CH-APTER 3

Higher Order Linear ODEs

In this chapter we extend the concepts and methods of Chap. 2 for linear ODEs from order

n = 2 to arbitrary order n. This will b€ Straightforwardand needs no new ideas. However,

the formulas become more involved, the variety of roots of the characteristic equation (in
Sec. 3.2) becomes much larger with increasing n, and the plays a more
prominent role.

Prerequisite: Secs. 2.1, 2.2, 2.6, 2.7, 2.10.
References and Answers to Problems: App. 1 Part A, and App. 2.

3.1 Homogeneous Linear ODEs

Recall from Sec. 1.1 that an ODE is of @f the nth derivative y™ = d"yldx™ of

the unknown function y(x) is the drighest occurring derivative. Thus the ODE is of the form
' . sy 2y
F(&%y,...’ny):() (y():d,x”)
e,

where lower order derivatives and y itself may or may not occur. Such an ODE is called
linear if it can be written

(1) ¥+ Paci @O - 4 Py A+ poy = r(0). Fan =1
FRZ

(For n = 2 this is (1) in Sec. 2.1 with p; = p and py = ). The coefficients py, * - -, P
and the function r on the right are any given functions of x, and y is unknown. y™ has

coefficient 1. This is practical. We call this the standard form. (If you have p,(x) Y,

divide by p,(x) to get this form.) An nth-order ODE that_cannot be written in the form
(1) is called nonlinear.

If r(x) is identically zero, r(x) = 0 (zero for all x considered, usually in some open
interval [), then (1) becomes

) Y + p. @YD + et pi@)y + po(¥)y =0

and is called hnmogeneous. If r(x) is not identically zero, then the ODE is called
nonhomogeneous. This is as in Sec. 2.1.

A solution of an nth-order (linear or nonlinear) ODE on some open interval / is a
function y = A(x) that is defined and n times differentiable on / and is such that the ODE
becomes an identity if we replace the unknown function y and its derivatives by 4 and its
corresponding derivatives.

105



106

THEOREM 1

DEFINITION

DEFINITION

CHAP.3 Higher Order Linear ODEs

Homogeneous Linear ODE: Superposition Principle,
General Solution

Sections 3.1-3.2 will be devoted to homogeneous linear ODEs and Sec. 3.3 to
nonhomogeneous linear ODEs. The basic superposition or linearity principle in Sec. 2.1
extends to nth order homogeneous linear ODEs as follows.

Fundamental Theorem for the Homogeneous Linear ODE (2)

For a homogeneous linear ODE (2), sums and constant multiples of solutions on
some open interval I are again solutions on I. (This does mot hold for a
nonhomogeneous or nonlinear ODE!)

The proof is a simple generalization of that in Sec. 2.1 and we leave it to the student.

Our further discussion parallels and extends that for second-order ODEs in Sec. 2.1.
So we define next a general solution of (2), which will require an extension of linear
independence from 2 to n functions.

g_gw Solution, Basis, Particular Solution
A general-selution-of-(2) on an open interval / is a solution of (2) on / of the form

@) YO) = ey -+ cyn() (¢y, - - -, Cy, arbitrary)

where y;, * -+ *, y, is a basis (or fundamental system) of solutions of (2) on /; that
is, these solutions are lingarly independent on /, as defined below.

A Earticular solution of (2) on 7 is obtained if we assign specific values to the
n constants ¢y, * * *, ¢, in (3).

Linear Independence and Dependence

n functions y;(x), * * -, y,(x) are called linearly independent on some interval I

where they are defined if the equation
4) by () + - + kya() =0  onl

implies that all &y, - - -, k,, are zero. These functions are called linearly dependent

on / if this equation also holds on 7 for some k,, * * *, k, not all zero.
(As in Secs. 1.1 and 2.1, the arbitrary constants ¢y, - - -, ¢,, must sometimes be restricted
to some interval.)

If and only if y;, - - -, y,, are linearly dependent on /, we can express (at least) one of

these functions on [ as a “linear combination” of the other n — 1 functions, that is, as
a sum of those functions, each multiplied by a constant (zero or not). This motivates the
term “linearly dependent.” For instance, if (4) holds with k; # 0, we can divide by k; and
express y; as the linear combination
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EXAMPLE 1

~EXAMPLE 2

EXAMPLE 3

~THEOREM 2

1
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Note that when n = 2, these concepts reduce to those defined in Sec. 2.1.

Linear Dependence
Show that the functions y; = 22 Yo = 5x, yg = 2x are linearly dependent on any interval.
- A e

Solution. y, = Oy, + 2.5y5. This proves linear dependence on any interval. B

e — i

Linear Independence

Show that y; = x, yg = ol yg = x> are linearly independent on any interval, for instance, on —1 = x = 2.
e ————

Solution. Equation (4) is kyx + kex? + kex® = 0. Taking (a) x = —1, () x = 1, (¢) x = 2, we get
1 2 31

(@) —ky + ko — kg = 0, (b) ky + ko + kg = 0, (¢) 2ky + 4ky + 8kg = 0.

kg = 0 from (a) + (b). Then k3 = 0 from (c) —2(b). Thenfy _=.0 from (b). This proves linear independence.
etter method for testing linear independence of solutions of ODEs will soon be explained. ]

General Solution. Basis

Solve the fourth-order ODE
V5" + 4y =0 (where 'V = d%/dx?).

Solution. As in Sec. 2.2 we try and substitute y = ¢**. Omitting the common factor ¢**, we obtain the
characteristic equation

AM-s52+4=0.
This is a quadratic equation in = A%, namely,
W=sptd=(@—-Dp-—4=
The roots are w = 1 and 4. Hence A = —2, —1, 1, 2. This gives four solutions. A general solution on any

sl
interval is

y =c1e" 2 + cae T + cge” + cge™

provided those four solutions are linearly independent. This is true but will be shown later. &

Initial Value Problem. Existence and Uniqueness

An initial value problem for the ODE (2) consists of (2) and » initial conditions
)] Y(xo) = Ko, y'(x) = Ky, Thi ¥ P = Ky

with given x, in the open interval / considered, and given K, - - Kn 1
In extension of the existence and uniqueness theorem in Sec. .2.6 we now have the following.

Existence and Uniqueness Theorem for Initial Value Problems

If the coefficients po(x), * * *, pn_1(x) of (2) are continuous on some open interval 1

i e sy ot s =
and Xo is in L, then the initial value problem (2), (5) has a unique solution y(x) on 1.

Existence is proved in Ref. [A11] in App. 1. Uniqueness can be proved by a slight
generalization of the uniqueness proof at the beginning of App. 4.
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— EXAMPLE 4

THEOREM 3

CHAP.3 Higher Order Linear ODEs

Initial Value Problem for a Third-Order Euler-Cauchy Equation
Solve the following initial value problem on any open interval I on the positive x-axis containing x = L

2y = 3" + 6xy' — 6y =0, =2 - y=1 Q) =-4

Solution. Step 1. General solution. As in Sec. 2.5 we try y = x"", By differentiation and substitution,
s

mim — D(m — 2)x™ — 3m(m — 1)x™ + 6mx™ — 6x™ = 0.

Dropping x™ and ordering gives m® — 6m> + 11m — 6 = 0. If we can guess the root m = 1, we can divide
by m — 1 and find the other roots 2 and 3, thus obtaining the solutions x, x2, x°, which are linearly independent
on [ (see Example 2). [In general one shall need a root-finding method, such as Newton’s (Sec. 19.2), also

available in a CAS (Computer Algebra System).] Hence a general solution is

y=cx+ Cz.r2 o c3x3 4

e

valid on any interval /, even when it includes x = 0 where the coefficients of the ODE divided by x2 (to have
the standard form) are not continuous.

Step 2. Particular solution. The derivatives are y' =cy + 2cox + 30312 and y" = 2¢y + 6¢gx. From this and
v and the initial conditions we get by setting x = 1

(@ X1) =1+ e+ 3= 2
B y(1)=cy +2c5+3cg= 1
(© y'(1) = 2cp + 6c3 = —4.

This is solved by Cramer’s rule (Sec. 7.6), or by elimination, which is simple, as follows. (b) — (a) gives

d) co + 2¢5 = —1. T'henc — 2(d) gives —1. Then (c) gives ¢ = 1. Finally ¢; = 2 from (a
(d) co 3 (c) (d) gi ta= (c) gi 2 Yy (a). s

Answer: y—2x+r — x5
e

Linear Independence of Solutions. Wronskian

Linear independence of solutions is crucial for obtaining general solutions. Although it
can often be seen by inspection, it would be good to have a criterion for it. Now Theorem
2 in Sec. 2.6 extends from order n = 2 to any n. This extended criterion uses the Wronskian
W of n solutions y;, * * *, ¥, defined as the nth order determinant

N1 Y2 L In

1 e 1
(6) W(}’:; g gzt yn) =

m—1 sy S n—1)
Y1 Y2 Yn

Note that W depends on x since y;, - -, v, does. The criterion states that these solutions
form a basis if.and only if W is not zero; more precisely:

Linear Dependence and Independence of Solutions

Let the ODE (2) have continuous coefficients po(x), - -, pn—1(x) on an open
interval I. Then n solutions yy, * - -, y, of (2) on I are linearly deeendenr on I if
and only if their Wronskian. is.zera for some x = Xg3yn 1. Furthermore, if W is zero for
X _= Xq, then W_is zdent:caﬂz zero gn I. Hence if there is an x; in I at which W is
not zero, then y,, * * *, y,, are linearly independent on I, so that they form a basis
of solutions of 2)on I
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solutions of (2) on /. Then, by definition, there
ch that for all x in /,

(a) Let y;, - -+, yy, be linearly ¢€
are constants ky, * * -,
) Ry Py oo i e knyn = 0.

By n — 1 differentiations of (7) we obtain for all x in /

Lo Y =0
(®) :
o e 5 g
L

(7), (8) is a homogeneous lin i ations wit ontrivial solutio

linear system.of algebraic.equ tior
ky,: - .ky. Hence its coefficient determinant Sust.be.zero for ¢ n I, by Cramer’s

theorem (Sec. 7.7). But that determinant is the Wronskian W, as we see from (6). Hence

% W is zero for every x on L.
s -I"t(.u\ La

(b) Conversely, if W is zero at an x, in /, then the system (7), (8) with x = x, has a solution

ky*, - - -, k,*, not all zero, by the same theorem. With these constants we define the
solution y* = ky*y; + * -+ + k,*y, of (2) on L By (7), (8) this _solution satisfies.the
initial conditions y*(xg) = 0, - - -, y¥®@ =Dy = (, But another solution satisfying the
same conditions 1s y = 0. Hence y* = y by Theorem 2, which applies since the coefficients
of (2) are continuous. Together, y* = k *y; + + - - + k,* y,, = 0 on L. This means linear
dependence of yy, - - - vy, on I

(¢) If W is zero at an X, in 1, we have linear dependence by (b) and then W = 0 by (a).
Hence if W is not zero at an x, in /, the solutions y;, *  *, y,, must be linearly independent
on /. ®

Basis, Wronskian

We can now prove that in Example 3 we do have a basis. In evaluating W, pull out the exponential functions
columnwise. In the result, subtract Column 1 from Columns 2, 3. 4 (without changing Column 1). Then
expand by Row L. In the resulting third-order determinant, subtract Column 1 from Column 2 and expand
the result by Row 2:

he G & & oy R
o Mt ek | S [ R s

s de==" e e’ 4% 3 4 1 1 4 37 sla 2 ="""2" .
=B s F g% (RS = e et

/
A General Solution of (2) Includes All Solutions

Let us first show that general solutions always exist. Indeed, Theorem 3 in Sec. 2.6 extends
as follows.

Existence of a General Solution

If the coefficients po(x), * * *, Pn—1(x) of (2) are continuous on some open interval
I, then (2) has a general solution on 1.
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PROOF We choose any fixed xq in /. By Theorem 2 the ODE (2) has n solutions y;, - - -, y,,
where y; satisfies initial conditions (5) with K;_; = 1 and all other K’s equal to zero, Their
Wronskian at x, equals. 1. For instance, when n = 3, then y;(xo) = 1, ya(xo) = 1,
ya(xo) = 1, and the other initial values are zero. Thus, as claimed,

yixo)  yalxo)  ys(xo) I =y
W(y1(xq), Yalxo), ¥3(x0)) = |y1(xo) Ya(xo) ys(xp)| = [0 | o =1.

y ;’(xo) y g(xo) y g (xp) 0 0 1

Hence for any »n those solutions yy, - * * , y,, are linearly independent on /, by Theorem 3.
They form a basis on [, and y = ¢;y; + -+ - + ¢, ), 1S a general solution of (2) on /. ®

We can now prove the basic property that from a general solution of (2) every solution
of (2) can be obtained by choosing@alues of the arbitrary constants. Hence an

nth order linear ODE has no singular solutions, that is, solutions that cannot be obtained
from a general solution.

THEOREM 5 General Solution Includes All Solutions

If the ODE (2) has continuoys_coefficients py(x), * * * , p,,—1(x) on some open interval
1, "‘Wf_y_i@f (2) on 1 is of the form

9) Y(x) = CyyyQr) frreetlfoCyr )
where yy, * * *, ¥, is a basis of solutions of (2) on I and Cy, * - , C,, ard suirabi};
constants.
PROOF Let ¥ be agiven solfion and y = ¢;y; + -+ * + ¢, aEneral solution)of (2) on 1. We
choose any fixed x, in 7 and show that we can find constants c;, - - -, ¢,, for which y and

its first n — 1 derivatives agree with Y and its corresponding derivatives at xo. That is,
we should have at x = x,
PO

Noe ’J(o 2 (B i d e RS ¢
Wwase = e S SR A R
—=] X :
M Cly-‘in—l) H e Cny;n-l) - Y('n.—l).
5 s i |
Y - A o But this is a linear system of equations in the unknowns ¢y, * * -, ¢,. Its coefficient
determinant is the Wronskian W of y,, - - -, y,, at x,. Since y,, - - -, y,, form a basis, they

\.. are linearly independent, so that W_is not zero by Theorem 3. Hence (10) has a unique
)p‘/?ég)/" solution ¢; = Cy, -+ -, ¢, = C,, (by Cramer’s theorem in Sec. 7.7). With these values
>, [l 07 ge? we obtain the particular solution

i b V) =CHIE)+ 55 + Coyatr)

on /. Equation (10) shows that y* and its first » — 1 derivatives agree at x, with
its corresponding derivatives. That is, y* and Y satisfy at x, the same initial conditions.
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The uniqueness theorem (Theorem 2) now implies_’ that ;* = Y on I. This proves the

theorem.

This completes our theory of the homogeneous linear ODE (2). Note that for n = 2 it is
identical with that in Sec. 2.6. This had to be expected.

‘W \

— PROBLEM SET 3.1

TYPICAL EXAMPLES OF BASES

To get a feel for higher order ODEs, show that the given
functions are solutions and form a basis on any interval.
Use Wronskians. (In Prob. 2, x > 0.)

1.

2.
3:

R A =0
% 2, x2y" = 3xy" +3y' =0
g&iet nnt ok y’ =3y" +3y —y=0

23‘ cos x, €2 sin x; e~2* cos x, ¢” 2% sin x,

3,
6.

7-19

yiv — 6y” + 25y = 0.
1, x, cos 3x, sin 3x, ¥+ 9y" =0

TEAM PROJECT. General Properties of Solutions
of Linear ODEs. These properties are important in
obtaining new solutions from given ones. Therefore
extend Team Project 34 in Sec. 2.2 to nth-order ODEs.
Explore statements on sums and multiples of solutions
of (1) and (2) systematically and with proofs.
Recognize clearly that no new ideas are needed in this
extension from n = 2 to general n.

LINEAR INDEPENDENCE
AND DEPENDENCE

Are the given functions linearly independent or dependent
on the positive x-axis? (Give a reason.)

7L
9.

o i e el e 8 DDl
10. %, e~ %, sinh 2x

1 et esr

In x, In x2, (In x)2

11.
13.
. tan x, cot x, 1
17.
19.

20.

4 . I¥

120, 1/x. 0
14. cos? x, sin® x, cos 2x
16. (x — 13, (x + 1%, x

T18cosh x, sinh x, cosh® x

xz, x|x|, 2

sin 2x, sin x, cos x %

sin x, sin 5x

2

cos? x, sin® x, 27

TEAM PROJECT. Linear Independence and
Dependence. (a) Investigate the given question about
a set S of functions on an interval /. Give an example.
Prove your answer.

(1) If S contains the zero function, can § be linearly
independent?

(2) If S is linearly independent on a subinterval J of 1,
is it linearly independent on [?

(3) If S is linearly dependent on a subinterval J of 7,
is it linearly dependent on [?

(4) If § is linearly independent on /, is it linearly
independent on a subinterval J?

(5) If § is linearly dependent on [, is it linearly
independent on a subinterval J?

(6) If S is linearly dependent on /, and if 7 contains S,
is T linearly dependent on [?

(b) In what cases can you use the Wronskian for
testing linear independence? By what other means can
you perform such a test?

3.2 Homogeneous Linear ODEs with Constant

Coefficients

In this section we consider nth-order homogeneous linear ODEs with constant coefficients,

which we write in the form

@)

where y™ = d™yldx", etc. We shall see that this extends the case n =
as in Sec. 2.2), we obtain the characteristic equation

Sec. 2.2. Substituting

(2)

YL iy R SR O gy =10

2 discussed in

/\.ﬂ' i an_l)l(n_l) St al)l + ﬂo = 0
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of (1). If A is a root of (2), then y = € is a solution of (1). To find these roots, you may
need a numeric method, such as Newton’s in Sec. 19.2, also available on the usual CASs.
For general n there are more cases than for n = 2. We shall discuss all of them and

illustrate them with typical examples.

i Distinct Real Roots

If all the n roots Ay, - - -, A, of (2) are real and different, then the n solutions

| A3) e g, L e SRS

constitute a basis for all x. The corresponding general solution of (1) is

An

4) N = Clel\l“T TG T

Indeed, the solutions in (3) are linearly independent, as we shall see after the example.

EXAMPLE 1 Distinct Real Roots

Solve the ODE y" — 2y" —y' + 2y = 0.

Solution. The characteristic equation is A%> — 2A%2 — A + 2 = 0, It has the roots —1, 1, 2; if you find one
~ of them by inspection, you can obtain the other two roots by solving a quadratic equation (explain!). The
||

- -1

A= Sk .‘*2 ék, corresponding general solution (4) is y = cye™* + cpe” + cze®”.
T e
Linear Independence of (3). Students familiar with nth-order determinants may verify
that by pulling out all exponential functions from the columns and denoting their product
by E, thus E = exp [(A; + + - - + A,)x], the Wronskian of the solutions in (3) becomes

eM® e'® e eMn®
)"let\w )tzeﬁzx Vles, )Lne""x
W= Alze;\l."‘: Azzea\z‘r Al ,\ﬂ2eﬁﬂ:
ARleu® AR el s ALt
5
©) 1 1 e e 1
Al /\.2 e A’ﬂ.
=E )‘12 )L22 S An2
l\_;t-l Ag-—-l 3 ko A;:'_l

The exponential function E is never zero. Hence W = 0 if and only if the determinant on

the right is zero. This is a so-called \ig_n_de_mymdg_m_ﬂggghy_ﬂﬂgnninmtl. It can be

shown that it equals

'ALEXANDRE THEOPHILE VANDERMONDE (1735-1796), French mathematician, who worked on
solution of equations by determinants. For CAUCHY see footnote 4, in Sec. 2.5.
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THEOREM 1

THEOREM 2

EXAMPLE 2

(6) (_l)n(n—l)fZV

where V is the product of all factors A; — A, with j < k (= n); for instance, when n = 3
we get —V = —(A; — A)(A; — Ag)(As — A3). This shows that the Wronskian is not zero
if and only if all the n roots of (2) are @ifferegt and thus gives the following.

S —

Basis
Solutions y, = £ s Yn = e of (1) (with any real or complex A;’s) form a

L]

basis of solutions of (1) on any open interval if and only if all n roots of (2) are

Actually, Theorem 1 is an important special case of our more general result obtained
from (5) and (6):

Linear Independence

Any number of solutions of (1) of the form e** are linearly independent on an open
interval I if and only if the corresponding.A.are.all.different.

Simple Complex Roots

If complex roots occur, they must occur §§ conjugate paif$ since the coefficients of (1)
are real. Thus, if A = y + iw is a simple root of (2), so is the conjugate A = y — iw, and
two corresponding linearly independent solutions are (as in Sec. 2.2, except for notation)

y; = e cos wx, ys = € sin wx.

Simple Complex Roots. Initial Value Problem

Solve the initial value problem

" =¥ + 100y ~100yi= 0, .o O =4SP O 1L YO = 29,

Solution. The characteristic equation is A2 — A% + 100A — 100 = 0. It has the root 1, as can perhaps be
seen by inspection. Then division by A — 1 shows that the other roots are =10i. Hence a general solution and
its derivatives (obtained by differentiation) are

y = c1e” + A cos 10x + B sin 10x,

y' = c;e® — 10A sin 10x + 10B cos 10x,
y" = ¢1¢” — 100A cos 10x — 1008 sin 10x.

From this and the initial conditions we obtain by setting x = 0

(@ ¢y +A=4, (b) ¢y + 108 = 11, (e) ¢ — 1004 = —299.

We solve this system for the unknowns A, B, ¢;. Equation (a) minus Equation (c) gives 1014 = 303, A = 3.
Then ¢; = 1 from (a) and B = 1 from (b). The solution is (Fig. 72)

y = ¢e* + 3 cos 10x + sin 10x.

This gives the solution curve, which oscillates about ¢” (dashed in Fig. 72 on p, 114). E
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O s | 2 Bt
Fig. 72. Solution in Example 2

Multiple Real Roots

If a real double root occurs, say, A; = Ao, then y; = yy in (3), and we take y, and xy; as
corresponding linearly independent solutions. This is as in Sec. 2.2.

More generally, if A is a real root of order m, then m corresponding linearly independent
solutions are

™ e, xe' 2% pandnringding 1€k

We derive these solutions after the next example and indicate how to prove their linear
independence.

Real Double and Triple Roots

Solve the ODE y* — 3y'¥ + 3y” — y" = 0.

Solution. The characteristic equation A° — 3% + 3A% — A% = 0 has the roots A; = Ay = 0 and

Az = Ag = A5 = 1, and the answer is
~__.#—H—-—

(8) y=c; + cax + (3 + cqx + c5x2)ex. |
e . Ay

Derivation of (7). We write the left side of (1) as
Blyl =97k g2y =+ ayy-
Let y = ¢**. Then by performing the differentiations we have
(o S
L[e“x] o (A.n + an_y\”"l O ao)e‘u.
Now let A; be a root of mth order of the polynomial on the right, where m = n. For

. - DM*M-“-I .
m < nlet Aysq, * * * 5 Ay be the other roots, all different from A,. Writing the polynomial
in product form, we then have

L] = (A = AY"h(A)e”

with h(A) = Lif m.= n, and A(A) = (A — Apiq) * * - (A — Ay if m < n. Now comes the
key idea: We differentiate on both sides with respect to A,

a a
©) — UMl =mQ = A" ThAE + (A = W™ o [
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The differentiations with respect to x and A m@@ and the occurring derivatives

are continuous, so that we can interchange their order on the left: B
‘.ﬂ-#_

(10) % L[] = L[i e""’j| =1 e

A

The right side of (9) is zero for A = A, because of the factors A — A; (and m = 2 since

we have a multiple root!). Hence L|xe - L:' 0 by (9) and (10). This proves that ﬁ; 1§
a solution of (1).

~{We"Can repe Eeat this_step and produce x2eM, o x™1eMT by another m — 2 such
differentiations with respect to A. Going one step further would no longer give zero on
the right because the lowest power of A — A; would then be (A — A,)°, multiplied by
m!h(A) and h(A;) # 0 because i(A) has no factors A — Ay; so we get precisely the solutions
in (7).

We finally show that the solutions (7) are linearly independent. For a specific n
this can be seen by calculating their Wronskian, which turns out to be nonzero. Eor
arbitrary m_we can pull out the exponential functions from the Wronskian. This gives
(e™)™ = " times a determinant which by “row operations” can be reduced to the

Wronskian of 1, x, - - -, x™~ 1. The latter is constant and different from zero (equal to
112! - -« (m — 1)!). These functions are solutions of the ODE y™ = 0, so that linear
independence follows from Theroem 3 in Sec. 3.1. &

Multiple Complex Roots

In this case, real solutions are obtained as for complex simple roots above. Consequently,
if A = y + iw is a complex double root, so is the conjugate A = vy — iw. Corresponding
linearly independent solutions are

11 e’ cos wx, e”* sin wx, xe cos wx, xe" sin wx.

The first two of these result from ¢** and ¢* as before, and the second two from xe*”
and xe** in the same fashion. Obviously, the corresponding general solution is

(12) y = e™[(A; + Asx) cos wx + (B; + Byx) sin wx].

s

PR T S Pt

For complex triple roots (which hardly ever occur in applications), one would obtain

two more solutions x%e** cos wx, x%e”* sin wx, and so on.

HoW. 2, 13

PROBLEM SET 3.2

ODE FOR G

of solutions.

IVEN BASIS GENERAL SOLUTION
Find an ODE (1) for which the given functions form a basis Solve the given ODE. (Show the details of your work.)

73" +y =0

1. €%, £2%, g3 2. 2% xo~25 32,2% 8. yi¥ — 20y" + 100y = 0
3. e e 7, cosx, sinx 9.y" +y" —y' —y=0

4. cos x, sin x, x cos x, x sin x 10. 16y'Y — 8y" + y = 0

5. 1, x, cos 2x, sin 2x 1L, y" - 3y" -4y’ + 6y =0
R L | @:i" +3y" —4y=0
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INITIAL VALUE PROBLEMS

Solve by a CAS, giving a general solution and the particular
solution and its graph.

13.

14.
15y
16.

17.

1&,*

19.

0.165y” + 0.0045y" — 0.00175y = 0,
—2.82, y"(0) = 2.0485,

YV + 045y" —
y(0) = 17.4, y'(0) =
y"(0) = —1.458675

4y" + 8y" + 41y’ + 37y = 0, ¥(0) = 9,
y'(0) = —6.5, ¥"(0) = —39.75

" + 3.2y" + 4.81y' =0, y(0) = 3.4,
y'(0) = —4.6, "(0) = 9.91
Y 4y = 0.5(0) = 390y = -3 y"(0) =3,
y"(0) = -3
yi¥ = 9y" — 400y = 0, y(0) = 0, y"(0) = 0,

y"(0) = 41, y"(0) = 0

" + 7.5y" + 14.25y' — 9.125y = 0,
y(0) = 10.05, y'(0) = —54.975,
y"(0) = 257.5125

CAS PROJECT. Wronskians. Euler—Cauchy
Equations of Higher Order. Although Euler-Cauchy
equations have variable coefficients (powers of x), we
include them here because they fit quite well into the
present methods.

(a) Write a program for calculating Wronskians.

(b) Apply the program to some bases of third-order
and fourth-order constant-coefficient ODEs. Compare

20.

21.

the results with those obtained by the program most
likely available for Wronskians in your CAS.

(¢) Extend the solution method in Sec. 2.5 to any order
n. Solve x%y"" + 2x%y" — 4xy" + 4y = 0 and another
ODE of your choice. In each case calculate the
Wronskian.

PROJECT. Reduction of Order. This is of practical
interest since a single solution of an ODE can often be
guessed. For second order, see Example 7 in Sec. 2.1.
(a) How could you reduce the order of a linear
constant-coefficient ODE if a solution is known?

(b) Extend the method to a variable-coefficient ODE

¥+ pay” + prx)y’ + pox)y = 0

Assuming a solution y, to be known, show that another
solution is ys(x) = u(x)y;(x) with u(x) = [ z(x) dx and
z obtained by solving

yiZ' + Gy1 + pey)z’ + Byl + 2pay1 + payr)z = 0.
(e) Reduce

3.1

By" = 3" + (6 — Py’ — (6 - Py =0,

using y; = x (perhaps obtainable by inspection).
CAS EXPERIMENT. Reduction of Order. Starting
with a basis, find third-order ODEs with variable
coefficients for which the reduction to second order
turns out to be relatively simple.

3.3 Nonhomogeneous Linear ODEs

We now turn from homogeneous to nonhomogeneous linear ODEs of nth order. We write

Pet?0, YO

& N,S@J;M

-') wo 4\

5o Dutiong

them in standard form

(1)

with y(n)

e e

o+ p(x)y + po@)y = r(x)
e

d™yldx™ as the first term, which is practical, and r(x) # 0. As for second-order

ODEs, a general solution of (1) on an open interval / of the x-axis is of the form

(2)

Here y,(x) = eyy(@) + - -
homogeneous ODE

(3)

NanTivats2

.}.'.Ef) = yp(x) + yp(x).

y(n) 2 pﬂ_l(x)y(n—l) TS e

+ ¢, y,(x) is a general solution of the corresponding

+ p1(x)y" + pox)y = 0

on 1. Also, y, is any solution of (1) on_I containing no arbitrary constants. If (1) has

continuous coefficients and a continuous r(x) on /, then a general solution of (1) exists

and includes all solutions. Thus (1) has no singular.solutions.
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An initial value problem for (1) consists of (1) and n initial conditions

4) y(xo) = Ko, }”(Io) =Ky, o )’(n-l)(xo) = Aoy

with Xg in /. Under those continuity assumptions it has a gﬁ'n"fq"u"e"‘é"olufmﬂ;l The ideas of

proof are the same as those for n = 2 in Sec. 2.7.

Method of Undetermined Coefficients

Equation (2) shows that for solving (1) we have to determine a particular solution of (1).
For a constant-coefficient equation

®) Pt T Gy agy = r(3)

(ap, = -+, @, constant) and special r(x) as in Sec. 2.7, such a y,(x) can be determined
by the method of undetermined coefficients, as in Sec. 2.7, using the following rules.

(A) Basic Rule as in Sec. 2.7.

é (B) Modification Rule. If a term in your choice for y,(x) is a solution of the

EXAMPLE 1

homogeneous equation (3), then multiply y,(x) by x*, where k is the smallest positive
integer such that no term of x"‘yp(x) is a solution of (3).

(C) Sum Rule as in Sec. 2.7.

The practical application of the method is the same as that in Sec. 2.7. It suffices to
illustrate the typical steps of solving an initial value problem and, in particular, the new
Modification Rule, which includes the old Modification Rule as a particular case (with
k = 1 or 2). We shall see that the technicalities are the same as for n = 2, perhaps except
for the more involved determination of the constants.

Initial Value Problem. Modification Rule

Solve the initial value problem
(6) Y+ +3 +y=30"  w0)=3 YO@©=-3 Y©O=-4.

Solution. Step 1. The characteristic equation is A® + 3A% + 3A + 1 = (A_+ 1)* = 0. It has the_triple rogt
A = —1. Hence a general solution of the homogeneous ODE is

Yp = 16" + coxe” " + cgxe ®
= (e + cax + czxDe ™™

e

Step 2. If we try y,, = Ce™ ", we get —C + 3C — 3C + C = 30, which has no solution. Try Cxe ™™ and Cx%e ™.

The Modification ﬁul?‘caﬂs for
Yp = Cle ™. A e

Then ¥y =GC@* — xe"%, <
" 2 3 (,—j d Dl’d
Yp = C(6x — 6x° + x Ve E
27|

yp = C(6 = 18 + %% — x%)e™%,
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Substitution of these expressions into (6) and omission of the common factor e™* gives

C6 — 18x + 9x2 — x%) + 3C(6x — 6x2 + x%) + 3C(3x® — 1) + Cx® = 30.

A

The linear, quadratic, and cubic terms drop out, and 6C = 30. Hence C = 5. This gives y, = 5x%e7%,

Step 3. We now write down y = yj, + . the general solution of the given ODE. From it we find ¢; by the
first initial condition. We insert the value, differentiate, and determine ¢5 from the second initial condition, insert
the value, and finally determine cg from y"(0) and the third initial condition:

Y=yt yp=(c1+cox+caxde ™+ 5% % p0)=c¢; =3
B e

v =[-3+cs+(—cat+2dx+ (5= =55e%, YO@O=-3+co=-3  ¢c=0

y" = [3 + 25 + (30 — deg)x + (=30 + ca)x® + Sx®le7®,  y"(0) =3 + 2cg= —47, ¢z = =25
Hence the answer to our problem is (Fig. 73)

y=03— 252" + 5x3e 7%,

The curve of y begins at (0, 3) with a negative slope, as expected from the initial values, and approaches zero
as x — . The dashed curve in Fig. 73 is yE.

e e
4 R
0\’/' e e :“Mi“;__.;{_—
5 10 =
v 2= 4 ﬁ8= e

Fig. 73. y and y, (dashed) in Example 1

Method of Variation of Parameters

The method of variation of parameters (see Sec. 2.10) also extends to arbitrary order n.

It gives a particular solution y,, for the nonhomogeneous-equation—¢1) (in standard form

with y™ as the first term!) by the formula
ww""'-___-n-

& W,
Y5 = D i@ f _';(E;) r(x) dx
k=1
(7)
Wi (x)
Wix)

Welx) r(x) dx

r(x)de + -+« + y,(x) f We

s

on an open interval / on which the coefficients of (1) and r(x) are continuous. In (7) the

functions yy, - - -, ¥, form a basis of the homogeneous ODE (3), with Wronskian W, and
W; (j =T~ -, n) is obtained from W by replacing the jth column of W by the column
[0 0 --- 0 1]". Thus, when n = 2, this becomes identical with (2) in Sec. 2.10,

N Y2
= W, =

—

W

‘0 Y2

!

1 Ya

Y1 OJ

’

Y1 |

The proof of (7) uses an extension of the idea of the proof of (2) in Sec. 2.10 and can
be found in Ref [A11] listed in App. 1.
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EXAMPLE 2 Variation of Parameters. Nonhomogeneous Euler—Cauchy Equation

Solve the nonhomogeneous Euler—Cauchy equation

xaym ¥ - 312)'" 5 ﬁxy' -y 6)’ = )C4 Inx (x> 0)

Solution. Step 1. General solution of the homogeneous ODE. Substitution of y = x™ and the derivatives
into the homogeneous ODE and deletion of the factor x™ gives e

m(m — 1)Ym — 2) — 3m(m — 1) + 6m — 6 = 0.

The roots are 1, 2, 3 and give as a basis

et s i
Y= Y2 =X e *

i

Hence the corresponding general solution of the homogeneous ODE is

Yp = €1x T czxz S c3x3.

Step 2. Determinants needed in (7). These are

|x Xz Is l
W=[1 2xr 3% =2
A~

Oims 22 6x

x2 Xa
W, = QAR

2 6x

l’""‘\ 3

e R
—

W =11 2% f.a]}=+*
2= "\

Step 3. Integration. In (7) we also need the right side r(x) of our ODE in standard form, obtained by division
of the given equation by the coefficient x* of y"'; thus, r(x) = (x* Inx) /x® = x In x. In (7) we have the simple
quotients Wy/W = 33\ WolW = :'1‘. W3/W = 1/(2x). Hence (7) becomes

x 5 g [ 1
Yp=12x eainxdr— x [elndde x|l ds
2 " 2x
s .

_i i].ll £ 2.{1 xz +£ 1
= 3 it 9 x 2nx n 2(.xn;c x).

Simplification gives y, = &x* (In x —4). Hence the answer is
it

y=yh+yp=clx+czxz+c3x3+%,x4(lnx—%].
et e T e

Figure 74 shows y,. Can you explain the shape of this curve? Its behavior near x = 0? The occurrence of

a minimum? Its rapid increase? Why would the method of undetermined coefficients not have given the
solution? 3
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-10-
20|

Fig. 74. Particular solution y, of the nonhomogeneous
Fuler-Cauchy equation in Example 2

Application: Elastic Beams

Whereas second-order ODEs have various applications, some of the more important ones
we have seen, higher order ODEs occur much more rarely in engineering work. An
important fourth-order ODE governs the bending of elastic beams, such as wooden or iron
girders in a building or a bridge.

Vibrations of beams will be considered in Sec. 12.3.

Bending of an Elastic Beam under a Load

We consider a beam B of length L and constant (e.g., rectangular) cross section and homogeneous elastic
material (e.g., steel); see Fig. 75. We assume that under its own weight the beam is bent so little that it is
practically straight. If we apply a load to B in a vertical plane through the axis of symmetry (the x-axis in
Fig. 75), B is bent. Its axis is curved into the so-called elastic curve C (or deflection curve). It is shown in
elasticity theory that the bending moment M(x) is proportional to the curvature k(x) of C. We assume the bending
to be small, so that the deflection y(x) and its derivative y’(x) (determining the tangent direction of C) are small.
Then, by calculus, k = y"/(1 + y'*)®? ~ y". Hence

M(x) = Ely"(x).

EI is the constant of proportionality. E is Young's modulus of elasticity of the material of the beam. 7 is the
moment of inertia of the cross section about the (horizontal) z-axis in Fig. 75.
Elasticity theory shows further that M'(x) = f(x), where f(x) is the load per unit length. Together,

®) EDYY = f(x).

Deformed beam
under uniform load
(simply supported)

Fig. 75. Elastic Beam
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[1-8] GENERAL SOLUTION
Solve the following ODEs. (Show the details of your work.)

L. y”" — 2y" — 4y’ + 8y = 73 + 8x?

2. y" + 3y" — 59" — 39y = 30 cos x

3.y + 0.5y" + 0.0625y = e™* cos 0.5x
A" + 29" — 5y — 6y = 100e73* + 1877
5. x3y" + 0.75xy" — 0.75y = 9x°®

6. (xD® + 4D%y = 8¢°

7. (D* + 10D? + 9I)y = 13 cosh 2x

8. (D° — 2D% — 9D + 181)y = €*

INITIAL VALUE PROBLEMS

Solve the following initial value problems. (Show the
details.)

9. y" — 9y" + 27y’ — 27y = 545in 3x, y(0) = 3.5,
@) = 13.5; y'(0) =385

10. y'V — 16y = 128 cosh 2x, y(0) =1, y'(0) =24,
»"(0) = 20, »"(0) = —160

11. (x*D3® — x2D? — 7xD + 16I)y = 9x In x,

D?y(1) = 65
y(0) = 12.16,

Dy(1) = 18,

(=6,
F_ﬂ'ﬁﬁ — 26D? + 250y = 50(x + 1)?,
D?y(0) = 34, D3y(0) = —130

Dy(0) = —6,

1. What is the superposition or linearity principle? For
what nth-order ODEs does it hold?

2, List some other basic theorems that extend from
second-order to nth-order ODEs.

3. If you know a general solution of a homogeneous linear

ODE, what do you need to obtain from it a general
solution of a corresponding nonhomogeneous linear

ODE?

4. What is an initial value problem for an nth-order linear
ODE?

5. What is the Wronskian? What is it used for?

GENERAL SOLUTION
Solve the given ODE. (Show the details of your work.)
6. y" + 6y" + 18y’ + 40y = 0
7. 4x%y" + 12xy" + 3y’ =0
V10" +9y=0
9. 8" + 12y" — 2y =3y =0
10. (D + 3D% + 3D + I)y = x?

13.

14.

15.

16.

How
CHAPTER 3 REVIEW QUESTIONS AND PROBLEMS

11.
12.
13.
14.
15.

16-20

.’_‘ i - il - - ‘ s W : z. v
5 PROBLEM SET 3.3

(D® + 4D% + 85D)y = 135xe®, y(0) = 10.4,

Dy(0) = —18.1, DZ?y(0) = —691.6
2D® — D? — 8D + 4l)y = sinx, y(0) = 1,
Dy(0) = 0, D?y(0) =0

WRITING PROJECT. Comparison of Methods.
Write a report on the method of undetermined coefficients
and the method of variation of parameters, discussing and
comparing the advantages and disadvantages of each
method. Mlustrate your findings with typical examples.
Try to show that the method of undetermined coefficients,
say, for a third-order ODE with constant coefficients and
an exponential function on the right, can be derived from
the method of variation of parameters.

CAS EXPERIMENT. Undetermined Coefficients.
Since variation of parameters is generally complicated,
it seems worthwhile to try to extend the other method.
Find out experimentally for what ODEs this is possible
and for what not. Hint: Work backward, solving ODEs
with a CAS and then looking whether the solution
could be obtained by undetermined coefficients. For
example, consider

ym 1 12)?” i 48)?’ e 64)’ = x”ze“ and

x2y" + x2y" — 6xy' + 6y = x Inx.

b

(xD* + D%y = 150x*

(D* - 2D3® — 8D%y = 16 cos 2x

(DE 4Dy~ 977

(x®D? — 3x2D?% + 6xD — 6I)y = 30x2
(DF D Dt Dy 8

INITIAL VALUE PROBLEMS

Solve the given problem. (Show the details.)

17.

18.

19.

20.

y'(0) = 30,
9" + Ix%" — 2xy' — 10y =0, Q1) =1,
2okl =7, y"(1) = 44

e 2}'" 4 4_}” 5 8}1 = 0’
y"(0) = 28

y(0) = —1,

(D? + 25D)y = 32 cos® 4x, y(0) =0,

Dy(0) = 0, D?y(0) = 0

(D* + 40D? — 441I)y = 8 coshx, y(0) = 1.98,
Dy(0) = 3, D?y(0) = —40.02, D3y(0) = 27
(x3D® + 5x2D? + 2xD — 2I)y = 7x%7,

y(1) = 10.6, Dy(l) = —3.6, D?*y(1) = 31.2
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SUMMARY OF CHAPTER 3

Higher Order Linear ODEs

Compare with the similar Summary of Chap. 2 (the case n = 2).
Chapter 3 extends Chap. 2 from order n = 2 to arbitrary order n. An nth-order
linear ODE is an ODE that can be written

(1) y(n) = Pn—l(x)y(n_l) SIS Pl(x)}" i Po(x)y = r(x)

with y™ = d™y/dx™ as the first term; we again call this the standard form. Equation
(1) is called homogeneous if r(x) = 0 on a given open interval / considered,
nonhomogeneous if 7(x) # 0 on /. For the homogeneous ODE

) Y® + po 1@V + -+ i@y + po)y = 0

the superposition principle (Sec. 3.1) holds, just as in the case n = 2. A basis or
fundamental system of solutions of (2) on / consists of n linearly independent

solutions y;, - - * , y,, of (2) on /. A general solution of (2) on /is a linear combination
of these,
(3) y =Yyttt Cun (¢y, - - * , c,, arbitrary constants).

e

A general solution of the nonhomogeneous ODE (1) on [ is of the form

) YT et (Sec. 3.3).

Here, y, is a particular solution of (1) and is obtained by two methods
(uwi_;lgd&ggﬁlgm&tgﬂ or variation of parameters) explained in Sec. 3.3.

An ipitial value problem for (1) or (2) consists of one of these ODEs and n
initial conditions (Secs. 3.1, 3.3)

(5) y{xO) = KO& )’,(xo) = Kla ATy y{n_l)(-x(]) = K =k

with given x, in I and given Ky, * * * , K,,_q. If pg, * = *, p,—1, 1 are continuous on
1, then general solutions of (1) and (2) on I exist, and initial value problems (1),
(5) or (2), (5) have a unique solution.




