sec. 4.5.)
The direction field in Fig. 8 shows lineal elements generated by the computer. We have

also added the isoclines for k = —5, —3, 7, 1 as well as three typical solution curves, one
that is (almost) a circle and two spirals approaching it from inside and outside. '?{Fa'})
&,
e 2
i ¥ '
0 Y i e
it g RS \
| S Ly iy A/ A |
iz btoa AR N
e i ~ i L
VAN SIS Fh sy
Vg e ls ~ Al
| 1
1 % 1 x
i il Sl o g NN N NN X
P A A e e P o i e R e e W e
T EECY s b A o RS TS Sl e L
LA oA Mttt SRR N PN =Y
(1 S S S S e S T TS
i e i R T v e /
p o ek shapberas Aot \aatige
(a) ByaCAS (b) By isoclines

Fig. 7. Direction field of y' = xy
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On Numerics

X
Fig. 8. Direction field of y' = 0.1(1 — x?) — 7

Direction fields give “‘all” solutions, but with limited accuracy. If we need accurate numeric

values of a solution (or of several solutions) for which we have no formula, we can use
a numeric method. If you want to get an idea of how these methods work, go to Sec.

.1 and study the first two pages on the Euler-Cauchy method, which is typical of
more accurate methods later in that section, notably of the classical Runge-Kutta method.
It would make little sense to interrupt the present flow of ideas by including such methods
here; indeed, it would be a duplication of the material in Sec. 21.1. For an excursion to
that section you need no extra prerequisites; Sec. 1.1 just discussed is sufficient.

2. it

HoW .
PROBLEM SET 1.2

DIRECTION FIELDS, SOLUTION CURVES

Graph a direction field (by a CAS or by hand). In the field
graph approximate solution curves through the given point
or points (x, y) by hand.

1Ly =e" -y, (0,0),(0,1)

2. 4yy' = —9x, (2, 2)

& ploe dack p2Gmi 1)

4.y =y — 2y2 (0, 0), (0, 0.25), (0, 0.5), (0, 1)
5. y'=x*- 1y, (1, -2)

6.y =1+siny, (-1,0), (1, —4)

7.y =y +x%(0,1)

@)y =2xy + 1, (—1, 2), (0, 0), (1, —=2)

9,y = ytanhx — 2, (1, —2), (1, 0), (1, 2)

10. y“=e?% (15-1),@2, 2), 63:3)

11-15

ACCURACY

Direction fields are very useful because you can see
solutions (as many as you want) without solving the ODE,
which may be difficult or impossible in terms of a formula.
To get a feel for the accuracy of the method, graph a field,
sketch solution curves in it, and compare them with the
exact solutions.

11. y' = sin 3mx 12,y = 152
13. ¥/ = —2y (Sol. y = ce %)

@)y = 3y/x (Sol. y = cx¥)

15. y' = —Inx

16-18] MOTIONS

A body moves on a straight line, with velocity as given,
and y(z) is its distance from a fixed point 0 and ¢ time. Find
a model of the motion (an ODE). Graph a direction field.
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it sketch a solution curve corresponding to the given

initial condition.

16.

Velocity equal to the reciprocal of the distance, y(1) = 1

17. Product of velocity and distance equal to —¢, y(3) = —3

18.

19.

Velocity plus distance equal to the square of time,
y(0) =6

(Skydiver) Two forces act on a parachutist, the
attraction by the earth mg (m = mass of person plus
equipment, g = 9.8 m/sec® the acceleration of gravity)
and the air resistance, assumed to be proportional to
the square of the velocity v(f). Using Newton’s second
law of motion (mass X acceleration = resultant of the
forces), set up a model (an ODE for v(r)). Graph a
direction field (choosing m and the constant of
proportionality equal to 1). Assume that the parachute
opens when v = 10 m/sec. Graph the corresponding
solution in the field. What is the limiting velocity?

20. CAS PROJECT. Direction Fields. Discuss direction

fields as follows.

(a) Graph a direction field for the ODE y=1-y
and in it the solution satisfying y(0) = 5 showing
exponential approach. Can you see the limit of any
solution directly from the ODE? For what initial
condition will the solution be increasing? Constant?
Decreasing?

(b) What do the solution curves of y’ = —x3y? look
like, as concluded from a direction field. How do they
seem to differ from circles? What are the isoclines?
What happens to those curves when you drop the minus
on the right? Do they look similar to familiar curves?
First, guess.

(¢) Compare, as best as you can, the old and the
computer methods, their advantages and disadvantages.
Write a short report.

1.3 Separable ODEs. Modeling

Many practically useful ODEs can be reduced to the form

1) gy’ = f(x)

by purely Glgebraic manipulations) Then we can integrate on both sides with respect to x,
obtaining

@) Jowry gy= [0 gs+ e

On the left we can switch to y as the variable of integration. By calculus,{i” dx = dii;)so
that

) Je dy = [ dx + .

If { and g are gontinuous functl@, the integrals in (3) exist, and by evaluating them we
obtain a general solution of (1). This method of solving ODEs is called the method of
separating variables, and (1) is called a separable equation, because in (3) the variables
are now separated: x appears only on the right and y only on the left.

EXAMPLE 1 A Separable ODE
The ODE y’ = 1 + y is separable because it can be written
dy

l+y2

= dx. By integration,

arctany = x + ¢ or y =tani(x + ¢).
——— it —— e
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EXAMPLE 2

P
Losmic D\ F B )

EXAMPLE 3

&

It is very important to introduce the constant of integration immedi i jon_i

1If we wrote arctan y = x, then y = tan x, and then introduced ¢, we would have obtained y = tan x + ¢, which
. 1 » . D S
is not a solution (when ¢ # 0). Verity this. B

Modeling

The importance of modeling was emphasized in Sec. 1.1, and separable equations yield
various useful models. Let us discuss this in terms of some typical examples.

Radiocarbon Dating® )t / AY2A2) AT

In September 1991 the famous Iceman (Oetzi), a mu/mm y from the Neolithic pgriod of the Stone Age found in
the ice of the Oetztal Alps (hence the name “Oetzi”) in Southern Tyrolia near the Austrian—Italian border, caused
a scientific sensation. When did Oetzi approximately live and die if the ratio of carbon GCM’ to carbon 6C12 in
this mummy is 52.5% of that of a living organism?
Physical Information. In the atmosphere and in living organisms, the ratio of@@ (made
radioactive by cosmic rays) to ordinary carbon ¢C'2 is constant. When an organism ies; 165 @bsorption of gC'4
by breathing and eating terminates. Hence one can estimate the age of a fossil by comparing the radioactive carbon
ratio in the fossil with that in the atmosphere. To do this, one needs to know the half-life of GCM, which is 5715
years (CRC Handbook of Chemistry and Physics, 83rd ed., Boca Raton: CRC Press, 2002, page 11-52, line 9).

Solution. Modeling. Radioactive decay is governed by the ODE y' = ky (see Sec. 1.1, Example 5). By
separation and integration (where 1 is time and yj is the initial ratio of BE“ to sCm)
N ——

dy
7‘ = kdl, Inly| = ki + ¢, 3 = yoe™

Next we use the half-life H = 5715 to determine k. When ¢ = H, half of the original substance is still present.
Thus,

In 0.5 0.693
kH = ) kH = = — —_—= =
Yoe 0.5y0, ¢ 0.5, k = —~ 0.0001213.

Finally, we use the ratio 52.5% for determining the time ¢ when Oetzi died (actually, was killed),

In 0.525
kt _ ,—0.0001213t _ i = ; A
e e 0.525, P = 50001213 5312, Answer: About 5300 years ago.

Other methods show that radiocarbon dating values.arg usually too small. According to recent research, this is

due to a variation in that carbon ratio because of Mn and other factors, such as ificlear testin'é.}.

Mixing Problem

Mixing problems occur quite frequently in chemical industry. We explain here how to solve the basic model
involving a single tank. The tank in Fig. 9 contains 1000 gal of water in which initially 100 Ib of salt is dissolved.
Bsipe runs in at a rate of 10 gal/min, and each gallon contains 5 Ib of dissoved salt. The mixture in the tank is

kept uniform by stirring. Brine runs out at 10 gal/min. Find the amount of salt in the tank at a%)

Solution. Step 1. Setting up a model. Let y(1) denote the amount of salt in the tank attime r. Its time rate
of change is

y' = Salt inflow rate — Salt outflow rate “Balance law”,
L

5 1b times 10 gal gives an inflow of 50 Ib of salt. Now, the outflow is 10 gal of brine. This is 10/1000 = 0.01
(= 1%} of the total brine content in the tank, hence 0.01 of the salt content y(7), that is, 0.01y(7). Thus the model
is the ODE

(4) y' =50 = 001y = ~0.01(y ~ 5000).
—— Ha » _
ST [ a/‘, 2| Fli ) % V& 7 5’0‘1»’1"'
“Method by WILLARD FRANK LIBBY (1908-1980), American chemist, who was awarded for this work
the 1960 Nobel Prize in chemistry.
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Step 2. Solution of the model. The ODE (4) is separable. Separation, integration, and taking exponents on both
sides gives

d 7
S ;000 = —0.01 dt, Inly — 5000 = —0.01¢ + ¢* = 5000 = ce~0O1,

Initially the tank contains [(5[] Ib of sala Hence y(0) = 100 is the initial condition that will give the unique
solution. Substituting y = 100 and r = 0 in the last equation gives 100 — 5000 = ce® = ¢. Hence ¢ = —4900.
Hence the amount of salt in the tank at time ¢ is e

(5) y(1) = 5000 — 4900e "M,

This function shows an exponential approach to the limit 5000 Ib; see Fig. 9. Can you explain physically that
y(1) should increase with time? That its limit Ts 5000 Ib? Can you see the limit directly from the ODE?

The model discussed becomes more realistic in problems on pollutants in lakes (see Problem Set 1.5, Prob.
27) or drugs in organs. These types of problems are more difficult because the mixing may be imperfect and
the flow rates (in and out) may be different and known only very roughly. |

(BE!

dy
5000
4000
3000
2000
1000

100 1 I ! | L
0 100 200 3800 400 500 ¢

Tank Salt content y(t)

Fig. 9. Mixing problem in Example 3

Heating an Office Building (Newton’s Law of Cooling’)

Suppose that in Winter the daytime temperature in a certain office building is maintained at(70°F/ The heating
is shut off at 10 p.m. and turned on again at 6 A.M. On a certain day the temperature inside the building at
2 a.M. was found to be 65°F. The outside temperature was S0°F at 10 p.m. and had dropped to 40°F by 6 A.M.
What was the temperature inside the building when the heat was turned on at 6 AM.2

Physical information. Experiments show that the time rate of change of the temperature 7 of a body B (which
conducts heat well, as, for example, a copper ball does) is proportional to the difference between T and the
temperature of the surrounding medium ﬁiwtnn’s law of cooling).

Solution. Step 1. Setting up a model. Let the temperature inside the building and(T »)the outside
temperature (assumed to be constant in Newton’s law). Then by Newton's law,
e v T
6 e HE=T
®) 7 M T

Such experimental laws are derived under idealized assumptions that rarely hold exactly. However, even if a
model seems to fit the reality only poorly (as in the present case), it may still give valuable qualitative information.
To see how good a model is, the engineer will collect experimental data and compare them with calculations
from the model.

3Sir ISAAC NEWTON (1642-1727), great English physicist and mathematician, became a professor at
Cambridge in 1669 and Master of the Mint in 1699. He and the German mathematician and philosopher
GOTTERIED WILHELM LEIBNIZ (1646-1716) invented (independently) the differential and integral calculus.
Newton discovered many basic physical laws and created the method of investigating physical problems by
means of calculus. His Philosophiae naturalis principia mathematica (Mathematical Principles of Natural
Philosophy, 1687) contains the development of classical mechanics. His work is of greatest importance to both
mathematics and physics.
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Step 2. General solution. We cannot solve (6) because we do not know T4, just that it varied between 50°F
and 40°F, so we follow the Golden Rule: If you cannot solve your problem, try to solve a simpler one. We
solve (6) with the unknown function 7', replaced with the average of the two known values, or 45°F. For physical
%q}%i reasons we may expect that this will give us a reasonable approximate value of T in the building at 6 A.m.
For constant Tﬁ = 45 (or any other constant value) the ODE (6) is separable. Separation, integration, and
u‘,g’ i taking exponents gives the general solution

o %2

»
200 W

\%

= - — — + o* = + _k': = p° 3
e k dt, In|T — 45| = kt + c*, T(t) = 45 + ce (c=¢%)

Step 3. Particular solution. We choose 10 P.M. to be + = 0. Then the given initial condition is 7(0) = 70 and
yields a particular solution, call it 7;,. By substitution,

7(0) = 45 + ce° = 70, c=70— 45 = 25, T.() = 45 + 25",
AL 2ol TS e e

%
\'):' 3 '%ﬁﬂ = Z i Sl . : ; S
4,»( ep 4. Determination of k. We use T(4) = 65, where t = 4 is 2 aA.M. Solving algebraically for k and inserting
ad k into T,(1) gives (Fig. 10)

|oY

T,(4) = 45 + 25¢% = 65, e = 0.8, k=%In08 = —0.056, T, = 45 + 256099,
Step 5. Answer and interpretation. 6 AM. is t = 8 (namely,_8 hours after 10 p.m.), and

T,(8) = 45 + 256709968 = 6 [°F].

Hence the temperature in the building dropped 9°F, a result that looks reasonable. =]

o
704

68

66
65
64

62
61
60

0 2

Fig. 10. Particular solution (temperature) in Example 4

EXAMPLE 5 Leaking Tank. Outflow of Water Through a Hole (Torricelli’s Law)

mnr

This is another prototype engineering problem that leads to an ODE. It concerns the outflow of water from a
cylindrical tank with a hole at the bottom (Fig. 11). You are asked to find the height of the water in the tank at
any time if the tank has diameter 2 m, the hole has diameter I cm. and the initial height of the water when the
hole is opened is 2.25 m. When will the tank be empty?

Physical information. Under the influence of gravity the outflowing water has velocity

) (1) = 0.600V2gh(r) (Torricelli’s law?),

where h(7) is the height of the water above the hole at time 7, and ¢ = 980 cm/sec® = 32.17 ft/sec? is the
acceleration of gravity at the surface of the earth.

Solution. Step 1. Setting up the model. To get an equation, we relate the decrease in water level A(f) to the
outflow. The volume AV of the outflow during a short time At is

AV= Av Ar (A = Area of hole).

4EVANGELISTA TORRICELLI (1608-1647), Italian physicist, pupil and successor of GALILEO GALILEI
(1564-1642) at Florence. The “contraction factor” 0.600 was introduced by J. C. BORDA in 1766 because the
stream has a smaller cross section than the area of the hole.




16

CHAP.1 First-Order ODEs

AV must equal the change AV* of the volume of the water in the tank. Now
AV* = —B Ah (B = Cross-sectional area of tank)

where Ah (> 0) is the decrease of the height (r) of the water. The minus sign appears because the volume of
the water in the tank decreases. Equating AV and AV* gives

—B Ah = Av At

We now express v according to Torricelli’s law and then let Ar (the length of the time interval considered)
approach O—this is a standard way of obtaining an ODE as a model. That is, we have

Ah A A
e oy 0600V 2gh(,

and by letting Az — 0 we obtain the ODE

dh A
— = 26563 Vh,

where 26.56 = 0.600 V2 + 980. This is our model, a first-order ODE.

Step 2. General solution. Our ODE is separable. A/B is constant. Separation and integration gives

LS d Vi = o — 26,56 =
\/E e . B 5 an = . B f.
Dividing by 2 and squaring gives h = (¢ — 13.2841/B)". Inserting 13.284/B = 13.28 - 0.5%7/100*7 = 0.000332

yields the general solution -
h(r) = (¢ — 0.000332¢)°.

Step 3. Particular solution. The initial height (the initial condition) is A(0) = 225 cm. Substitution of r = 0
and h = 225 gives from the general solution ¢% = 225, ¢ = 15.00 and thus the particular solution (Fig. 11)

hy(f) = (15.00 — 0.0003320)%.

Step 4. Tank empty. hy(r) = 0 if 1 = 15.00/0.000332 = 45 181 [sec] = 12.6 [hours].
Here you see distinctly the importance of the choice of umts—we have been working with the Cgs system,
in which time is measured in seconds! We used g = 980 em/sec?.

Step 5. Checking. Check the result. |

2.00 m h
')-| 250 +
2 Water level
at time ¢ 200

150
2.25m

hie) 100

50

{ Outflowing 0 | | B}
water 0 10000 30000 50000 ¢

Tank Water level A(¢) in tank
Fig. 1. Example 5. Outflow from a cylindrical tank (“leaking tank”). Torricelli's law

Extended Method: Reduction to Separable Form

Certaln nonseparable ODEs can be made separable by transformations that introduce for
y a new unknown function. We discuss this technique for a class of ODEs of | prdctu.al
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e

importance, namely, for equations

8) y = f(%) :

17

Here, f is any (differentiable) function of Xfc such as sin (y/x), (v/x)*, and so on. (Such
an ODE is sometimes called a homogeneous ODE, a term we shall not use but reserve

for a more important purpose in Sec. 1.3.)
The form of such an ODE suggests that we set y/x = u; thus,

R e )

9) Y = ux and by product differentiation y =u'x+u

Substitution into y’ = f(y/x) then gives u'x + u = f(u) or u'x = f(u) — u. We see that

this can be separated:

10 i :
(10) M}

"

EXAMPLE 6 Reduction to Separable Form

Solve i
2y’ = y? = .

Solution. To get the usual explicit form, divide the given equation by 2xy,

Pt ¥ x

M= = e—— —

2xy 2x 2y’

Now substitute y and y’ from (9) and then simplify by subtracting « on both sides,

£ A u alliy Jiral u 1 <5 —u2 il
bl 9y s e T o T
You see that in the last equation you can now separate the variables,
2u du dx Byt - it 2) in [ ey 1 R
=0 i & integration, n(l +u®)=—-Inxl +e*=1In|—| + c*
1+ X ¥ R ( X

(o1
530

l

o
X

cox O

Take exponents on both sides to get 1 + uZ=clxorl + (yn)? = cx. Multiply the last equation by 2o

obtain (Fig. 12)
2 A 2L Th E v Za 2 12_
x v = ex. us 2 ya ==

———

S

——

This general solution represents a family of circles passing through the origin with centers on the x-axis.

al
(e
38 4
s
Fig. 12. General solution (family of circles) in Example 6

Hw . bl
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Fig. 13. Problem 32
33. (Mixing) A tank contains 800 gal of water in which

35.

200 1b of salt is dissolved. Two gallons of fresh water
runs in per minute, and 2 gal of the mixture in the tank,
kept uniform by stirring, runs out per minute. How
much salt is left in the tank after 5 hours?

. WRITING PROJECT. Exponential Increase, Decay,

Approach. Collect, order, and present all the information
on the ODE y’ = ky and its applications from the text
and the problems. Add examples of your own.

CAS EXPERIMENT. Graphing Solutions. A CAS
can usually graph solutions even if they are given by
integrals that cannot be evaluated by the usual methods
of calculus. Show this as follows.

36.

19

(A) Graph the curves for the seven initial value
problems y' — 6'12’2, ¥(0) =0, =1, £2, =3, common
axes. Are these curves congruent? Why?

(B) Experiment with approximate curves of nth partial
sums of the Maclaurin series obtained by termwise
integration of that of y in (A); graph them and describe
qualitatively the accuracy for a fixed interval
0 = x = b and increasing n, and then for fixed n and
increasing b.

(C) Experiment with y' = cos (x?) as in (B).
(D) Find an initial value problem with solution

y = e"zf e~* dt and experiment with it as in (B).
0

TEAM PROJECT. Torricelli’s Law. Suppose that
the tank in Example 5 is hemispherical, of radius R,
initially full of water, and has an outlet of 5 cm? cross-
sectional area at the bottom. (Make a sketch.) Set up
the model for outflow. Indicate what portion of your
work in Example 5 you can use (so that it can become
part of the general method independent of the shape of
the tank). Find the time ¢ to empty the tank (a) for any
R, (b) for R = 1 m. Plot ¢ as function of R. Find the
time when & = R/2 (a) for any R, (b) for R = 1 m,

1.4 Exact ODEs. Integrating Factors

We remember from calculus that if a function u(x, y) has continuous partial derivatives,
its differential (also called its total differential) is

%

9/

du="——dx -k =——dy.

dx

dy

From this it follows that if u(x, y) = ¢ = const, then du = 0.
For example, if u = x + xzy3 = ¢, then

du= (1 + 2xy®) dx + 3x%%dy = 0

or

By

TR e

dx

1 + 2xy°
3x2y2

an ODE that we can solve by going backward. This idea leads to a powerful solution

method as follows.

A first-order ODE M(x, y) + N(x, y)y' = 0, written as (use dy = y' dx as in Sec. 1.3)

(1)

M(x, y) dx + N(x, y)dy = 0



20

CHAP.1 First-Order ODEs

is called an @act differential equation)f the differential form M(x, y) dx + N(x, y) dy
is exact, that is, this form is the differential Y X Y )

@) d_audx 8ud
uﬂé‘x ayy

A

of some function #(x, ). Then (1) can be written N (L '9)

du = 0.
By integration we immediately obtain the(general solution)of (1) in the form
3 ulx,y) = c.

This is called anm in contrast with a solution y = h(x) as defined in Sec.

T, which is also called an explicit solution, for distinction. Sometimes an implicit solution
can be converted to explicit form. (Do this for x> + y? = 1.) If this is not possible, your

CAS may graph a figure of the(€ontour lines 13 Jof the function u(x, y) and help you in
understanding the solution.

Comparing (1) and (2), we see that (1) is an exact differential equation if there is some
function u(x, y) such that

4) @ — =M, (b) — =N

From this we can derive @nula for checking whether (1) is exact or not, as follows.

Let M and N bwmmmwapmmmm a region in
the xy-plane whose boundary is a closed curve without self-intersections. Then by partial
differentiation of (4) (see App. 3.2 for notation),

oM u
dy  dyox’
N Pu
ax  dxdy

By the assumption of continuity the two second partial derivatives are equal. Thus

s oM aN
) dy  ox
This condition is not only negcessary. but also.sufficient-for (1) to be an exact differential

equation. (We shall prove this in Sec. 10.2 in another context. Some calculus books (e.g.,
Ref. [GR11] also contain a proof.)

If (1) is exact, the function u(x, y) can be found by inspection or in the following
systematic way. From (4a) we have by integration with respect to x
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’rég)“’%%‘”} (6) u=[Madx + k(y:
— &F
=
g '6 d & in this integration, y is to be regarded(as a constanf) and k(y) plays the role of a “constant”
H& Jr?" of integration. To determine k(y), we derive du/dy from (6), use (4b) to get_dk/dy, and
integrate dk/dy to gaCk. '

& Formula (6) was obtained from (4a). Instead of (4a) we may equally well use (4b).
= 7@%}}1“) ‘k’. %‘T‘&x”f‘hen instead of (6) we first have by integration with respect to y

(6%) - o f Ndy + I(x).

To determine /(x), we derive du/dx from (6*), use (4a) to get dl/dx, and integrate. We
illustrate all this by the following typical examples.

e EXAMPLE 1 AnExact ODE

Solve

(7) cos (x + y) dx + (E;y2 + 2y + cos (x + y)) dy = 0.

Solution. Step 1. Test for exactness. Our equation is of the form (1) with
M = cos (x + y),

N=3y2+2y+cas(x+y].

Thus
A et
ay = SnG+),
aN )
——. = =sin{x+ y).
dx

From this and (5) we see that (7) is exact.

Step 2. Implicit general solution. From (6) we obtain by integration
(8) u= fMdr + k(y) = fcos (x + y) dx + k(y) = sin (x + y) + k(y).

To find k(y), we differentiate this formula with respect to y and use formula (4b), obtaining

oU a ou dk 2
— N a—v=cos(x+y)+E=N=3y + 2y + cos (x + y).

gHence dkldy = 3y + 2y. By integration, k = 23 +y c*) Inserting this result into (8) and observing (3),
*

e obtain the answer
u(x, y) = sin (x + y) + y3 + y2 =c

Step 3. Checking an implicit solution. We can check by differentiating the implicit solution u(x, y) = ¢ 6pfh- )

c# -P @ and see whether this leads to the given ODE (7):

,C/"’/‘ : du u

(9 du=;dx+—a’y—cos(x+y)d.r+(cos(x+y)+3v +2y)dy =0

This completes the check. )
| —
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EXAMPLE 2 An Initial Value Problem

Solve the initial value problem
(10} (cos y sinhx + 1) dx — siny coshx dy = 0, @
Solution. You may verify that the given ODE is exact. We find u. For a change, let us use (6%),

u= - f sin y cosh x dy + I(x) = cos y cosh x + [(x).
~—

From this, du/dx = cosy sinhx + dlfdx = M = cosy sinhx + 1. Hence By integration,
I(x) = x + ¢*. This gives the general solution u(x, y) = cosy coshx + x.= ¢. From the initial condition,
cos 2 cosh 1 + 1 = 0,358 = c. Hence the answer is cos y cosh x + x = 0.358. Figure 14 shows the particular
solutions for ¢ = 0, 0.358 (thicker curve), 1, 2, 3. Check that the answer satisfies the ODE. (Proceed as in
Example 1.) Also check that the initial condition is satisfied. =3
Y
2.5
2.0
T
1.0
0.5

1 1 | | | I
0 = bl | S [ SRS e e b Bre /ST g R

Fig. 14. Particular solu.ions in Example 2

EXAMPLE 3 WARNING! Breakdown in the Case of Nonexactness

The ion —ydx + xdy =0 is@bﬂcause M = —y and N = x, so that in (5), dy = —1 but

fox = J. Let us show that in such a case the present method does not work. From (6),
u=fde+k('J=—'+k() hence a—u=—~x+£
T ek B e
— -

S 0 Now, du/dy should equal N = x, by (4b). However, this is impossible because k(y) can depend only on y. Try
U & T § (6%); it will also fail. Solve the equation by another method that we have discussed. =
e b
Jy %

= \» . :

A oAl Reduction to Exact Form. Integrating Factors
7
u{-,-% The QDE in Example 3 is —y dx + xdy = 0. It is not exact. However, if we multiply it
\ P
\?] \,’1‘(0% b we get an exact equation [check exactness by (5)!],
—ydx + xd 1
(11) Jz—y:ﬁ%dx+—dy=d(l)=o.
x X X 2

Integration of (11) then gives the general solution y/x = ¢ = const.
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This example gives the idea. All we did was multiply a given ponexact equation, say,

(12) (@dx+@dy=o,

by a function F that, in general, will be a function of both x and y. The result was an equation

(13) FPdx + FQdy = 0

so we can solve it as just discussed. Such a function F(x, y) is then called
egrating factor of (1

g

EXAMPLE 4 Integrating Factor

The integrating factor in (11) is F = 1/x2. Hence in this case the exact equation (13) is

—ydx + xdy ’
FRav- R0y = =d(l) = 0. Solution 2 =c.
x x B
e are strai = i
It is remarkable that we can readily find gther integrating Y for the equation —y dx + x dy = 0, namely,

Ll’yz, 1/(xy), and 1;"(Jr2 + yz), because

—ydx + xd —ydx + xd x —vdx + xd ]
{,4}3’_2?”(1)‘ _y_ubc,(@_), yz_zy:d(@z)_ T
2 4 Xy y 3 e X

2

How to Find Integrating Factors

In simpler cases we may find integrating factors by inspection or perhaps after some trials,
keeping (14) in mind. In the general case, the idea is the following.

For M dx + N dy = 0 the exactness condition (4) is dM/dy = aN/ox. Hence for (13),
FP dx + FQ dy = 0, the exactness condition is

d

0
(15) Y (8 = - (FO).

By , with subscripts denoting partial derivatives, this gives

F,P + FP, = F,Q + FQ,.

-‘,GRJ In the general case, this would bé&complicated and use So we follow thelGolden Rul
Hc B 1p e
&Vn‘ /! ) If you cannot solve your problem, try to solve a {mplep one—the result may be useful
.,b\,'l}\ \ (and may.also help you later on). Hence we look for an integrating factor depending only

on M fortunately, in many practical cases, there are such factors, as we shall

see. Thus, letThen F,=0,and F, = F' = dF/dx, so that (15) becomes

FP,=F'Q + FQ,.

D

%_ !‘!1 Q/ Dividing ba.nd reshuffling terms, we have

7};,; %\L (16) % %f =(®) where R=

i

1
N e Q
This proves the following theorem.
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THEOREM 1

THEOREM 2

EXAMPLE 5

CHAP.1 First-Order ODEs

Integrating Factor F(x)

If (12) is such that the right side R of (16). a’enend.s_ﬂ@then (12) has an
integrating factor F = F(x), which is obtained by integrating (16) and taking
exponents on both sides,

a7) F(x) = exp fR(x) dx..

Similarly, if F* = F*(y), then instead of (16) we get

Pl : *_l 10, aP
FW_R’ where R_F

18
a5 ax dy

and we have the companion

Integrating Factor F*(y)
If (12) is such that the right side_R* of (18) depends éiy on y) then (12) has an
integrating factor F* = F*(y), which is obtained from (18) in the form

19) F¥(y) = exp [R*(y) db.

Application of Theorems 1 and 2. Initial Value Problem

Using Theorem 1 or 2, find an integrating factor and solve the initial value problem

(20) (¥ +yeydr + (xe' = 1) dy =0, yO)=-1

Solution. Step 1. Nonexactness. The exactness check fails:

aP d d ad
— = — (exﬂ; + yey) = 8I+‘y + ¥ + _W,L' but _Q s, (xeln‘ -1 = &Y.
dy dy dx ax

Step 2. Integrating factor. General solution. Theorem 1 fails because R [the right side of (16)] depends on
both x g‘ng Y

1 (9P Q) _ ! THY o Y y
®:Q(8y a.r)'—xgy-—-](e + ¥ + ye e?).

Try Theorem 2. The right side of (18) is

@zl Q_ﬁ =4]_(6y_er+y_ey_ e“')=—]
P ax dy &Y+ ye > :

Hence (19) gives the integrating factor F*(y) = e~ Y. From this result and (20) you get the exact equation
T g™
(" +y)do+ (x—eY)dy=0.

Test for exactness; you will get | on both sides of the exactness condition. By integration, using (4a),

u=f(ex+y)dx—e$+xy+k(y).

19)
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Differentiate this with respect to y and use (4b) to get

du dk dk
— =x+ — =N=x—¢", — = —g7¥ k=e ¥+ %
dy Yo

Hence the general solution is

ulx,y) =e*+xy+e ¥ =c

Step 3. Particular solution. The initial condition_y(0) = 1 gives u(0, —1) = 1 + 0 + ¢ = 3.72. Hence the

answer is e® + xy + ¢7Y = 1 + e = 3.72. Figure 15 shows several particular solutions obtained as level curves
of u(x, y) = ¢, obtained by a CAS, a convenient way in cases in which it is impossible or difficult to cast a

solution into explicit form. Note the curve that (nearly) satisfies the initial condition.

Step 4. Checking. Check by substitution that the answer satisfies the given equation as well as the initial

condition.

2

Fig. 15.

LRl i

PROBLEM SET 1.4

EXACT ODEs. INTEGRATING FACTORS

Test for exactness. If exact, solve. If not, use an integrating
factor as given or find it by inspection or from the theorems
in the text. Also, if an initial condition is given, determine
the corresponding particular solution.

L. x3de +y3dy =0 2. (x —y)dx —dy) =0
— 7 sin 7x sinh y dx + cos mx coshy dy = 0
(e¥ — ye®) dx + (xe¥ — e*) dy = 0

O9x dx + 4y dy =0

e“(cos ydx — sinydy) =0

e 20 dr—2re%do =0

@x + Uy — ylx®) dx + 2y + 1/x — xly®) dy = 0
9. (—y/x% + 2cos 2x) dx + (1/x — 2sin2y)dy = 0
10. —2xy sin (x®) dx + cos (x*) dy = 0

Naw s W

Particular solutions in Example 5

>0

11. —ydx + xdy =0

12, (e®*Y — y) dx + (xe™¥ + 1) dy = 0

13. —3ydx + 2xdy = 0, F(x,y) = y/x*

14. x* + y®) dx —xydy =0, y(2) =1

15. e2*(2 cosy dx — siny dy) = 0, y(0) =0

16. —sinxy (ydx + xdy) = 0, y(1) ==«

17. (cos wx + o sin wx) dx + ¢* dy = 0, y(0) = 1

18. (cos xy + x/y) dx + (1 + (x/y) cosxy) dy = 0

19. e Vdx+ e %(—eV+1)dy =0, F= Y
@sinycosy + xcos2y)dx +xdy =0

21. Under what conditions for the constants A, B, C, D is

(Ax + By) dx + (Cx + Dy)dy = 0 exact? Solve
the exact equation.
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22. CAS PROJECT. Graphing Particular Solutions (d) In another graph show the solution curves
Graph particular solutions of the following ODE, satisfying y(0) = =1, 2, *£3, *4. Compare the
proceeding as explained. quality of (c) and (d) and comment.
1 (e) Do the same steps for another nonexact ODE of
(21) y cos x dx + ; dy = 0 your choice.
23. WRITING PROJECT. Working Backward. Start
(a) Test for exactness. If necessary, find an integrating from solutions u(x, y) = ¢ of your choice, find a
factor. Find the general solution u(x, y) = c. corresponding exact ODE, destroy exactness by a
(b) Solve (21) by separating variables. Is this simpler multiplication or division. This should give you a feel
than (a)? for the form of ODEs you can reach by the method of

(¢) Graph contours u(x, y) = ¢ by your CAS, (Cf, Fig.

integrating factors. (Working backward is useful in

16.) other areas, too; Euler and other great masters
frequently did it.)

y : 24, TEAM PROJECT. Solution by Several Methods.

A Show this as indicated. Compare the amount of work.

j (A) e¥(sinh x dx + cosh x dy) = 0 as an exact ODE
and by separation.

2 \/\/\/\ (B) (1 + 2x) cosy dx + dy/cos y = 0 by Theorem

S__ _ﬂ/f; _//4;\\___ é; 2 and by separation.
e T e e (C) (x2 + y2) dx — 2xy dy = 0 by Theorem 1 or 2
2 4 6 B 1O = ; :
and by separation with v = y/x.
2ol (D) 3x% y dx + 4x® dy = 0 by Theorems 1 and 2
and by separation.

3 X (E) Search the text and the problems for further ODEs
that can be solved by more than one of the methods
discussed so far, Make a list of these ODEs. Find

Fig. 16. Particular solutions in CAS Project 22 further cases of your own.

1.5 Linear ODEs. Bernoulli Equation.
Population Dynamics

Linear ODEs or ODEs that can be transformed to @aw models of various
phenomena, for instance, in physics, biology, population dynamics, and ecology, as we
shall see. A first-order ODE is said to be linear if it can be written

(1) y' + px)y = rx).

The defining feature of this equation is that it is linear in both the unknown function y
and its derivative y' = dyldx, whereas p and r may be iven function If in an
application the independent variable is time, we write 7 instead of x.
If the first term is f(x)y’ (instead of y"), divide the egq uatioébi f(x) to get the “‘standard
X ! _ = 3 P
form” (1), with y" as the first term, which is practical.
For instance, y' cosx + y sinx = x is a linear ODE, and its standard form is

y' + y tan x = x sec x.
The function 7(x) on the right may be a force, and the solution y(x) a displacement.in.

a motion or an electrical current or some other physical quantity. In engineering, r(x) is
frequently called @n’p(,ﬁfhd »(x) i called the(@utpupor @ to the input (and,

if given, to the initial Tondition).
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ﬂomoéeneous Linear OEE, We want to solve (1) in some interval ¢ < x < b, call it
J, and we begin with the simpler special case that r(x) is zero for all x in J. (This is
sometimes written r(x) = 0.) Then the ODE (1) becomes

(2) y' +p@)y =0

and is called homogeneous. By separating variables and integrating we then obtain

dy

— e—nly)ux; thus Inly| = —fp(x) dx:+ c*,

y ‘ ] ‘ec* _Erfz)dx
Taking exponents on both sides, we obtain the general solutio? of the homogeneous
ODE (2),
3) Wx) =icen 7@ &= (c = *¢¢ when y=0);

e

here we may also choose ¢ = 0 and obtain the @rivial solutiony(¥)= O for all x in that

interval,

Nonhomogeneous Linear ODE. We now solve (1) in the case that r(x) in (1) is not

everywhere zero in the interval J considered. Then the ODE (1) is called nonhomogeneous.
It turns out that in this case, (1) has a pleasant property: namMm_ﬁﬁb
(ﬁ?ﬁ?@ only on x. We can find this factor F(x) by Theorem 1 in the last section.
For this purpose we write (1) as

(py — rydx + dy = 0.

This is P dx + Q dy = 0, where P = py — r and Q = 1. Hence the right side of (16) in
Sec. 1.4 is simply 1(p — 0) = p, so that (16) becomes

el
G
Separation and integration gives
dF
?=pdx and ln|F]=fpd.x.

Taking exponents on both sides, we obtain the desired@t'eﬂating factor F(x),)

We now multiply (1) on both sides by this . Then by the product rule,
e'? ol py) = (eE R P oy,
g -

By integrating the second and third of these three expressions with respect to x we get

/P %y = fefpdxrdx Sl

Dividing thi tion by ¢/? % and denoting th t fp dx by h, btai
ividing this equation by ¢ and denoting the exponent [p y h, we obtain
@) ) =e 1" (feh'r dx + c) : h= f p(x) dx.

4= (pi
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EXAMPLE 1

oy

EXAMPLE 2

CHAP.1 First-Order ODEs

(The constant of integration in A does not matter; see Prob. 2.) Formula (4) is the general
solution of (1) in the form of an integral. Solving (1) is now reduced to the evaluation
of an integral. In cases in which this cannot be done by the usual methods of calculus,
one may have to use a numeric method for integrals (Sec. 19.5) or for the ODE itself

(Sec. 21.1).
The structure of (4) is interesting. The only quantity depending on a given initial
condition is@- Accordingly, writing (4) as a sum of {wo terms,
(4%) Wx) = e " lebrdx +
r~f_/‘
we see the following: /

A

(5) Total Output = Response to the Input » + Response to the Initial Data.

First-Order ODE, General Solution
Solve the linear ODE

Solution. Here,

and from (4) we obtain the general solution -3‘“ ‘(.qu.)

y(x) = &° (fe'xezrdx + c) = e%(€® + ¢) = ce® + 2%
e ™t

-

From (4*) and (5) we see that the response to the input is 2.

In simpler cases, such as the present, we may not need the general formula (4), but may wish to proceed
directly, multiplying the given equation by ¢ = eZ. This gives

2% =% &~

THS e = e e

(' — e
Integrating on both sides, we obtain the same result as before:
ye % = % + ¢, hence y = + ce”. )
First-Order ODE, Initial Value Problem

Solve the initial value problem

y' + ytanx = sin 2x, ¥0) =

Solution. Here p = tanx, r = sin 2x = 2 sin x cos x, and

fpdx = J-tanxdx= In [sec x].

From this we see that in (4),
i —h _ i : £ s
e = secx, e " = cosx, e'r = (sec x)(2 sin x cos x) = 2 sin x,
and the general solution of our equation is

y(x) = cosx (ZJSin xdx + c) = ccosx — 2 cos® x.

From this and the mmal condition, 1 = ¢+ 1 — 2+1%; thus ¢ _3 and the solution of our mltlal value problem

isy = 3 cosx — 2 cos® x. Here 3 co: e to the initial data, and —2 cos® sponse to the
input s:;&.
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EXAMPLE 4

CHAP. 1 First-Order ODEs

Reduction to Linear Form. Bernoulli Equation

Numerous applications can be modeled by ODEs that are nonlinear but can be transformed

to linear ODEs. One of the most useful ones of these is the Bernoulli equation”

(6) y' + px)y = glx)y* (a any real number).
If a = 0 or @ = 1, Equation (6) is linear. Otherwise if is nonlinear. Then we set

u(x) = [y(x)]*
We differentiate this and substitute y' from (6), obtaining

u' = (1— a)y‘@= (1 — a)y”%(gy* — py).
NP
Simplification gives
= (1~ aig-py )

where y'~® = u on the right, so that we get the linear ODE

(7) u +(l—apu= (1 —ak, h ﬁm\w’"'

’

For further ODEs reducible to linear from, see Ince’s classic [A11] listed in App. 1.
See also Team Project 44 in Problem Set 1.5.

Logistic Equation

Solve the following Bernoulli equation, known as the logistic equation (or Verhulst equatim‘lﬁ):
8) ¥ Ay By

Solution. Write (8) in the form (6), that is,

y' — Ay = —By?

S y'l. Differentiate this u and substitute y" from (8),

T

to see that a = 2, so that u = y'~
LA

e

u'= 3 = Ay - By =B - Ay~

The last term is -Ay_l = —Au. Hence we have obtained the linear ODE

5JAKOB BERNOULLI (1654—1705), Swiss mathematician, professor at Basel, also known for his contribution
to elasticity theory and mathematical probability. The method for solving Bernoulli’s equation was discovered by
the Leibniz in 1696. Jakob Bernoulli's students included his nephew NIKLAUS BERNOULLI (1687-1759), who
contributed to probability theory and infinite series, and his youngest brother JOHANN BERNOULLI (1667-1748),
who had profound influence on the development of calculus, became Jakob’s successor at Basel, and had among
his students GABRIEL CRAMER (see Sec. 7.7) and LEONHARD EULER (see Sec. 2.5). His son DANIEL
BERNOULLI (1700-1782) is known for his basic work in fluid flow and the kinetic theory of gases.

6PIERRE—P‘ILM\!COIS VERHULST, Belgian statistician, who introduced Eg. (8) as a model for human
population growth in 1838,
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u' + Au=B.
L T, T e
The general solution is [by (4)]
u = ce” A + BIA.

Since u = 1/y, this gives the general solution of (8),

1
9 == Sl g —— e Fig. 18).
© S g AL B 1Y
__..M
Directly from (8) we see thatly = 0 (1) = 0 for all t).is also.a-selution= ]
Population y
8

\\“’W

0 1 2 3 4 @er
Fig. 18. Logistic population model. Curves (9) in Example 4 with A/B = 4

opulation D
= CS'O The logistic equation (8) plays an important role in population dynamics, a_field that

J p,c 2] modelq the cvolutmn of populations of gl@wmﬁmwﬂme L If B=0

then (8)isy = dyldt = Ay. In this case its solution (9) is y = (1/c)e”* and gwes cxgong@tlg}
L rowth, as for a small population in a large country (the United States in early times!).
';{ lﬁ This is called Malthus’s law. (See also Example 3 in Sec. 1.1.)
The term Mm_hmkmgjam that prevents the population from growing
; v P‘)\} without bound. Indeed, if we write y = Ay[l — (B/A)y]. we see that 1f2 < A/B, thgg
kvd =0, so that an initially small population keeps growing as long as y < A/B.

) B0
La 4 > A/B, then y’ < 0 and the population is decreasing as long as y > A/B. The limit is
v AR e

the same in both cases, namely, A/B, See Fig. 18.
~"We sée that in _he logistic equation (8) the independent vanab e t does not occur
explicitly. An ODE y = f(t, y) in which t does not occur explicit

10 "=f(y A
(10) f») &= 0¥ o) COMMX
3 ~

b and is called an autonomous ODE, Thus the logistic equation (8) is autonomous.

2
',.)(W Equation (10) has constant solutions, called equilibrium solutions or equilibrium
m. These are determined by the zeros of f( y),_Eecause f(3).=0 gives y’ =-Q.by (10);

hence y = const. These zeros are known a of (10). An equilibrium

solution is called stable if solutions close to it for some f remain close to it for all furtb&g

LIt is called unstable if _solutions initially close to i do_ aj se to_it as
ig% For instance @ in Fig. 18 is an unstable equilibrium solution, and y = 4
i§ a stabl

€ one.
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W, EXAMPLE S
N

Stable and Unstable Equilibrium Solutions. “Phase Line Plot”

The ODE y’ = (y — 1)(y — 2) has the stable equilibrium solution y; = 1 and the unstable ys = 2, as the
direction field in Fig. 19 suggests. The values y; and ys are the zeros of the parabola f(y) = (y — I)(y — 2)
in the figure. Now, since the ODE is autonomous, we can “condense” the direction field to a “phase line plot”
giving y; and ys, and the direction (upward or downward) of the arrows in the field, and thus giving information

about the stability or instability of the equilibrium solutions.
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Fig. 19.

(B)

(C)

Example 5. (A) Direction field. (B) “Phase line”. (C) Parabola f(y)

A few further population models will be discussed in the problem set. For some more
details of population dynamics, see C. W. Clark, Mathematical Bioeconomics, New York,
Wiley, 1976.

Further important applications of linear ODEs follow in the next section.

”‘N lt’ o8

PROBLEM SET 1.5

1. ((E&I;‘!;I;ISN!} Show that ¢™'™* = 1/x (not —x) and 6. x2y + 3xy = 1/x, y(1) = —
e = COS X 7.y + ky = ¢2k=
2. (Integration constant) Givg a reasgn v.fhy in (4) you 8 3 +2y=4co8dx ¥ i ) =
may choose the constant of integration in [p dx to be 2
it 9. y' = 6(y — 2.5) tanh 1.5x
10. y' + 4x%y = (4x® — x)e~ %12
GENERAL SOLUTION. INITIAL VALUE 1. y' + 2y sin 2x = 26°° 22, 3(0) =
PROBLEMS : 12. y' tanx = 2y — 8, y@Gm =
Find the general solution. If an initial condition is given, ' 1
: . ; 13. ¥y + 4y cot2x = 6 cos 2x, y(zm) =
find also the corresponding particular solution and graph or 3 =P 4
sketch it. (Show the details of your work.) 4.y +ytanx =e " cosx, y(0) =
s i 15. y' + y/x% = 2xe'®, y(1) = 13.86
357 3.5y = 2.8
4.y =4y + x y' cos’x +3y=1, y@Gm =%
5.y + 125y =5, y(0) = 17. %' + 3x®y = 5 sinh 10x
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14.

15.

(Family g(x, y) = ¢) Show that if a family is given as
g(x, y) = ¢, then the orthogonal trajectories can be
obtained from the following ODE, and use the latter to
solve Prob. 6 written in the form g(x, y) = c.

dy. = agloy
dx dgldx

(Cauchy-Riemann equations) Show that for a family
u(x, y) = ¢ = const the orthogonal trajectories
v(x, y) = c* = const can be obtained from the following
Cauchy—Riemann equations (which are basic in
complex analysis in Chap. 13) and use them to find the
orthogonal trajectories of e“siny = const. (Here,
subscripts denote partial derivatives.)

e =Yg

APPLICATIONS

16.

kil

(Fluid flow) Suppose that the streamlines of the flow
(paths of the particles of the fluid) in Fig. 24 are
W(x,y) = xy = const. Find their orthogonal trajectories
(called equipotential lines, for reasons given in Sec.
18.4).

Fig. 24. Flow in a channel in Problem 16

(Electric field) Let the electric equipotential lines
(curves of constant potential) between two concentric
cylinders (Fig. 22) be given by u(x, y) = x* + y* = c.
Use the method in the text to find their orthogonal
trajectories (the curves of electric force).

The initial value problem

| + Iyl = 0,

18.

19

20.

37

(Electric field) The lines of electric force of two
opposite charges of the same strength at (—1, 0) and
(1, 0) are the circles through (—1, 0) and (1, 0). Show
that these circles are given by x* + (y — ¢)> = 1 + ¢
Show that the equipotential lines (orthogonal
trajectories of those circles) are the circles given by
(x + ¢®? + 32 = ¢** — 1 (dashed in Fig. 25).

ey s it

Electric field in Problem 18

e

Fig. 25.

(Temperature field) Let the isotherms (curves of
constant temperafure] in a body in the upper half-plane
y > 0 be given by 4x> 4+ 9y? = ¢. Find the orthogonal
trajectories (the curves along which heat will flow in
regions filled with heat-conducting material and free
of heat sources or heat sinks).

TEAM PROJECT. Conic Sections. (A) State the
main steps of the present method of obtaining orthogonal
trajectories.

(B) Find conditions under which the orthogonal
trajectories of families of ellipses x*/a® + y*/b* = ¢ are
again conic sections. [llustrate your result graphically
by sketches or by using your CAS. What happens if
a— 0?1fb— 0?7

(C) Investigate families of hyperbolas
x*a® — y*/b®> = c in a similar fashion.

(D) Can you find more complicated curves for which
you get ODEs that you can solve? Give it a try.

1.7 Existence and Uniqueness of Solutions

ﬁas no solutioa because J{;.a(that is, y(x) = 0 for all x) is the only solution of the ODE.

The initial value problem

yh =2,

y0) =1
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THEOREM 1

CHAP.1 First-Order ODEs

has precisely m, namely, y = x> + 1. The initial value problem

xy' =y—1, ¥0) =1

has {nfinitely many solutions), namely, y = 1 + cx, where ¢ is an arbitrary constant because
y(0) = 1 for all c.
From these examples we see that an initial value problem

(1) y' = f@, »), ¥(x0) = Yo

may have no solution, precisely one solution, or.more than one.solution. This fact leads

to the following two fundamental questions.

Problem of Existence

Under what conditions does an initial value problem of the form (1) have at least
one solution (hence one or several solutions)?

Problem of Uniqueness

Under what conditions does that problem have at most one solution (hence excluding
the case that is has more than one solution)?

Theorems that state such conditions are called existence theorems and uniqueness
theorems, respectively.

Of course, for our simple examples we need no theorems because we can solve these
examples by inspection; however, for complicated ODEs such theorems may be of
considerable practical importance. Even when you are sure that your physical or other
system behaves uniquely, occasionally your model may be oversimplified and may not
give a faithful picture of the reality.

Existence Theorem
Let the right side f(x, y) of the ODE in the initial value problem

1) y = fx,y), yxo) =Y
be Mar all points (x, y) in some rectangle
R |x="x<a, ly — yol <b (Fig. 26)
and !@undea in R; that is, there is a number K such that
) Ifee, | =K for all (x, y) in R.

Then the initial value problem (1) has at least one solution.y(x). This solution exists
at least for all x in the subinterval |x — xs| < a of the interval |x — xo| < a; here,
a is the smaller of the two numbers a an :
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y

] e
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1
xn—a xo xo+a

Fig. 26. Rectangle R in the existence and uniqueness theorems

(Example of Boundedness. The function f(x, y) = x* + y? is bounded (with K = 2) in the
square |x| < 1, = tan (x + y) is not bounded for |x + y| < /2.

Explain!)

THEOREM 2 Uniqueness Theorem

Let f and its partial derivative f, = df/dy be continugus for all (x, y) in the
rectangle R (Fig. 26) and bounded, say,

3) (@ |f&x yl =K, ®) |fyx, =M  forall(x y)inR
Then the initial value problem (1) has wﬂfﬂﬂ.x@ Thus, bl Theorem Ji5

subinterval |x — x0| <a

Understanding These Theorems

These two theorems take care of almost all practical cases. Theorem 1 says that if f(x, y)
is continuous in some region in the xy-plane containing the point (x,, ¥o), then the initial
value problem (1) has at least one solution. 2
Theorem 2 says that if, moreover, the partial derivative df/dy of fwith respect to y
exists and is continuous in that region, then (1) can have at most one solution; hence, by
Theorem 1, it has precisely_one soluti
Read again what you have just read—these are entirely new ideas in our discussion.
Proofs of these theorems are beyond the level of this book (see Ref. [A11] in App. 1);
however, the following remarks and examples may help you to a good understanding of
the theorems.
| (:;] Since y' = f(x, y), the condition (2) igElie§ that |2' = K; that is, the slope of an
S solution curve y(x) in R is at least —K and at most K. Hence a solution curve that passes
} % through the POt (¥, ¥;) must lic in the colored region in Fig. 27 on the next page bounded

by the lines /; and /, whose slopes are —K and K, respectively. Depending op.the-ferm
different cases . In the first case, shown in Fig. 27a, we have b/K =

a and therefore a = a in the existence theorem, which then asserts that the solution exists
or all x between x, — a and x, + a. In the second case, shown in Fig. 27b, we have
b/IK < a. Therefore, @ = b/K < a, and all we can conclude from the theorems is that the
solution exists for all x between x, — b/K and x, + b/K. For larger or smaller x’s the

solution curve may leave the rectangle R, and since nothing.is.assumed about f outside
R nothing can be concluded about the solution for.those-Jager or smaller x’s; that is, for

such x’s the solution may or may not exist—we don’t know.
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™ ' F
,X- oA Mo 19 9‘ ,U;?*;h
N 1
[
Soahe L
0 T~
S
Yo=b N
L
yo_b = =t =
|"5—‘Ot=a—3“'-¢—a:=a4>| a a 1
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& O [ b
*o YA ol *o e
nE A7 R
(a) (b)

Fig. 27. The condition (2) of the existence theorem. (a) First case. (b) Second case

Let us illustrate our discussion with a simple example. We shall see that our choice of
a rectangle R with a large base (a long x-interval) will.lead to the.case in-Fig. 27b.

Choice of a Rectangle

Consider the initial value problem
Y =1+ W0) =
and take the rectangle R; [x| < 5, |y] < 3. Thena = 5, b = 3, and

fee )l =1 + ¥ =&k = 10,

|2
.1:|‘_“

>
Indeed, the solution of the problem is y = tan x (see S .3, Example 1). This solution is disconti t
= 77/2, and there is no continuous solution valid in the entirg/interval [x| < 5 from which we started. ]

e
sufficient conditio ther than necessary ones, and

The conditions-in the two theorems ar€suffici ns)ra
can ben particular, by the mean value theorem of differential calculus we have

f(x9 y2)

¥yTy

where (x, y;) and (x, y,) are assumed to be in R, and y is a m alue between y; and

vg. From this and (3b) it follows that

af
= flx, y1) = (y2 —'y1) 2
y

4) Fex y)l = My, = ¥4,

fCx, ya) =

as a Li itz condition.” However, continuity of f(x ot
uniqueness of the solution. This may be illustrated by the following example
'________._.--'-'-_""'\.l

\




SEC. 1.7 Existence and Uniqueness of Solutions

"EXAMPLE 2 Nonuniqueness

The initial value problem

has the two solutions

y=0

the line y = 0, because for y; = 0 and positivgy

(5)

41
i R
24 it x=0
and Y=
—x%4 if x<0
The Lipschitz condition (4) is violated in any region that includes
e have
(x, y2) — f(x, y1) Vs 1
|f Y2 Jx ¥q | e = \/_ (Vg > 0)
vz = »l ¥z Yo

quotient on the left side of (5) should not exceed a fixed constant M.

and this can be made a@ we please by choosing ¥5° sufﬁcien(]; sméll} whereas (4) requires that the

HoW.,

PROBLEM SET 1.7

—

2. (Existence?)

1. (Vertical strip) If the assumptions of Theorems 1 and 2

are satisfied not merely in a rectangle but in a vertical
infinite strip [x — xo| < a, in what interval will the
solution of (1) exist?

Does the initial value problem
(x — 1)y’ = 2y, y(1) = 1 have a solution? Does your
result contradict our present theorems?

3. (Common points) Can two solution curves of the same

ODE have a common point in a rectangle in which the
assumptions of the present theorems are satisfied?
(Change of initial condition) What happens in Prob. 2
if you replace y(1) = 1 with y(1) = &?

5. (Linear ODE) If p and r in y' + p(x)y = r(x) are

continuous for all x in an interval [x — xo| < a, show
that f(x, y) in this ODE satisfies the conditions of our
present theorems, so that a corresponding initial value
problem has a unique solution. Do you actually need
these theorems for this ODE?

Three possible cases) Find all initial conditions such

that (x2 — 4x)y’ = (2x — 4)y has no solution, precisely
one solution, and more than one solution.

7. (Length of x-interval) In most cases the solution of an

initial value problem (1) exists in an x-interval larger
than that guaranteed by the present theorems. Show this
fact for y' = 2y2, y(1) = 1 by finding the best possible
@ (choosing b optimally) and comparing the result with
the actual solution.

8.

10.

PROJECT. Lipschitz Condition. (A) State the
definition of a Lipschitz condition. Explain its relation
to the existence of a partial derivative. Explain its
significance in our present context. Illustrate your
statements by examples of your own.

(B) Show that for a linear ODE y' + p(x)y = r(x) with
continuous p and r in [x — xo| = a a Lipschitz condition
holds. This is remarkable because it means that for a
linear ODE the continuity of f(x, y) guarantees not only
the existence but also the uniqueness of the solution of
an initial value problem. (Of course, this also follows
directly from (4) in Sec. 1.5.)

(C) Discuss the uniqueness of solution for a few simple
ODEs that you can solve by one of the methods
considered, and find whether a Lipschitz condition is
satisfied.

. (Maximum «) What is the largest possible a in

Example 1 in the text?

CAS PROJECT. Picard Iteration. (A) Show that by
integrating the ODE in (1) and observing the initial
condition you obtain

(6) y() = yo + rf(f, y(1) d.

"RUDOLF LIPSCHITZ (1832-1903), German mathematician, Lipschitz and similar conditions are important
in modern theories, for instance, in partial differential equations.
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This form (6) of (1) suggests Picard’s iteration
method®, which is defined by

(7) yu(x) = Yo + ff(r, Yna@)dt, n=1,2,-".

It gives approximations y;, ya, V3, - - - of the unknown
solution y of (1). Indeed, you obtain y; by substituting
¥y = yo on the right and integrating—this is the first
step—, then y, by substituting y = y; on the right and
integrating—this is the second step—, and so on. Write
a program of the iteration that gives a printout of the
first approximations yg, v1, -+, ¥y as well as their
graphs on common axes. Try your program on two
initial value problems of your own choice.

1. Explain the terms ordinary differential equation (ODE),
partial differential equation (PDE), order, general
solution, and particular solution. Give examples. Why
are these concepts of importance?

2. What is an initial condition? How is this condition used
in an initial value problem?

3. What is a homogeneous linear ODE? A nonhomogeneous
linear ODE? Why are these equations simpler than
nonlinear ODEs?

4. What do you know about direction fields and their
practical importance?

5. Give examples of mechanical problems that lead to ODEs.

6. Why do electric circuits lead to ODEs?

7. Make a list of the solution methods considered. Explain
each method with a few short sentences and illustrate
it by a typical example.

8. Can certain ODEs be solved by more than one method?
Give three examples.

9. What are integrating factors? Explain the idea. Give
examples.

10. Does every first-order ODE have a solution? A general
solution? What do you know about uniqueness of
solutions?

DIRECTION FIELDS

Graph a direction field (by a CAS or by hand) and sketch
some of the solution curves. Solve the ODE exactly and

compare.
11. y' = 1 -P4y? @y’=3y—2x

(B) Apply the iteration to y' =x + y, y(0) = 0. Also
solve the problem exactly.

(C) Apply the iteration to y' = 2y y(0) = 1. Also
solve the problem exactly.

(D) Find all solutions of y' = 2V, y(1) = 0. Which
of them does Picard’s iteration approximate?

(E) Experiment with the conjecture that Picard’s
iteration converges to the solution of the problem for
any initial choice of y in the integrand in (7) (leaving
yo outside the integral as it is). Begin with a simple
ODE and see what happens. When you are reasonably
sure, take a slightly more complicated ODE and give

it a try.

TR o B
CHAPTER 1 REVIEW QUESTIONS AND PROBLEMS

13. y' = 4y — y*® 14, ' =

15-26| GENERAL SOLUTION

Find the general solution. Indicate which method in this
chapter you are using. Show the details of your work.

15. y' = 231 + y®
16. y = x(y — x>+ 1)
17. yy' + x> =x

16x/y

18. —r sin 7rx cosh 3y dx + 3 cos 7x sinh 3y dy = 0
19. y' + ysinx = sinx @y'—yzlfy
21. 3sin 2y dx + 2xcos 2ydy = 0
22. xy' = xtan (y/x) +y
23. (ycosxy — 2x)dx + (xcosxy + 2y)dy = 0
4.2y =(y—2x)%+y (Sety —2x =71z)

sin (y — x)dx + [cos (y —x) —sin (y —x)]dy =0

25.
@6)xy' = (yix)® +y

27-32| INITIAL VALUE PROBLEMS

Solve the following initial value problems. Indicate the
method used. Show the details of your work.

27. yy' +x =0, y3) =4

28. y' — 3y = —12y%, y(0) = 2

2.5 =1+y% yE&m =0

30. y' + my = 2bcos mx, y(0) =0

31. (2xy? — sinx)dx + (2 + 2x%y) dy = 0, y(0) = 1

32. [2y + y¥Ux + €*(1 + 1Ux)] dx + (x + 2y) dy = 0,
y(1) =1

SEMILE PICARD (1856-1941), French mathematician, also known for his important contributions to complex
analysis (see Sec. 16.2 for his famous theorem). Picard used his method to prove Theorems 1 and 2 as well as
the convergence of the sequence (7) to the solution of (1). In precomputer times the iteration was of little practical

value because of the integrations.




Summary of Chapter 1

APPLICATIONS, MODELING

33,

34.

35

36.

37.

38.

39.

(Heat flow) If the isotherms in a region are x* — y* = c,
what are the curves of heat flow (assuming orthogonality)?
(Law of cooling) A thermometer showing 10°C is
brought into a room whose temperature is 25°C. After
5 minutes it shows 20°C. When will the thermometer
practically reach the room temperature, say, 24.9°C?

(Half-life) If 10% of a radioactive substance disintegrates
in 4 days, what is its half-life?

(Half-life) What is the half-life of a substance if after
5 days, 0.020 g is present and after 10 days, 0.015 g?

(Half-life) When will 99% of the substance in Prob. 35
have disintegrated?

(Air circulation) In a room containing 20 000 ft* of
air, 600 ft® of fresh air flows in per minute, and the
mixture (made practically uniform by circulating fans)
is exhausted at a rate of 600 cubic feet per minute
(cfm). What is the amount of fresh air y(¢) at any time
if y(0) = 0?7 After what time will 90% of the air be
fresh?

(Electric field) If the equipotential lines in a region of
the xy-plane are 4x? + y? = ¢, what are the curves of
the electrical force? Sketch both families of curves.

SUMMARY OF CHAPTER 1

First-Order ODEs

40.

41.

42.

43.

43

(Chemistry) In a bimolecular reaction A + B — M,
a moles per liter of a substance A and b moles per liter
of a substance B are combined. Under constant
temperature the rate of reaction is

y' = kla — y)(b — y) (Law of mass action);
that is, y' is proportional to the product of the
concentrations of the substances that are reacting, where
y(1) is the number of moles per liter which have reacted
after time ¢. Solve this ODE, assuming that a # b.

(Population) Find the population y(r) if the birth rate is
proportional to y(f) and the death rate is proportional to
the square of y(r).

(Curves) Find all curves in the first quadrant of the xy-
plane such that for every tangent, the segment between
the coordinate axes is bisected by the point of tangency.
(Make a sketch.)

(Optics) Lambert’s law of absorption® states that the
absorption of light in a thin transparent layer is
proporticnal to the thickness of the layer and to the
amount of light incident on that layer. Formulate this
law as an ODE and solve it.

This chapter concerns ordinary differential equations (ODEs) of first order and
their applications. These are equations of the form

(1) F(x,y,y)=0 or in explicit form y' =ifC )

involving the derivative y' = dy/dx of an unknown function y, given functions of
x, and, perhaps, y itself. If the independent variable x is time, we denote it by 7.

In Sec. 1.1 we explained the basic concepts and the process of modeling, that is,
of expressing a physical or other problem in some mathematical form and solving
it. Then we discussed the method of direction fields (Sec. 1.2), solution methods
and models (Secs. 1.3-1.6), and, finally, ideas on existence and uniqueness of
solutions (Sec. 1.7).

9JOHANN HEINRICH LAMBERT (1728-1777), German physicist and mathematician.
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A first-order ODE usually has a _gMﬂ]_snluﬂﬂn, that is, a solution involving an
arbitrary constant, which we denote by c. In applications we usually have to find a
unique solution by determining a value of ¢ from an initial condition y(xy) = y,.

Together with the ODE this is called an_initial value problem

2) 2:_’__: £l Wxg)-=g (Xg, Yo given numbers)

and its solution is a particular solution of the ODE. Geometrically, a general
solution represents a Tamily of curves, which can be graphed by using direction
fields (Sec. 1.2). And each particular solution corresponds to one of these curves.
— - .

A separable ODE is one that we can put into the form

(3) gy) dy = f(x) dx (Sec. 1.3)

by algebraic manipulations (possibly combined with transformations, such as y/x = u)
and solve by integrating on both sides.
An exact ODE is of the form
(4) M(x, y) dx + NG, y) dy = 0_ (Sec. 1.4)
where M dx + N dy is the differential
du = uy dx + u, dy
of a function u(x, y), so that from du = 0 we immediately get the implicit g_eneral
solution u(x, y) = c¢. This method extends to nonexact ODEs that can be made exact

by multiplying them by some function F(x, y), called an jntegrating factor (Sec. 1.4).
Linear ODEs

(%) y 4 pOy = r(x)
are very important. Their solutions are given by the integral formula (4), Sec. 1.5.
Certain nonlinear ODEs can be transformed to linear form in terms of new variables.

This holds for the Bernoulli equation

y' + px)y = gx)y® (Sec. 1.5).

Applications and modeling are discussed throughout the chapter, in particular in
Secs. 1.1, 1.3, 1.5 (population dynamics, etc.), and 1.6 (trajectories).

Picard’s existence and uniqueness_theorems are explained in Sec. 1.7 (and
Picard’s iteration in Problem Set 1.7).

Numeric methods for first-order ODEs can be studied in Secs. 21.1 and 21.2
immediately after this chapter, as indicated in the chapter opening.




