- CHAPTER 4

Systems of ODEs. Phase Plane.
Qualitative Methods

Systems of ODEs have various applications (see, for instance, Secs. 4.1 and 4.5). Their
theory is outlined in Sec. 4.2 and includes that of a single ODE. The practically important
conversion of a single nth-order ODE to a system is shown in Sec. 4.1.

Linear systems (Secs. 4.3, 4.4, 4.6) are best treated by the use of vectors and matrices,
of which, however, only a few elementary facts will be needed here, as given in Sec. 4.0
and probably familiar to most students.

Qualitative methods. In addition to actually solving systems (Sec. 4.3, 4.6), which is
often difficult or even impossible, we shall explain a totally different method, namely, the
powerful method of investigating the general behavior of whole families of solutions in
the ne (Sec. 4.3). This approach to systems of ODEs is called a qualitative
method because it does not need actual solutions (in contrats to a “quantitative method”
of actually solving a system).

This phase plane method, as it is called, also gives information on stability of solutions,
which is of general importance in control theory, circuit theory, population dynamics, and
so on. Here, stability of a physical system means that, roughly speaking, a small change
at some instant causes only small changes in the behavior of the system at all later times.

Phase plane methods can be extended to nonlinear systems, for which they are
particularly useful. We will show this in Sec. 4.5, which includes a discussion of the
pendulum equation and the Lotka-Volterra population model. We finally discuss
nonhomogeneous linear systems in Sec. 4.6.

NOTATION. Analogous to Chaps. 1-3, we continue to denote unknown functions by
y; thus, y;(#), y»(¢). This seems preferable to suddenly using x for functions, x,(2), x5(2),
as is sometimes done in systems of ODEs.

Prerequisite: Chap. 2.
References and Answers to Problems: App. 1 Part A, and App. 2.

4.0 Basics of Matrices and Vectors

L]

R

124

In discussing linear systems of ODEs we shall use matrices and vectors. This simplifies
formulas and clarifies ideas. But we shall need only a few elementary facts (by no means
the bulk of material in Chaps. 7 and 8). These facts will very likely be at the disposal of
most students. Hence this section is for reference.anly. Begin with Sec. 4.1 and consult
4.0 as needed.
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Most of our linear systems will consist of two ODEs in two unknown functions y;(f),
y2(t)s

y1 = Ay + arays, : y1= =3y + 2y,
(1) for example,

Y3 = azy1 + aza¥a, ys = 13y; + 3y,

Il

(perhaps with additional given functions g;(7), g»(7) in the two ODEs on the right).
Similarly, a linear system of n first-order ODEs in n unknown functions y,(z), « - -,
yu(t) is of the form

Yi = auy @iyt + aindn

Yo = amy + agoys + ¢+ Gan¥n
(2)

s s s s s s s s 4 & 8 = 4 s 8 3 s s s s s osos oo

(perhaps with an additional given function in each ODE on the right).

Some Definitions and Terms

Matrices. In (1) the (constant or variable) coefficients form a 2 X 2 matrix A, that is,
an array

an (58

-3 2
3) A=pa = [ i| \ for example, A= I: 1:‘ :
G Qg 13 3

Similarly, the coefficients in (2) form an n X n matrix

ayy a1z S Ain
az Qaz e Qan
@ A = [ay] =
| dn1 An2 o Ay |
The ay;, ays, * * + are called entries, the horizontal lines rows, and the vertical lines

columns. Thus, in (3) the first row is [a;; a;2], the second row is [ag; dags], and the
first and second columns are

ag g
Aoy dag

In the “double subscript notation” for entries, the first subscript denotes the row and the
second the column in which the entry stands. Similarly in (4). The main diagonal is the
diagonal ay; azy; ' Gy, in(4),hence ay; age in (3).

We shall need only square matrices, that is, matrices with the same number of rows
and columns, as in (3) and (4).
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Vectors. A column vector x with n components x;, * * *, x,, is of the form
-,
Xo X1
X=|. 2 thus if n = 2, X = :
3 Xo

Similarly, a row vector v is of the form

Bt [ R T thus if n = 2, then vV =[v3, Ug]

Calculations with Matrices and Vectors

Equality. Two n X n matrices are equal if and only if corresponding entries are equal.
Thus for n = 2, let

a1 Ay b1y bys
A= and B = ;
day Aag bay byy
Then A = B if and only if
ay; = by, ay = byo
agy = bay, Gzo = bos.

Two column vectors (or two row vectors) are equal if and only if they both have n
components and corresponding components are equal. Thus, let

U4 X1 U= Xy
v= and x= : Then v =x if and only if
X Ug = Xo.

Addition is performed by adding corresponding entries (or components); here, matrices
must both be n X n, and vectors must both have the same number of components. Thus
forn = 2,

ayy; + by ayp + by vy + x4
(5) A+ B= : V+Xx= :

aaq e bz]_ 9o + b22 Ug - Xo

Scalar multiplication (multiplication by a number ¢) is performed by multiplying each
entry (or component) by c. For example, if

9 3 —-63 —21
A= : then —7A = x
—2 0 14 0
0.4 4
v = ; then 10v = :
—13 —130

If
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Matrix Multiplication. The product C = AB (in this order) of two n X n matrices
A = [aj] and B = [b;;] is the n X n matrix C = [c;;] with entries

(©) O = 2 G

Ln=1 A R

that is, multiply each entry in the jth row of A by the corresponding entry in the kth column
of B and then add these n products. One says briefly that this is a “multiplication of rows
into columns.” For example,

9 3 I -4 Q-1 4 322 9-(—4)+3-5
[—z o”z s}z[—z-uo-z (—2)-(—4)+0-5J
5 =0
:[—2 8]

CAUTION! Matrix multiplication is not commutative, AB # BA in general. In our
example,

L 54 9 3 129k (7d)2H(—2) Ledei(—4)> 0
|:2 5:| l:—2 0i|:|:2-9+5-(—~2) 23t =) :|
17 3
- [ s 6} '
Multiplication of an n X n matrix A by a vector x with n components is defined by the

same rule: v = AXx is the vector with the n components

n
Uj=2ajmxm Jd e
m=1

1edglifa | | l2n +1n
|:—8 3i| l:xj 2 |:—8x1 g 3x2:‘ ]
Systems of ODEs as Vector Equations

Differentiation. The derivative of a matrix (or vector) with variable entries (or
components) is obtained by differentiating each entry (or component). Thus, if

[yl(r)} [e—”] [yi(r)} [—wm}
y(@) = = 3 then y'() = = :
V() sin 7 yal(t) cos t

Using matrix multiplication and differentiation, we can now write (1) as

g v i1 211N : - 2| (n
(7) y = : = Ay s S,y = L
Y2 az daz Y2 13 % Ya

For example,




- CHAP. 4 Systems of ODEs. Phasg Plane. Qualitative Methods

Similarly for (2) by means of an n X n matrix A and a column vector y with n components,
namely, y = Ay. The vector equation (7) is equivalent to two equations for the
components, and these are precisely the two ODEs in (1).

Some Further Operations and Terms

Transposition is the operation of writing columns as rows and conversely and is indicated
by T. Thus the transpose A" of the 2 X 2 matrix

all alz _5 2 i all 021 _5 13
A= = is A= = S
agy Az 13 % Az dap 2 2
The transpose of a column vector, say,

Ui
V= [ i| : is a row vector, v =[v; vy

and conversely.

Inverse of a Matrix. The n X n unit matrix I is the n X n matrix with main diagonal
1, 1, - - -, 1 and all other entries zero. If for a given n X n matrix A there is an n X n
matrix B such that AB = BA = I, then A is called nonsingular and B is called the inverse
of A and is denoted by A™%; thus

(8) AA"l=A"TA=1

If A has no inverse, it is called singular. For n = 2,

9 AT 1 dss lip
& ~ detA :

—da dayy

where the determinant of A is

djy Az
(10) det A =

= Q11092 — dy20a;.

day tog
(For general n, see Sec. 7.7, but this will not be needed in this chapter.)

Linear Independence. r given vectors vV, - - -, v with n components are called a
linearly independent set or, more briefly, linearly independent, if

(11) VP4 ey =0

implies that all scalars ¢, * - -, ¢, must be zero; here, 0 denotes the zero vector, whose
n components are all zero. If (11) also holds for scalars not all zero (so that at least
one of these scalars is not zero), then these vectors are called a linearly dependent set
or, briefly, linearly dependent, because then at least one of them can be expressed as




SEC. 4.0 Basics of Matrices and Vectors 129

a linear combination of the others; that is, if, for instance, ¢; # 0 in (11), then we
can obtain

1
v(l) _— s (sz(2} S vl Cf_..v(ﬂ).
€1

Eigenvalues, Eigenvectors

Eigenvalues and eigenvectors will be very important in this chapter (and, as a matter of
fact, throughout mathematics).
Let A = [aj;] be an n X n matrix. Consider the equation

(12) Ax = Ax

where A is a scalar (a real or complex number) to be determined and x is a vector to be
determined. Now for every A a solution is x = 0. A scalar A such that (12) holds for some
vector x # 0 is called an eigenvalue of A, and this vector is called an eigenvector of A
corresponding to this eigenvalue A.

We can write (12) as Ax — Ax = 0 or

(13) (A — ADx = 0.

These are n linear algebraic equations in the n unknowns x,, - - + , x,, (the components of
x). For these equations to have a solution x # 0, the determinant of the coefficient matrix
A — AI must be zero. This is proved as a basic fact in linear algebra (Theorem 4 in
Sec. 7.7). In this chapter we need this only for n = 2. Then (13) is

(14) = :
agy gy — A Xo 0

in components,

(i = Mxp+ apr; =0
(14%)
dg1Xy  t (age — A)xp = 0.

Now A — Al is singular if and only if its determinant det (A — AI), called the characteristic
determinant of A (also for general n), is zero. This gives

ap; — A ajp
det (A — AlI) =
dgy age — A
(15) = (a11 — A)(agg — A) — apas

= A — (a1 + ag)A + ajias — ajpas; = 0.

This quadratic equation in A is called the characteristic equation of A. Its solutions are
the eigenvalues A; and A, of A. First determine these. Then use (14*) with A = A to
determine an eigenvector X of A corresponding to A,. Finally use (14%) with A = A, to
find an eigenvector x*® of A corresponding to A,. Note that if x is an eigenvector of A,
so is kx for any k # 0.
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Eigenvalue Problem

Find the eigenvalues and eigenvectors of the matrix

—4.0 4.0
(16) A= :
-1.6 1.2
Solution. The characteristic equation is the quadratic equation
-4 - A e
det [A — AT] = =A% +280+16=0.
-1.6 1.2 = A
It has the solutions A; = —2 and Ay = —0.8. These are the eigenvalues of A.

Eigenvectors are obtained from (14*). For A = A; = —2 we have from (14%)

(-4.0 +20)x; + 40xp =0

~16x;  + (12 + 20)x, = 0.

A solution of the first equation is x; = 2, xo = 1. This also satisfies the second equation. (Why?). Hence an
eigenvector of A corresponding to Ay = —2.0is
1
0.8

2
P = ‘
1

is an eigenvector of A corresponding to As = —0.8, as obtained from (14*) with A = Ag. Verify this. |

an Similarly,

4.1 Systems of ODEs as Models

EXAMPLE 1
y
’?7 7&,}]01\ ‘44" \\}
3 :
124 & ) 4 %

We first illustrate with a few typical ex es that systems of ODEs can serve as models
in various applications. We further show that a higher order ODE (with the highest
derivative standing alone on one side) can be reduced to a first-order system. Both facts
account for the practical importance of these systems.

Mixing Problem Involving Two Tanks

A mixing problem involving a single tank is modeled by a single ODE, and you may first review the
corresponding Example 3 in Sec. 1.3 because the principle of modeling will be the same for two tanks. The
model will be a system of two first-order ODEs.

Tank Ty and T in Fig. 77 contain initially 100 gal of water each. In T the water is pure, whereas 130 1b of
fertilizer are dissolved in . By circulating liquid at a rate of 2 gal/min and stirring (to keep the mixture uniform)
the amounts of fertilizer y,(¢) in 7'y and y(z) in T, change with time 7. How long should we let the liquid circulate
so that T; will contain at lgast half as much fertilizer as there will be left in 75?7

Solution. Step 1. Setting up the model. As for a single tank, the time rate of change y1(7) of y1(#) equals
inflow minus outflow. Similarly for tank T». From Fig. 77 we see that

y1 = Inflow/min — Outflow/min = % Yo — % 1 (Tank Ty)
/ : v 2
vg = Inflow/min — Outflow/min = 007t ~ 70072 (Tank T).
Hence the mathematical model of our mixture problem is the system of first-order ODEs
yi = —0.02y; + 0.02yy (Tank Ty)
-":> ys = 0.02y; — 0.02y, (Tank Ty).
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y(t)
150
¥,(1)
2 gal/min | 100~ : :
T —-: ———————————— =
50T G
1
|
0 ! | |
System of tanks 0 27.5 50 TR %

Fig. 77. Fertilizer content in Tanks T, (lower curve) and T,

Y1
As a vector equation with column vector y = L
2

- —-0.02 0.02
¥y = Ay, where A= g
—~—a~ 0.02 —-0.02

] and matrix A this becomes

Step 2. General solution. As for a single equation, we try an exponential function of r,

(1) y = xe™. Then Yy = Axe = AxeM.
L e L

Dividing the last equation Axe = Axe™ by ¢* and interchanging the left and right sides, we obtain

AX = AX.
We need nontrivial solutions (solutions that are not identically zero). Hence we have to look for eigenvalues
and eigenvectors of A. The eigenvalues are the solutions of the characteristic equation
=002 =0k 0.02 =
(2) det(A - AD= = (=0.02 — )% — 0.02% = A(A + 0.04) = 0.
0.02 =0.02 — A

We see that Ay = 0 (which can very well happen—don’t get mixed up—it is eigenvectors that must not be zero)
and A, = —0.04. Eigenvectors are obtained from (14¥) in Sec. 4.0 with A = O and A = —0.04. For our present
A this gives [we need only the first equation in (14%)]

—0.02x; + 0.02x5 = 0 and (—0.02 + 0.04)x; + 0.02xy = 0,

respectively. Hence x; = x5 and xy = —xp, respectively, and we can take x; = xp = l and x; = —xp = 1.
. ¥ - ™ — i — Nt
This gives two clgenvm‘ors' corresponding to A; = 0 and Ay = —0.04, respectively, namely,

1 1
e e o
1 -1

From (1) and the §uperposition principla(which continues to hold for systems of homogeneous linear ODEs)
we thus obtain a solution

1 1
3) y = cx®e™ + x@6™ = ¢ |: :| + g { ] R
1 =

Step 3. Use of initial conditions. The initial conditions are ¥1(0) = 0 (no fertilizer in tank T}) and y»(0) = 150.
From this and (3) with t = 0 we obtain R 7

1 1 1 ¥ Co 0
¥(0) = ¢; +cp = = 2
1 = cqp— €y 150

shall call this

where ¢y and ¢y are arbitrary constants. Later we
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In components this is ¢; + ¢ = 0, ¢; — ¢3 = 150. The solution is ¢; = 75, cg = —75. This gives the answer

=1

1 1
y = ?Sx(].) s 75xf3)e—0.04t =175 [ } =y [ ] 8—0.041:_
1

In components,

n=715-= ihl e (Tank T4, lower curve)
e———

J’z_iﬁj.liﬁ-_-off_ " (Tank Ty, upper curve).

Figure 77 shows the exponential increase of y; and the exponential decrease of yg to the common limit 75 Ib.
Did you expect this for physical reasons? Can you physically explain why the curves look “symmettic™7 Woutd
the limit change if 7y initially contained 100 Ib of fertilizer and Ty contained 50 1b?

Step 4. Answer. T contains half the fertilizer amount of Ty if it contamm the total amount, that is,

50 1b. Thus

Ji=ST5 = 75 % = 50 e ¥l t = (In 3)/0.04 = 27.5.

Hence the fluid should circulate for at least about half an hour. |

Electrical Network

Find the currents /y(f) and I5(¢) in the network in Fig. 78. Assume all currents and charges to be zero at t = 0,
the instant when the switch is closed.

L =1 henry C 0. 25 farad

Switch lf)- W W

t=0

Rl = 4 ochms

Y,

R2 =6 ohms

E =12 volts =—

Fig. 78. Electrical network in Example 2

Solution. Step 1. Setting up the mathematical model. The model of this network is obtained from
Kirchhoff’s voltage law, as in Sec. 2.9 (where we considered single circuits). Let I;(¢) and I5(t) be the currents
in the left and right loops, respectively. In the left loop the voltage drops are LI; = I [V] over the inductor
and Ry(l; — Is) = 4(I; — I5) [V] over the resistor, the difference because /; and I» flow through the resistor
in opposite directions. By Kirchhoff’s voltage law the sum of these drops equals the voltage of the battery; that
is, I3 + 4(I; — I) = 12, hence

(4a) Iy = =41, + 41, + 12.

In the right loop the voltage drops are Rols = 6/5 [V] and Ry(l; — 1)) = 4(Iy — 1) [V] over the resistors and
(1/C)f I dt = 4 [ I dr [V] over the capacitor, and their sum is zero,

612+4(!2—11)+4f1'2dr=0 or 1012—411+4f12dr=0.
Division by 10 and differentiation gives Iy — 0.41; + 0.4, = 0.
To simplify the solution process, we first get rid of 0.4/7, which by (4a) equals 0.4(—4l; + 4L, + 12).

Substitution into the present ODE gives

15 = 0411 — 041, = 0.4(—4L + 4l + 12) — 0.41,
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I I

41 L L5

0 o o ke R o 2 =t 2 i h 1) Rt A 1 B 1]

2 -

1 0.5

Lt
0 1 1 1 0 I | | 1 1
0 1 2 3 4 Sa8 & 0 1 2 3 4 5 II
(a) Currents I, (b) Trajectory [Z,(t), L(]
(upper curve) in the I, _-plane
and I, (the “phase plane")

Fig. 79. Currents in Example 2

Conversion of an nth-Order ODE to a System

We show that an nth-order ODE of the general form (8) (see Theorem 1) can be converted
to a system of n first-order ODEs. This is practically and theoretically important—
| practically because it permits the study and solution of single ODEs by methods for
:_.? systems, and theoretically because it opens a way of including'_thf: theory of higher order
i ODE:s into that of first-order systems. This conversion is another reason for the importance
of systems, 1n addition to their use as models in various basic applications. The idea of

the conversion is simple and straightforward, as follows.

| THEOREM 1 Conversion of an ODE
' An nth-order ODE

(8) Y =Ftyy, ',y

can be converted to a system of n first-order ODEs by setting

(9) 35 Lemmi ) =}”, J’3=}’”a"‘;}’n=ym_1)- A
This system is of the form
!

Wil

Ys = Vs
(10) )

) A

Yn—1 = Yn

Y, = F(t, Y1, Y2, " * *, Yn)-

PROOF The first n — 1 of these n ODEs follow immediately from (9) by differentiation. Also,

Yo = ¥ by (9), so that the last equation in (10) results from the given ODE (8). W
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—EXAMPLE 3

Mass on a Spring

To gain confidence in the conversion method, let us apply it to an old friend of ours, modeling the free motions
of a mass on a spring (see Sec. 2.4)

" 4 r + ='n BE 2 s Lo
my” +cy +ky or y LT
For this ODE (8) the system (10) is linear and homogeneous,
J’i =02
i k ¢
}’z=‘;y1_ ;}’2-
5 1 ; :
Setting y = |: :| , we get in matrix form
Yo
0 1 1
y=Ay=| , 3
B wy ST Y2
m m
The characteristic equation is
—A 1
B3IG k
det (A — A = k c —ASEEE AL = )
e s e A i m
m m

It agrees with that in Sec. 2.4. For an illustrative computation, let m = 1, ¢ = 2, and k = 0.75. Then

A2 +2)0 + 075 = (A + 05)A + 1.5) =0.

This gives the eigenvalues A; = —0.5 and Ay = —1.5. Eigenvectors follow from the first equation in
A — AI = 0, which is —Ax; + xg = 0. For A, this gives 0.5x; + x5 = 0, say, x; = 2, xp = —1. For Ay = —1.5
it gives 1.5x; + x5 = 0, say, x; = 1, x; = —1.5. These eigenvectors

T

2 1 2 1
x(l) = . x2 = give y=cji U cs 6"1‘5:.
=1 =15 = —1.5

This vector solution has the first component

5t

y=n=2e"

+ ¢y sl

S = : g
which is the expected solution. The second component is i derivaiE‘D
S - =1

PROBLEM SET 4.1

MIXING PROBLEMS 3. Derive the eigenvectors in Example 1 without
1. Find out without calculation whether doubling the flow consulting this book.
rate in Example 1 has the same effect as halfing the 4. In Example 1 find a “general solution” for any ratio
tank sizes. (Give a reason.) a = (flow rate)l(tank size), tank sizes being equal.
2. What happens in Example 1 if we replace T, by a tank Comment on the result.
containing 500 gal of water and 150 Ib of fertilizer 5. If you extend Example 1 by a tank 75 of the same size

dissolved in it?

as the others and connected to T, by two tubes with
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flow rates as between T; and 75, what system of ODEs ~ 16. TEAM PROJECT. Two Masses on Springs. (a) Set
will you get? up the model for the (undamped) system in Fig. 80.

m nd a “general solution” of the system in Prob. 5. (b) Solve the system of ODEs obtained. Hint. Try
y = xe” and set @” = . Proceed as in Example 1 or 2.
ELECTRICAL NETWORKS _ : W e
: i - et (¢) Describe the influence of initial conditions on the
7. Find the currents in Example 2 if the initial currents possible kind of motions.

are 0 and —3 A (minus meaning that /5(0) flows against
the direction of the arrow). :

8. Find the currents in Example 2 if the resistance of R,
and R, is doubled (general solution only). First, guess.
9. What are the limits of the currents in Example 27
Explain them in terms of physics.
10. Find the currents in Example 2 if the capacitance is
changed to C = 1/5.4 F (farad).

b

(Net change in

11-15 CONVERSION TO SYSTEMS spring length
Find a general solution of the given ODE (a) by first =9,-%)
converting it to a system, (b), as given. (Show the details

of your work.) :

1. y" — 4y =0 12. y" + 2.}1’ — 24y =0 Sy:tt:{?cm System in

13.y" -y =0 183D + 15y’ + 50y = 0 squitiaeiiy g

15. 64y" — 48y" — Ty =0 Fig. 80. Mechanical system in Team Project 16

4.2 Basic Theory of Systems of ODEs

In this section we discuss some basic concepts and facts about systems of ODEs that are
quite similar to those for single ODEs.
The first-order systems in the last section were special cases of the more general system

y;_ = fl(r‘ Mg s)’n)
yé = fZ(a N Rt "yn)
(1

y:& = fn(ts 2 AT s ’yn)'

We can write the system (1) as a vector equation by introducing the column vectors
y=[1 ‘' ya'andf=[f; --- f,]" (where T means transposition and saves us
the space that would be needed for writing y and f as columns). This gives

@ y =1ty
N e N e i
m ""' This system (1) includes almost all cases of practical interest. For n = 1 it becomes
EU LY 3) yi = fa(t, y,) or, simply, y' = f(t, y), well known to us from Chap. 1.
la A solution of (1) on some interval @ < t < b is a set of n differentiable functions

n=m®, . y=h)
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on a < t < b that satisfy (1) throughout this interval. In vector form, introducing the
“solution vector” h = [h; -+ hy,]" (a column vector!) we can write

y = h(@).

N P s

An initial value Broblem for (1) consists of (1) and n given initial conditions

(2) )’1(‘0) = Klo )’z(fo) iR Kz, ey )’n(fo) = Kna

in vector form, y(#,) = K, where 1, is a specified value of ¢ in the interval considered and
the componentsml -+« K,|" are given numbers. Sufficient conditions for the
existence and uniqueness of a solution of an initial value problem (1), (2) are stated in
the following theorem, which extends the theorems in Sec. 1,7 for a single equation. (For
a proof, see Ref. [A7].) ;

THEOREM 1 Existence and Uniqueness Theorem
Let fy, -+ *, fn in (1) be continuous functions having continuous partial derivatives
5\%@- ’?8 af/0ys, -, 0f1l0yn, **, Ofn/0yy in_some domain R of ty,ys * * * Yn-Space
r) 9 containing the point (g, Ky, * * *, Ky,). Then (1) has a solution on some interval
Lo / fo — a <t < 1y + a satisfying (2), and this solution is unique.
L=

Linear Systems
Extending the notion of_a linear ODE, we call (1) a linear system if it is linear in

Y1 ***, Yy that is, if it can be written

yi = an@ys + - -+ + a0y, + 810

3

Yo = Apa(Oy1 + - -+ + GppOyn + (D).

In vector form, this becomes

3) y =Aytg
a1 2 A1n Y1 81
where A=]| - 250 =1 s g =
an1 s lpn Yn &n
This system is called homogeneous if g = 0, so that it is
C)) y' = Ay.
————

If g # 0, then (3) is called nonhomogeneQus. The system in Example 1 in the last section is
homogeneous and in Example 2 nonhomogeneous. The system in Example 3 is homogeneous.
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For a linear system (3) we have af/dy; = ay1(t), * - -, f,,/dy, = @, (1) in Theorem 1.

Hence for a linear system we simply obtain the following.

Existence and Uniqueness in the Linear Case

Let the a;’s and g;’s in (3) be continuous functions of t on an open interval
a<t<p contammg the pomt t = to. Then (3) has a solution y(t) on this interval
s_c;_n._sm;;g_ﬂ) and this solution is unique.

™

As for a single homogeneous linear ODE we have

Superposition Principle or Linearity Principle

If y¥ and y*® are solutions of the homageneous linear system (4) on some interval,
(2)

so is any linear combination y = c1y"’ + cs

PRO OF Differentiating and using (4), we obtain

! !
y = ley® +oy®]
latd
= ey’ + coy?’
= ¢4 A}'(D i CZAY(E)

= A(c; ¥+ cy%) = Ay. n

A

The general theory of linear systems of ODEs is quite similar to that of a single linear
ODE in Secs. 2.6 and 2.7. To see this, we explain the most basic concepts and facts. For
proofs we refer to more advanced texts, such as [A7].

Basis. General Solution. Wronskian

By a basis or a fundamental system of solutions.of the homogeneous system (4) on some
interval J we mean a linearly independent set of n solutions y, - + -, y* of (4) on that
interval. (We write J because we need I to denote the unit matrix.) We call a corresponding
linear combination

®) y=cy® - + o y™ (¢y, * + +, ¢y, arbitrary)

a_general solution of (4) on J. It can be shown that if the a;,(7) in (4) are continuous on
J, then (4) has a basis of solutions on J, hence a general solution, which includes every

solution of (4) on J.

We can write n_solutions y*V. - - - . y™ 4) on some interval J as columns of an

n X nmatix

6) Y= [y(l) S P y(n)—l.
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The determinant of Y is called the Wronskian of y*V, - - - . y™, written

g P 4
(1) (2) s (n)

. e T e
e sl P

The columns are these solutions, each in terms of components. These solutions form a
basis on J if and only if Wi isd . W either is identically zero

or is nowhere zero in J. (This is similar to Secs. 2.6 and 3.1.)

If the solutions y©, - - =, y™ in (5) form a basis (a fundamental system), then (6) is
often called a fundamental matrix. Introducing a column vectore = [¢; €3 *** €],
we can now write (5) simply as

© o4 @) vy = Ye.
T

P
/W""k vA Furthermore, we can relate (7) to Sec. 2.6, as follows. If y and z are solutions of a
second-order homogeneous linear ODE, their Wronskian is
N

b [ﬂ"! %V

,ijrvzan woa=|, . zgl\
¥V )R :

: V”%p} f’%ﬂ 2 ¥ ‘9 2 22

To write this ODE as a system, we have to set y = y;, y' = yi = y, and similarly for z
(see Sec. 4.1). But then W(y, z) becomes (7), except for notation.

4.3 Constant-Coefficient Systems.
Phase Plane Method

Continuing, we now assume that our homogeneous linear system
| 5
(1) y' = Ay

under discussion hasonstant coefficients;)so that the n X n matrix A = [a;;] has entries
not depending on 7. We want to solve (1). Now a single ODE y' = ky has the solution

[0}: ‘&1"') y = Ce". So let us try

S ekt (2) y = xe".

__7\(].

Substitution into (1) gives y' = Axe™ = Ay = Axe". Dividing by e", we obtain the
eigenvalue problem

3) Ax = Ax.
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Thus the nontrivial solutions of (1) (solutions that are not zero vectors) are of the form (2),
wherc A is an eigenvalue of A and x is a corresponding eigenvector.

“We assume that A has a linearly independent set of n eigenvectors. This holds in most

applications, in particular if A is symmetric (ay; = a;;) or skew-symmetric (ay; = —aj,)
or has n different eigenvalues.
Let those eigenvectors be x, -+, x™ and let them correspond to eigenvalues

, A, (which may be all different, or some—or even all—may be equal). Then the

corresponding solutions (2) are

At Ant
(4) y(1) oy X(De 1 : fip g y(-n,}l £ x('n)e
0
Their Wronskian W = W(y™, - - - | y*™) [(7) in Sec. 4.2] is given by ﬁz
Aqt At
SO Mt iia ligeps A
Aqt At
@ ) xgoe’, o ¥ Mt T x> o xg?
W= (y v y ) = =g ﬂ
At 7
P x;n)e'\n ¢ XD @

On the right, the exponential function is never zero, and the determinant is not zero either
because its columns are the n linearly independent eigenvectors. This proves the following
theorem, whose assumptiorgm%m or ﬁew-sgmmc_@:, or if
the n eigenvalues of A arecll different

General Solution

If the constant matrix A in the system (1) has a h'near_y independent set_of n
eigenvectors, then the corresponding solutions y b , ¥ in (4) form a basis of
solutions of (1), and rheﬁ’@@mm

(1

(5) Yy =% ol b cnx("’e)'"t

How to Graph Solutions in the Phase Plane

We shall now concentrate on systems (1) with constant coefficients consisting of two
ODEs

: : Y1 = auyr + appys
(6) y = Ay; in components,
Vo = ag ¥y T dgays.

Of course, we can graph solutions of (6),

y1(2)
(7) ¥0) = [ il >
ya(1)
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EXAMPLE 1

MVQ the t-axis, one for each comp onent of y(). (Figure 79a in Sec. 4.1 shows

an example.) But we can also graph (7) as 2 o'in the y, yp-plane. This is a parametric
representation.(parametric-equation) with p amete( D (See Fig. 79b for an example. Many
more follow. Parametric equations also occur in calculus.) Such a curve is called a trajectory
(or sometimes an orbit or path) of (6). The y,y,-plane is called the phase plane.” If we fill
the phase plane with trajectories of (6), we obtain the so-called phase portrait of (6).

Trajectories in the Phase Plane (Phase Portrait)

In order to see what is going on, let us find and graph solutions of the system

' =k yi=-=3yn+ ¥
(8) Yy =Ay= ¥ thus ;
l _3 ]

Solution. By substituting y = xe* and y' = Axe™ and dropping the exponential function we get Ax = AX.
The characteristic equation is

S o
det (A — AI) = =A"+6A+8=0.
1 =3 T
This gives the eigenvalues A; = —2 and Ay = —4. Eigenvectors are then obtained from

(=3 —A)x; tx= 0.

For A; = —2 this is —x; + x3 = 0. Hence we can take x® = [1 11" For As = —4 this becomes x; + x9 = 0,
and an eigenvector is X2 = [1 —1]". This gives the general solution

»1 1 1
y = =cy® + oy ® = ¢ [ } E e, [ } ot
Y2 1 o
Figure 81 on p. 142 shows a phase portrait of some of the trajectories ich more trajectories could be added
if so desired). The two straight trajectories correspond tg¢; = 0 and ¢ = §) and the others to other choices if

€y, Co.

Studies of solutions in the phase plane have recently become quite important, along with

advances {n_computer graphics) because a phase portrait gives a W@
Qpr‘énsron oﬁherenﬁ“mly”ﬁf'gﬁ'[ﬁf@ This method becomes particularly valuable

T,

in the frequent cases when solving an ODE or a system is inconvenient or impossible.
e

s

Critical Points of the System (6) oo Lrres porit

The point y = 0 in Fig. 81 seems to b{a“'éomrr{on Eoint:bf all trajectories, and we want
to explore the reason for this remarkable observation. The answer will follow by calculus.
Indeed, from (6) we obtain

dys _ ypdt _ Y3 _ Gsiyi + azys

dyi  yldt oy, auntany:

®)

1A name that comes from physics, where it is the y-(mv)-plane, used to plot a motion in terms of position
vy and velocity y' = v (m = mass); but the name is now used quite generally for the y; yo-plane.

The use of the phase plane is a qualitative method, a method of obtaining general qualitative information
on solutions without actually solving an ODE or a system. This method was created by HENRI POINCARE
(1854-1912), a great French mathematician, whose work was also fundamental in complex analysis, divergent
series, topology, and astronomy.
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This associates with every point P: (y;, yp) a_unique tangent direction dy,/dy, of the
trajectory passing through P, except for the point P = Py: (0, 0), where the right side of

(9) becomes 0/0.. This point Py, at which dy,/dy; becomes undetermined, is called a critical
point of (6). lﬂ"{{):o . YlH=o

Five Types of Critical Points

There are five types of critical points depending on the geometric shape of the trajectories
near them. They are called impromr nodes, proper nodes, saddle Eoints, centers, and
spiral points. We define and illustrate them in Examples 1-5.

e A

An improper node is a critical point Py at which all the trajectories, except for two of them, have the Same

limiting direction of the tangent. The two exceptional trajectories also have a limiting direction of the tangent
at Py which, however, is different.

The system (8) has an improper node at 0, as its phase portrait Fig. 81 shows, The common limiting direction

at 0 is that of the eigenvector xP = [1 1]" because e~ goes to zero faster gan g_zz as.tincreases. The two
exceptional limiting tangent directions are those of X = [I —1]' and —x** = [-1 1]". |
e e

Proper Node (Fig. 82) ;10,0 yolute wiih Sowt 525 v

(Continued) Improper Node (Fig. 81) 2 .., .0 MDWVJ“‘" Wt some

A proper node is a critical point Py at which every trajectory has a definite limiting direction and for any given
direction d at Py there is a trajectory having d as its limiting direction.
The system
: [1 0:| y1=n
(10) Vo ¥s thus
= 2 =Ys

has a proper node at the origin (see Fig. 82). Indeed, the matrix is the unit matrix. Its characteristic equation
(1 — A)z = 0 has the root A = 1. }Ln'y x # 0 is an eigenvector, and we can take [1 0]" and [0 1]7. Hence
a general solution is = g

I 0 y1 =g
y=€1|i:|et+62[]8t or or |
0 1 s

Y2 = Ca€

yz yz'

il o

y!EJ(r)

Mﬁmb’%
/—,‘W’M

Fig. 81. Trajectories of the system (8) Fig. 82. Trajectories of the system (10)
(Improper node) (Proper node)
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EXAMPLE 4
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6ne 3 pmzﬁ/f/,me othey : mesef TVE
Saddle Point (Fig. 83)

A saddle point is a critical point Py at which there are@ﬁ)'iﬁcoming trajectoric;? two out;oin; h jectories, and

all the other trajectories in a neighborhood of Py bypass Py,
The system

il 0 Nn= n
(1D y = ¥s thus
0. -1 o

has a saddle point at the origin. Its characteristic equation (1 — A)(=1 — A) = 0 has the roots A; = 1 and
Ay = —1. For A = 1 an eigenvector [1 .Q|T is obtained from the second row of (A — ADx = 0, that is,

1 + (=1 = 1)xg = 0. For Ay = —1 the first row gives [0 11". Hence a general solution is

1 0 3 e l‘Z.']_eE pa—
y=oc &+ ¢y it or _, &Or_  ywa = const. )
0 1 Yo = g€

This is a family of hyperbolas (and the coordinate axes); see Fig. 83.

=
Mmoo yecd 7:0-5\"

L] “_Q“M Lo
Center (Fig. 84) (oMj’"”" egeny
A _center is a critical point that is enclosed b}(@ nitely many closed trajéctoriess
The system
e i =2
(12) y = Ys thus L
—4 D Yg = _4yx

has a center at the origin. The characteristic equation A% + 4 = 0 gives the eigenvalues 2i and —2i. For 2i an
eigenvector follows from the first equation —2ix; + xg = 0 of (A — ADx = 0, say, [1 2i1". For A = —2i that
equation is —(—2i)x; + x5 = 0 and gives, say, [l —2i]". Hence a complex general solution is

2it

1 ' 1 L M= Cle2it + Cge_
(12%) y=¢ |: il 32“ + 9 { J e_Zﬂ, thus f —9it
2i —2i Yo = 2ic,e™" — 2icze™ .

The next step would be the transformation of this solution to real form by the Euler formula (Sec. 2.2). But we

were just curious to see what kind of eigenvalues we obtain in the case of a center. Accordingly, we do not
continue, but start again from the beginning and use a shortcut. We rewrite the given equations in the form
¥4 = yg. 4y1 = —ya; then the product of the left sides must equal the product of the right sides,

dy1y1 = —YaYs- By integration, 2912 + 1yo2 = const.
Tlis_iﬁm&ce Fig. 84) enclosing the center at the origin. 3]
Y, 2 g 9
> % 84!
Fig. 83. Trajectories of the system (11) Fig. 84. Trajectories of the system (12)

(Saddle point) (Center)
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s /2
MM 35 atsve ye
spiral Point (Fig. 85) e Wjﬁ'w ¥ M

A spiral point is a critical point Py about which the trajectories spiral, approaching Pq as 1 — o (or tracing
these spirals in the opposite sense, away from Pg).

The system

A o= e n=-ntr

(13) = ¥, thus !
ol Yo = =y =3
has a spiral point at the origin, as we shall see. The characteristic equation is A+oaa+2=01 gives the
eigenvalues —1 + i and —1 — j. Corresponding eigenvectors are obtained from (—1 — A)x; + x5 = 0. For
A = —1 + i this becomes —ix; + x5 = 0 and we can take [1 ] as an eigenvector. Similarly, an eigenvector
corresponding to —1 — iis [I —i]", This gives the coriplex gefieral solution
Nem—

1 : 1 _ A;MX—I’BH":"X
e & |: ] ST o [ ] g‘“l"”_.

The next step would be the transformation of this complex solution to a real general solution by the Euler
formula. But. as in the last example, we just wanted to see what eigenvalues to expect in the case of a spiral
point. Accordingly, we start again from the beginning and instead of that rather lengthy systematic calculation
we use a shortcut. We multiply the first equation in (13) by y,, the second by ys, and add, obtaining

!

y1 + Yoyz = = + 59

We now introd‘gm r, 1, where 72 = y,2 + y,2. Differentiating this with respect to 7 gives
2r = 2y91 + V)5 Hence the previous equation can be written
= —rz, Thus, rl'= =, drir = —di, In |r| ="—F+ ¥,

For each real ¢ this is a spiral, as claimed. (see Fig. 85). o B
e et Yo =5 B &
O rm~@ =rt=6 Tr & == 8'- o)

Fig. 85. Trajectories of the system (13) (Spiral point)

No Basis of Eigenvectors Available. Degenerate Node (Fig. 86)

This cannot happen if A in (1) is symmetric (ay; = @y, as in Examples 1-3) or skew-symmetric (ay,; = —Qjg,
thus a;; = 0). And it does not happen in many other cases (see Examples 4 and 5). Hence it suffices to explain
the method to be used by an example.
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We mention that for a system (1) with three or more equations and a triple eigenvalue
with only one linearly independent eigenvector, one will get two solutions, as just
discussed, and a third linearly independent one from

y® = Ixs%e™ + ure’ + ve

M. W )&, 18
PROBLEM SET 4.3

GENERAL SOLUTION

Find a real general solution of the following systems. (Show
the details.)

1. y1 = 3y, 2. y1 = 5y,
Yo = 12y Yo = 5y

3y =yt 4. y; = 9y; + 13.5y,
Y2 =1+ Ve yo = 1.5y; + 9y,

5 yi =4y, 6. y1 = 2y; — 2y,
ya = —4y Y2 = 21 + 252

7. )’; = 2y; + 8y, — 4y3
y2 = —4y; — 10y, + 2y
Y3 = —4y; — 4y, — 4y;

8 yi =8y — ¥
Yo = y1 + 10y,

9. y1 = —y; + ys + 0.4y,
y2 =y1 — O.ly; + Ldys
ys = 0.4y, + 1.4y, + 0.2y3

INITIAL VALUE PROBLEMS

Solve the following initial value problems. (Show the details.)
10. y3 =y, + > 1L y; = y1 + 2y
Y2 =4y + 3
¥1(0) = 1, y2(0) = 6

Y2 =301t 2
¥1(0) = 16, y5(0) = —2

12. y1 = 3y; + 2y, 13. y1 = 3y1 — 2y»

Y2 = =3 t+¥2
y¥1(0) = 0.4, y5(0) = 3.8

ya = 2y1 + 3y
y1(0) = 7, yo(0) = 7

=y Sy 1530 =2y + 5y

y; = —y, + 3y, .V; = 5y; + 12.5y,
y1(0) = 7, yo(0) = 2 y1(0) = 12, y5(0) = 1

with v from u+ Av = Av.

16-17| CONVERSION
Find a general solution by conversion to a single ODE.

16. The system in Prob. 8.
17. The system in Example 5.

(Mixing problem, Fig. 87) Each of the two tanks
contains 400 gal of water, in which initially 100 Ib
(Tank 7;) and 40 1b (Tank 7,) of fertilizer are
dissolved. The inflow, circulation, and outflow are
shown in Fig. 87. The mixture is kept uniform by
stirring. Find the fertilizer contents y;(f) in T, and y()
in T,

16 gal/min

48 gal/min (. i
i ]

(Pure water) :
64 gal/min ; 48 gal/min

.

Fig. 87. Tanks in Problem 18

19. (Network) Show that a model for the currents /,(z) and
I5(#) in Fig. 88 is

|
Ejll di+ Ry — 1) =0, LI, + Ry — I) = 0.

Find a general solution, assuming that R = 20 ,
L=05H,C=2+10"*F.

20. CAS PROJECT. Phase Portraits. Graph some of the
figures in this section, in particular Fig. 86 on the
degenerate node, in which the vector y® depends on
t. In each figure highlight a trajectory that satisfies an
initial condition of your choice.

o
LL} m
R
—A—rt
L I
ARAs

Fig. 88. Network in Problem 19
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4.4 Criteria for Critical Points. Stability

We continue our discussion of homogeneous linear systems with constant coefficients

} ——
dyq dyp Y1 = apy1 t azeys

(1) y'=Ay=[

i| Ys in components,

r
asgy dgs Y2 = Qg1y1 T assys.

From the examples in the last section we have seen that we can obtain an overview of
families of solution curves if we represent them parametrically as y(f) = [y,(f) yo(0)]"
and graph them as curves in the y;y.-plane, called the phase plane. Such a curve is called
a_trajectory of (1), and their totality is known as the phase portrait of (1).

Now we have seen that solutions are of the form

y(1) = 35:*. Substitution into (1) gives  y'(f) = Axe™ = Ay = Axe'’.
Dropping the common factor ¢, we have

(2) Ax = Ax.

Hence y(7) is a (nonzero) solution of (1) if A is an eigenvalue of A and X a corresponding

eigenvector.
Our examples in the last section show that the_general fo the it is

determined to a large extent by_the type of critical point of the system (1) defined as a
point at which dy,/dy, becomes undetermined, 0/0Jhere [see (9) in Sec. 4.3]

dys Yo dt _ Ga)r T dopYs

3) :
dyy yq dt apyr + a2z

Ay €
b TN A PDMH.:,Q ‘ée also recall from Sec. 4.3 that there are various types of critical points, and we shall
o eV @ now see how these types are related to the eigenvalues, The latter are solutions A = A
i J/U:) and A, of the characteristic equation

ap — A s

(4) det(A — A = = A2 — (a1, + azp)A + det A = 0.

Az dgg — A

This is a quadratic equation A> — pA + g = 0 with coefficients p, ¢ and discriminant A
given by

(5)  p=ay + ax, g = det A = ayyaz; — ajaay;, A =p?—4q.
From calculus we know that the solutions of this equation are
(6) M = 3p + V), A2 = §(p — V).

Furthermore, the product representation of the equation gives

A =pr+g=A—A)A = Ap) = A2 — (A} + ADA + AjA,.
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Hence p is the sum and ¢ the product of the eigenvalues. Also Ay — Ay = VA from (6).
Together,

@) P = A+ Ay, q = Ay, A= (A — A%

This gives the criteria in Table 4.1 for _classifying critical points. A derivation will be
indicated later in this section.

Table 4.1 Eigenvalue Criteria for Critical Points
(Derivation after Table 4.2)

Name P=MA+X | g=2Ay | A=(; — A3)? | Comments on A;, Ay
(a) Node g=>0 A=0 Real, same sign
(b) Saddle point g<0 et Real, opposite sign
T -(}:j Center p=0 g>0 T 777 7 7 7| Pure imaginary
(d) Spiral point p+0 A<O Complex, not pure
imaginary

Stability

Critical points may also be classified in terms of their stability. Stability concepts are basic
in engineering and other applications. They are suggested by physics, where stability

means, roughly speaking, that a small change (a small distMMm
at some instant changes the behavior of the system only slightly at all future times t..For

critical points, the following concepts are appropriate.

DEFINITIONS Stable, Unstable, Stable and Attractive

A critical point Py of (1) is called stable? if, roughly, all trajectories of (1) that at

Po \ (eher some instant are close to P, remain close to P, at all future times; precisely: if for

every disk D, of radius € > 0 with center Py, there is a disk D; of radius 6 > 0 with

Y F‘ m Dp center P, such that every trajectory of (1) that has a point P, (corresponding to
t = t, say) in D has all its points corresponding to t = 1, in D_. See Fig. 89.

hays o~ De ,‘Cu-, P, is called unstable if P, is not stable.

P, is called stable and attractive (or asymptotically stable) if Py is stable and

4> Ay every trajectory that has a point in Dy approaches P as t — %..See Fig. 90.

Classification criteria for critical points in terms of stability are given in Table 4.2. Both
tables are summarized in the stability chart in Fig. 91. In this chart the region of instability
is dark blue.

2In the sense of the Russian mathematician ALEXANDER MICHAILOVICH LJAPUNOV (1857-1918),
whose work was fundamental in stability theory for ODEs. This is perhaps the most appropriate definition of
stability (and the only we shall use), but there are others, too.
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Fig. 89. Stable critical point P, of (1) (The trajectory Fig. 90. Stable and attractive critical
initiating at P, stays in the disk of radius €) point P, of (1)

Table 4.2 Stability Criteria for Critical Points

ISt s e Sadéta pnmt :
Fig. 91. Stability chart of the system (1) with p, g, A defined in (5).
Stable and ive: The second Guadrant without the g-axis.
Stability also on the positive g-axis (which correspondscfo centers).

Unstable: Dark blue region

We indicate how the criteria in Tables 4.1 and 4.2 are obtained. If ¢ = AAy 0,
both eigenvalues are positive or both are negative or complex conjugates. If also
P = Ay + Ay < 0, both are negative or have a negative real part. Hence P, is stable
and attractive. The reasoning for the other two lines in Table 4.2 is similar.

If A0, the eigenvalues are complex conjugates, say, A\; = a + i and Ay = a — iB.
If also p = Ay + Ay = 2a < 0, this gives a spiral point that is stable and attractive. If
p = 2a > 0, this gives an unstable spiral point.

p =0 then Ay = —A; and ¢ = A\ Ay = —A,2 If also ¢ > 0, then LEE —g <,
so that A, and thus Ag, must be pure imaginary. This gives periodic solutions, their
trajectories being closed curves around Ii[\,’, which is a center.

Application of the Criteria in Tables 4.1 and 4.2

—3 1
In Example 1, Sec. 4.3, we have y' = [ ] Y.p = —6,q =8, A =4, anode by Table 4.1(a). which
1 =3 ==
is stable and attractive by Table 4.2(a). =

Type of Stability =Nt A g = AjAy

(a) Stable and attractive p<0 >0 — maja'hue. ow

(b) Stable pP=0 g>0 resative

(c) Unstable p=>0 OR g<0 A

! . g RS
f?D 2MpTe Mg WWO A0 \A<0 £ S
@ Spiral | Spira
point |
¥ Node \




150

EXAMPLE 2

CHAP. 4 Systems of ODEs. Phase Plane. Qualitative Methods

Free Motions of a Mass on a Spring

What kind of critical point does my” + ¢y’ + ky = 0 in Sec. 2.4 have?

Solution. Division by m gives y" = —(kim)y — (c/m)y’. To get a system, set y; = y, yo = ¥’ (see Sec.
4.1). Then yé = = —(kim)y; — (c¢/m)ys. Hence
i 0 1 > —-A 1 — 2 k
y = ¥, det (A — AI) = ="+ —A+—=0
—kim —c/m —kim —clm — A m it

We see that p = —c/m, g = kim, ﬁj_{.dmlz_:_ﬁﬂm. From this and Tables 4.1 and 4.2 we obtain the following
results, Note that in the last three cases the discriminant A plays an essential role.

No damping. ¢ = 0,p = 0, g > 0, a center.

Underdamping. c? < 4mk, p < 0, ¢ > 0, A < 0, a stable and attractive spiral poiat.
Critical damping. c? = 4mk, p <0,g>0,A = 0,a stable and attractive node.
Overdamping. ¢ > 4mk, p <0,g>0,A > 0,a stable and attractive node. [ |

wow., 3,k

PROBLEM SET 4.4 "

1-9| TYPE AND STABILITY OF CRITICAL POINT 14. (Transformation of variable) What happens to the
Determine the type and stability of the critical point. Then System (1) and it critical Po‘m?ﬂ yon innoduce .S =
find a real general solution and sketch or graph some of the as a new independent variable’

trajectories in the phase plane. (Show the details of your 15. (Types of critical points) Discuss the critical points in

work.) (10)—(14) in Sec. 4.3 by applying the criteria in Tables
1.y, =2y, 3.y~ 4y, 4.1 and 4.2 in this section.
- Perturbation of center) If a system has a center as
Yz = 8y, Y2 = 3ys its critical point, what happens if you replace the matrix
, : A by A = A + I with any real number k # 0
y1=2n + y 4. y1 = ys (representing measurement errors in the diagonal
entries)?
Y2 = y1+ 2y, Y2 = =5y1 — 2y, :
17. (Perturbation) The system in Example 4 in Sec. 4.3
5.y, = —4y, + Gl + 10 has a center as its critical point. Replace each ay, in
o 1 e ; & e Example 4, Sec. 4.3, by a;;, + b. Find values of b such
Yo = vy — 4y, ye = Ty; — 8y, that you get (a) a saddle point, (b) a stable and attractive
node, (c) a stable and attractive spiral, (d) an unstable
7. yi = =2y, mi = 3y, + 5y, spiral, (e) an unstable node.
it _ e ot 18. CAS EXPERIMENT. Phase Portraits. Graph phase
y2 = 8y Yz = =31 — 3y

9. y1 = y1 + 2y,
Y2 =2y1 + ¥a

10-12| FORM OF TRAJECTORIES

portraits for the systems in Prob. 17 with the values of
b suggested in the answer. Try to illustrate how the phase
portrait changes “continuously” under a continuous
change of b.

19. WRITING EXPERIMENT. Stability. Stability

concepts are basic in physics and engineering. Write a

What kind of curves are the trajectories of the following two-part report of 3 pages each (A) on general
ODE:s in the phase plane? applications in which stability plays a role (be as

10. y" + 5y =0
11. y" — k%2y = 0
12.y" + £y =0

precise as you can), and (B) on material related to
stability in this section. Use your own formulations and
examples; do not copy.

20. (Stability chart) Locate the critical points of the

13. (Damped oscillation) Solve y” + 4y’ + 5y = 0. What systems (10)—(14) in Sec. 4.3 and of Probs. 1, 3, 5 in
kind of curves do you get as trajectories? this problem set on the stability chart.
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4.5 Qualitative Methods for Nonlinear Systems

Qualitative _methods are methods of obtaining qualitative information on solutions

without actually solving a system. These methods are particularly valuable for systems
whose solution by analytic methods is difficult or impossible. This is the case for_many

practically important nonlinear systems

y1 = f1(y1. y2)

1) y' = f(y), thus
Y2 = fa(y1, Y2).
In this section we extend phase plane methods, as just discussed, from linear systems _
to fionlinear sys ). We assume that (1) is autonomous, that is, the independent

variable ¢ doeg’not occur explicitly. (All examples in the last section are autonomous.)
We chall 20’2"‘! exhibit entire familiee of solutions, Thig ig an ndvnnrnup QVer numeric
methods, whlch give only one (approximate) solution at a time.

Concepts needed from the last section are the phase plane (the y,y,-plane), trajectories
(solution curves of (1) in the phase plane), the phase portrait of (1) (the totality of these
trajectories), and critical points of (1) (points (y;, ys) at which both f;(y;, vo) and fs(yq, ys)
e zero). -

Now (1) may have several critical points. Then we discuss one after another. As a
technical convenience, each time we first move the critical point Py: (a, b) to be considered
to the origin (0, 0). This can be done by a translation

o, 0 oy ey
Po:m»lﬁ:;? L#3 ) ¥i =Y T G Yo =y2 — b

R

W“”"

e w""

C

W

s b

f'?"

which moves P, to (0, 0). Thus we can assume P, to be the origin (0, 0), and for
simplicity we continue to write y;, yo (instead of y;, y,). We also assume that Py is
isolated, that is, it is_the only critical point of (1) within a (sufficiently small) disk with
center at the origin. If (1) has M@ critical points, this is automatically
true. (Explain!)

Linearization of Nonlinear Systems

How can we determine the kind and stability property of a critical point Pgy: (0, 0) of
(1)? In most cases this.can be done by linearization of (1) near P,, writing (1) as

"'=f(y) = Ay +(h(y) and dropping h(y), as follows. ==
Since P, is critical, f1(0, 0) = 0, f5(0, 0) = 0, so that f] and f, have fio constant terms)

and we can write

y Y1 = apy1 T a1ays + hi(q, y2)
(2) y = Ay + h(y), thus

Yo = Ao Y1 T Ao ys + ho(yy, ¥a).

A is constant (independent of 7) since (1) isCautonomou® One can prove the following
(proof in Ref. [A7], pp. 375-388, listed in App. 1).




7

<

152

THEOREM 1
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CHAP. 4 Systems of ODEs. Phase Plane. Qualitative Methods

Linearization
If f1 and fy in (1) are continuous and have continuous partial derivatives in a
e e s

neighborhood of the critical point Py: (0, 0), and if det A # 0 in (2), then the kind
and stability of the critical point of (1) are the same as those of the linearized

sz?fem

Y1 = a1 t+ aggys

3) y = Ay, thus
e

Yo = dg1y1 + daaYa.

es; then (1) may have

Free Undamped Pendulum. Linearization

Figure 92a shows a pendulum consisting of a body of mass m (the bob) and a rod of length L. Determine the
locations and types of the critical points. Assume that the mass of the rod and air resistance are negligible.

Solution. Step 1. Setting up the mathematical model. Let 6 denote the angular displacement, measured
counterclockwise from the equilibrium position. The weight of the bob is mg (g the acceleration of gravity). It
causes a restoring force mg sin 6 tangent to the curve of motion (circular arc) of the bob. By Newton’s second
law, at each instant this force is balanced by the force of acceleration mL6”, where L8” is the acceleration:
hence the resultant of these two forces is zero, and we obtain as the mathematical model

mLO" + mg sin 6 = 0.
Dividing this by mL, we have 7t28 3),
@) 6" + k'sin 6 =0 (kzﬁ)A

When 6 is very small, we can approximate sin @ rather accurately by @ and obtain as an approximate solution
A cos Vkt + B sin Vkt, but the exact solution for any @ is not an elementary function.
T i S

Step 2. Critical points (0, 0), ;(2-::; GJ +(4ar, 0), - - -, Linearization. To obtain a system of ODEs, we set

= ¥y, 0 = vg. Then from (4) we obtain a nonlinear system (1) of the form
———— ——

}’{ = f1(y1, y2) = ¥

(4%) , ]

y2 = fa(y1, ¥2) = —k sin y;.
The right sides are both zero when y, = 0 and sin y; = 0. This gives infinitely many critical points (nar, 0),
where n = 0, =1, £2, - - - We consider (0, 0). Since the Maclaurin series is

siny; = y; —§»° + - '@
the linearized system at (0, 0) is
: goo 1=z
Yy =AY = Y, thus
—k

)’é ==&y
e i 2

To apply our criteria in Sec. 4.4 we calculate p = ayy + as5 = 0, ¢ = det A = k = g/L (=_0), and
A=p?—4g= —#k. From this and Table 4.1(c) in Sec. 4.4 we conclude that (0, 0) isg@ Cente) which is always

«fablk. Since sin @ = sin vy is periodic with period 277, the critical points (n7, 0), n.="+2, *=4, - - - are all

centers.
Step 3. Critical points *(m, 0), =3, 0), (5, 0), - - -, Linearization. We now consider the critical point
(m, 0), setting § — g =y, and (0 — m' = ¢ = ¥g. Then in (4),

sin@=sin(y, + M= —siny; = —y; +&y> -+ = —
(O BR1 n +en !
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and the linearized system at (77, 0) is now

0o 1 Y1 =Dz
y = Ay= ] ¥, thus -
k) 0 yo = kyy.

We see that p = 0, g = —k (< 0), and A = —4g.= 4k. Hence, by Table 4.1(b), this gives &5
is always ginstablé. Because of periodicity, the critical points (nm, 0), n = =1, £3, - - - idle
These results agree with the impression we get from Fig. 92b. 3]

mg

(a) Pendulum (b) Solution curves y,(y,) of (4) in the phase plane

Fig. 92. Example 1(C will be explained in(Exa_lr_que_Z\l)

EXAMPLE 2 Linearization of the Damped Pendulum Equation

To gain further experience in investigating critical points, as another practically important case, let us see how

Example 1 changes when we add a damping term o’ (damping proportional to the angular velocity) to equation
(4). so that it becomes

(5) 8" +¢c0 + ksin8=0

.

where & = 0 and ¢ = 0 (which includes our previous case of no damping, ¢ = 0). Setting 0 = yy, 8" = yy, as

before, we obtain the nonlinear system (use 6" = y5) ey
\ T
r
Y15 Yo

r .
Yo = —ksiny; — cys.

We see that the critical points have the same locations as before, namely, E_Q:h 0), (xm 0), (x27, 0), - --. We
{9, D) consider (0, 0). Linearizing sin y; = y; as in Example 1, we get the linearized system at (0,
e e T

) I y1=0y2
(6) y =AYy = ¥ thus ;
—k)—c ye = —hy1 — eya.

This is identical with the system in Example 2 of Sec 4.4, except for the (positive!) factor m (and except for

the physical meaning of y;). Hence for ¢ = 0 (no damping) we have a center (see Fig@, for small damping

. “-‘_"—_—.--

C 7, o) w (see Fig. 93), and so on.
We now consider the critical point (7, 0). We set § — 7 = y;, (6 — m' =0' = y, and linearize

sin @ = sin(y; + @) = —siny; = —y;.

This gives the new linearized system at (7, 0)

; 0 1 1=
(6%) y = Ay = Y, thus -
k) —¢ yz = kyp — cya.
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For our criteria in Sec 4.4 we calculate p = ayy + dgg = —¢, g = det A = —k,and A = pZ—4q=c? + 4.
This gives the following results for the critical point at (':r. 0).

No damping. ¢ = 0,p = 0, g < 0, A > 0, a saddle point. See Fig. 92b.
Damping. ¢ > 0,p <0,¢<0,A>0,a saddle point. Se point. See

Since sin y; is periodic with period 27, the critical points (*27, 0), (Z4, 0), -« - are of the same type as
(0, 0), and the critical points (=, 0), (3, 0), - - - are of the same type as.Lar. 0), so that our task is finished.

Figure 93 shows the trajectories in the case of damping. What we see agrees with our physical intuition. Indeed,
damping means loss of energy. Hence instead of the closed trajectories of periodic solutions in Fig. 92b we now
have trajectories spiraling around one of the critical points (0, 0), (£2m, 0), -+ - . Even the wavy trajectories
corresponding to whirly motions eventually spiral around one of these points. Furthermore, there are no more
trajectories that connect critical points (as there were in the undamped case for the saddle points). |

Y2

i

NN\ 7
%K/q

Fig. 93. Trajectories in the phase plane for the damped pendulum
in Example 2

N
/ﬁ%

_ Lotka—Volterra Population Model
Y9

EXAMPLE 3 Predator-Prey Population Model®
This model concerns two species, say, rabbits and foxes, and the foxes prey on the rabbits.
Step 1. Setting up the model. We assume the following.

1. Rabbits have unlimited food supply. Hence if there were no foxes, their number y;(f) would grow
exponentially, y; = ay;.

2. Actually, y; is decreased because of the kill by foxes, say, at a rate proportional to y; yg, Where yo(1) is
the number of foxes. Hence y; = ay; — by;ys, where @ > 0 and b > 0.

3. If there were no rabbits, then ys(f) would exponentially decrease to zero, ys = —lys. However, ys is
increased by a rate proportional to the number of encounters between predator and prey; together we
have ys = — lys + ky1ys, where k > 0 and [ > 0.

This gives the (nonlinear!) Lotka—Volterra system

- y1 = fi(y1. ¥2) = ayy — by1ya
yg = fa(¥1, ¥2) = kyrya — bya .

*Introduced by ALFRED J. LOTKA (1880-1949), American biophysicist, and VITO VOLTERRA
(1860-1940), Italian mathematician, the initiator of functional analysis (see [GR7] in App. 1).
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Transformation to a First-Order Equation
in the Phase Plane

Another phase plane method is based on the idea of transforming a second-order
autonomous ODE (an ODE in which 7 does not occur explicitly)

Fiy,y',y")=0

to first order by taking y = y; as the independent variable, setting y’ = yp and transforming
y" by the chain rule,

= ;:dyzzdk dy, 2@
T w Ay

"
v

Then the ODE becomes of first order,

dy,
F , —= =
(8) (yl, Vo 55 yz) 0

and can sometimes be solved or treated by direction fields. We illustrate this for the
equation in Example 1 and shall gain much more insight into the behavior of solutions.

An ODE (8) for the Free Undamped Pendulum

. s " o _ = fi , .
Ifin (4) 0" + ksin 8 = 0 we set 8 = y;, 8’ = y, (the angular velocity) and use

s dys  dyy dyy  dys dyg :
A Tt . ent i
w 1 30 M1

Separation of variables gives ys dyg = —k sin Y3 dy;. By integration,

©) 1y2® = kcosy, + ( 2 (C constant).

Multiplying this by mL2, we get - @TC otoll ernerp)
ultiplying this by mL ge y‘,{‘,_‘,‘p (/{

é—m{Lyg)2 — mL?k cos ¥y = mlL2C.
& ot ;:M_f"wp

We see that these three terms are > energies. Indeed, y, is Lﬁe angular velocity, so that Ly, is the velocity and the
first term is the kinetic energy. The second term (including the minus sign) is the potential energy of the pendulum,
and mL2C is its total energy. which is constant, as expected from the law of conservation of energy, because
there is no damping (no loss of energy). The type of motion depends on the total energy. hence on C , as follows,

Figure 92b on p. 153 shows trajectories for various values of C. These graphs continue periodically with
period 27 to the left and to the right. We see that some of them are ellipse-like and closed, others are wavy,
and there are two trajectories (passing through the saddle points (nm, 0), n = +1, 3. -+ - ) that separate
those two types of trajectories. From (9) we see that the smallest possible C is € = —k: then ¥o = 0, and
cos yy = 1, so that the pendulum is at rest. The pendulum will change its direction of motion if there are points
at which y, = 6’ = 0. Then k cos Y1 T C=0by (9). If y; = = then cos y; = —1 and C = k. Hence if
Tk < C < k, then the pendulum reverses its direction for a |y;| = |6| < =, and for these values of C with
|C| < k the pendulum oscillates. This corresponds to the closed trajectories in the figure. However, if C > k,
A N 4 .
then y, =TS imipassibleamd the pendulum makes a whirly motion that appears as a wavy trajectory i the
Y1yg-planec. Finally, the value C = k corresponds to the two “separating trajectories” in Fig. 92b connecting the
saddle points. =

The phase plane method of deriving a single first-order equation (8) may be of practical interest
not only when (8) can be solved (as in Example 4) but also when solution is not possible_and
we have to utilize direction fields (Sec. 1.2). We illustrate this with a very famous example:




SEC. 4.5 Qualitative Methods for Nonlinear Systems 157

- :11;') EXAMPLE 5 Self-Sustained Oscillations. Van der Pol Equation
0

There are physical systems such that for small oscillations, energy is fed into the system, whereas for large
oscillations, energy is taken from the system. In other words, large oscillations will be damped, whereas for
small oscillations there is “negative damping” (feeding of energy into the system). For physical reasons we
expect such a system to approach a periodic behavior, which will thus appear as a closed trajectory in the phase
plane, called a limit cycle. A differential equation describing such vibrations is the famous van der Pol
l:quaa\til:)n4

(10) Y= ud =y +y=0 (i > 0, constant).

lt ﬁrst occurred in the study of electrical circuits containing vacuum tubes. For 1 = 0 this equation bewmea
v" + y = 0 and we obtain harmonic Obcﬂlﬂtlon'i Let g > 0. The damping term has the factor —u(l — y2).
This is negative for small oscﬂlations. when y% < 1, so that we have * ‘negative damping,” is zero for vz I (no
damping), and is positive if y = 1 (positive damping, loss of energy). If u is small, we expect a limit cycle
that is almost a circle because then our equation differs but little from y” + y = 0. If w is large, the limit
cycle will probably look different.

Setting y = yy. ¥’ = y, and using y" = (dya/dy,)ys as in (8), we have from (10)

dys
(11) ;yz—u(l—vl)yz+v1~0

The isoclines in the y; vo-plane (the phase plane) are the curves dya/dy, = K = const, that is,

dyy
=ul-yH-—=K
dy; Va

Solving algebraically for y,, we see that the isoclines are given by

Y1
g = —————————— (Figs. 95, 96).
Bl =y - K g
Yo
K=-; K=0 K=-1

B

| Fig. 95. Direction field for the van der Pol equation with & = 0.1 in the phase plane,
showing also the limit cycle and two trajectories. See also Fig. 8 in Sec. 1.2.

*BALTHASAR VAN DER POL (1889-1959), Dutch physicist and engineer.
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Figure 95 shows some isoclines when g is small, g = 0.1, the limit cycle (almost a circle), and two (blue)
trajectories approaching it, one from the outside and the other from the inside, of which only the initial portion,
a small spiral, is shown. Due to this approach by trajectories, a limit cycle differs conceptually from a closed
curve (a trajectory) surrounding a center, which is not approached by trajectories. For larger p the limit cycle
no longer resembles a circle, and the trajectories approach it more rapidly than for smaller w. Figure 96 illustrates
this for g = 1. S

Y1

K=-5 K=0 K=0
K=-1 K=1 K=-1
Fig. 96. Direction field for the van der Pol equation with i = 1 in the phase plane,
showing also the limit cycle and two trajectories approaching it

H‘W. [Z 13

PROBLEM SET 4.5

CRITICAL POINTS, LINEARIZATION 9. y" +cosy=0 10. y” + siny =0
[.)v:tcn.nlnf: the location and type of all critical points by 1. y" + 4y —y3 =0 @n +y +2y—y2=0
linearization. In Probs. 7-12 first transform the ODE to a
system. (Show the details of your work.) 13. (Trajectories) What kind of curves are the trajectories
L yy = yz + y,° 2. yy =4y, — y® of yy" +2y'2 = 0?
P joi 14. (Trajectories) Write the ODE y” — 4y + y* =0 asa
Y2 = 2N Y2 = Y2 system, solve it for y, as a function of y;, and sketch
A 4 g or graph some of the trajectories in the phase plane.
Y1 = 492 v Y1 = T3t g = v 15. (Trajectories) What is the radius of a real general
ys = 2y; — y12 Yo = y1 — 3y solution of y” + y = 0 in the phase plane?
16. (Trajectories) In Prob. 14 add a linear damping term
5.9, = =y, + ys — yo2 6. yh = yu — o2 to get y” + 2y" — 4y + y® = 0. Using arguments from
; 4 . mechanics and a comparison with Prob. 14, as well as
Y2 = 70 — Y2 Yor=1 — Y1 with Examples 1 and 2, guess the type of each critical
point. Then determine these types by linearization.
7.9" +y—4y2 =0 8. y"+9y +y2=0 (Show all details of your work.)
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4.6 Nonhomogeneous Linear Systems of ODEs

(Pendulum) To what state (position, speed, direction
of motion) do the four points of intersection of a
closed trajectory with the axes in Fig. 92b correspond?
The point of intersection of a wavy curve with the
Vo-axis?

Limit cycle) What is the essential difference between

19.

20.

a limit cycle and a closed trajectory surrounding a
center?

CAS EXPERIMENT. Deformation of Limit Cycle.
Convert the van der Pol equation to a system. Graph
the limit cycle and some approaching trajectories for
w=10.2,04,06,0.8, 1.0, 1.5, 2.0. Try to observe how
the limit cycle changes its form continuously if you
vary p continuously. Describe in words how the limit
cycle is deformed with growing p.

TEAM PROJECT. Self-sustained oscillations.
(a) Van der Pol Equation. Determine the type of the
critical point at (0, 0) when u > 0, & = 0, o < 0.

159

Show that if w — 0, the isoclines approach straight
lines through the origin. Why is this to be expected?
(b) Rayleigh equation. Show that the so-called
Rayleigh equation®

"— w1 —3YHY +Y=0 (u>0)

also describes self-sustained oscillations and that by
differentiating it and setting y = ¥ one obtains the van
der Pol equation.

(c) Duffing equation. The Duffing equation is
y' + wly + By? =

where usually |B] is small, thus characterizing a small
deviation of the restoring force from linearity. g > 0
and B < 0 are called the cases of a hard spring and a
soft spring, respectively. Find the equation of the
trajectories in the phase plane. (Note that for 8 > 0 all
these curves are closed.)

4.6 Nonhomogeneous Linear Systems of ODEs

In this last section of Chap. 4 we discuss methods for solving nonhomogeneous linear

systems of ODEs

(1

0\,;‘0“‘7: . y (1) of the homogeneous system y
0
‘\f:ﬂ“’ of (1),
10
(2)

=8y 4+

(see Sec. 4.2)

where the vector g() is not identically zero. We assume g_lr) and the entries of the n X n
matrix A(7) to be_continuous on some interval J of the 7-axis. From a general solution

= Ay on J and a particular solution y‘”(¢) of
(1) on J [i.e.; a solution of (1) containing no arbitrary constants], we get a solution

y = y(h} + y( p}’

y is called a general solution of (1) on J because it includes every solution of (1) on J.

This follows from Theorem 2 in Sec. 4.2 (see Prob. 1 of this section).

Having studied homogeneous linear systems in Secs, 4.1-4.4, our present task will be
to explain methods for obtaining particular solutions of (1). We discuss the method of
undetermined coefficients and the method of the variation of parameers; these have
counterparts for a s Slng]e ODE, as we know from Secs. 2.7 and 2.10.

SLORD RAYLEIGH (JOHN WILLIAM STRUTT) (1842-1919), great English physicist and mathematician,
professor at Cambridge and London, known by his important contributions to the theory of waves, elasticity
theory, hydrodynamics, and various other branches of applied mathematics and theoretical physics. In 1904 he

received the Nobel Prize in physics.
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Method of Undetermined Coefficients

As for a single ODE, this method is suitable if the entries of A are constants and the
components of g are constants, positive integer powers of f, exponential functions, or
cosines and sines. In such a case a particular solution y® is assumed in a form similar
to g; for instance, y'® = u + vt + wr> if g has components guadratic in /. with U, V. W
to be determined-by~substitution-inte~(1). This is similar to Sec. 2.7, except for the
Modification Rule. It suffices to show this by an example.

Method of Undetermined Coefficients. Modification Rule

Find a general solution of

(3) y =Ay+g= i 1 y + iy 2k
1 =3 2

[
Solution. A general equation of the homogeneous system is (see Example 1 in Sec. 4.3)

1 |
(4) y "= I l: :| =% 4 Cy [ jl e
1 =1

Since A = —2 is an eigenvalue of A, the function ¢! on the right also appears in y“'). and we must apply the
Modification Rule by setting
yP = ure 2 + ve 2t (rather than ue™2).
[ -y

Note that the first of these two terms is the analog of the modification in Sec. 2.7, but it would not be sufficient
here. (Try it.) By substitution,

[0 AN —3 o=t -2t —2
y ue 2ure 2ve Aure Ave 2.

Equating the te~>"-terms on both sides, we have —2u = Au. Hence u is an eigenvector of A corresponding to
A = —2; thus [see (5)] u = a[l 177 with any a # 0. Equating the other terms gives

—6 a 2U1 _301 + Uy -6
u—2v=Av+ thus = = + 3
2 a 202 vy = 3[.’2 2

Collecting terms and reshuffling gives

v —vs=a—0

_UI+U2=_R+2.

By additi9n. 0=-2a—4.a= _—21‘and then vy = vy + 4, 5ay, vy = k,vg =k + 4, thus, v =[k k+ 4t
We can simply choose k = 0. This gives the answer

1 1 1 0
1 —1 1 4

For other k we get other v; for instance, k = —2 gives v = [—2 2|T, so that the answer_becomes

1 1 1 =
(5%) Y=o 1: :| e+ ¢y |: :! 4 -2 [ :| e~ + l: jl e~ etc. W
I =i 1 2

Method of Variation of Parameters

This method can be applied to nonhomogeneous linear systems

(6) y =A@y + g
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with variable A = A(f) and general g(¢). It yields a particular solution y® of (6) on some
open interval J on the r-axis if a general solution of the homogeneous system y’ = A(f)y
on .J is known. We explain the method in terms of the previous example. R i

Solution by the Method of Variation of Parameters

Solve (3) in Example 1.

Solution. A basis of solutions of the homogeneous systemis [e2* e 2]Tand[e™*  —¢ ] Hence
the general solution (4) of the homogenous system may be written

- o2t e o
(7) y = =Y(r)e.
P N co ——

T A ]
Here, Y(1) = [y y®] is the fundamental matrix (see Sec. 4.2). As in Sec. 2.10 we replace the constant
vector ¢ by a variable vector u(z) to obtain a particular solution

¥ = Y(nu().

Substitution into (3) y' = Ay + g gives _?&ﬂ‘(} I

7

(®) (X'uf Yu' = AYu +g.

£

@ are solutions of the homogeneous system, we have

Now since y** and y

y(1)1' el Ay(l). y(2)f = Ay(2)‘ thus Y" = AY.

Hence Y'u = AYu, so that (8) reduces to
Yu' =g The solution is nl = Y‘lg;

here we use that the inverse Y™ ! of Y (Sec. 4.0) exists because the determinant of Y is the Wronskian W, which
is not zero for a basis. Equation (9) in Sec. 4.0 gives the form of )

| Ly s “e—4zi| ) [ezz ezt]
st = —
—6t i E G
—2e¢ —pm2t o2 2 | At gt

We multiply this by g, obtaining

1 &2 &2t —6e "2t 1 -4 =2
u =Y lg=— = — = :
2 LA 4t 22t 2: ] 8 e2t —i ez’t

———

Integration is done componentwise (just as differentiation) and gives

L[]
u(f) = - | dr = weD
éu) —4¢% —26% + 2 J“M*’S\QM

(w_‘}E_r_e + 2 comes from the lower limit of in_te_gration). From this and Y in (7) we obtain

i i
e AR =2 e o QU P -2t —2 2

Yu = = - 2y o1t

—- Pt At aty —2p~ % 4253 = g —2t+ 2 =7

The last term on the right is a solution of the homogene . Hence we can absorb it into y™. We thus

obtain as a general solution of the system (3), in agreement with (5%),

1 I 1 =22
9) y=r:1[: ]e“2t+cz|: :|e_4£—2|: ]re"2t+[ ilehm. @i
1 =11 1 2
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@eneral solution) Prove that (2) includes every
solution of (1).

GENERAL SOLUTION

Find a general solution. (Show the details of your work.)
2.y1 =ys + ¢ 3.y;=4y2+9!

yz =y1 — 3t y2 = —4y; +5

4.y, =y, + vy, +5cost 5. y; =2y + 2y, + 12

y2 = 3y; — ¥p — 5sint¢ Yo = 5y1 = y2 — 30

6. y1 = —y1 +yp + e
_Vé ST T¥e T e

7. y5 = —14y, + 10y, + 162
yz = —5y; + y; — 324t

t@ = 10y, — 6y, + 10(1 — ¢ — 1?)
yo = 6y; — 10y, + 4 — 201 — 612

9. yi = —3y; — 4y, + 11z + 15

ya = Sy + 6ys + 3e7t — 15t — 20

10. CAS EXPERIMENT. Undetermined Coefficients.
Find out experimentally how general you must choose
y‘?, in particular when the components of g have a
different form (e.g., as in Prob. 9). Write a short report,

covering also the situation in the case of the
modification rule.

INITIAL VALUE PROBLEM

Solve (showing details):
1.y = =2y, + 41

Y2 =2y, — 2t
y1(0) =4, y5 (0) =3
12; © yi =4y, + 5S¢
yz = —y; —'20e"
y1(0) =1, y2(0) = 0
13. vy =y, + 2y, + €% — 2
Ya=—y2+ 1+t

¥1(0) = 1, y,(0) = —4

| + &

PROBLEM SET 4.6

14. y; =3y, — 4y, + 20 cos ¢
Y2 =y1 = 2y
y1(0) =0, y5(0) = 8
15.  yi =4y, + 3%
yg = 2y, — 1573
y1(0) =2, y5(0) = 2
16. y; =4y, + 8y, + 2 cost — 16 sint
Vo = 6y; + 2y, + cost — 14 sint
y1(0) = 15, y5(0) = 13
17. (Network) Find the currents in Fig. 97 when R = 2.5 (),

L=1H,C=0.04F, E() = 845 sint V, and I,(0) = 0,
1,(0) = 0. (Show the details.)

18. (Network) Find the currents in Fig. 97 when R = 1 (),
L=10H, C = 125F, E(@) = 10 kV, and 1,(0) = 0,
I5(0) = 0. (Show the details.)

F==
I I
E R =

jostau)

Fig. 97. Network in Probs. 17, 18

LA
o

19. (Network) Find the currents in Fig. 98 when R; = 2 (),
R,=8,L=1H,C=05F, E =200 V. (Show the
details.)

L
E R, § R,
T o7 ot
Switch &

Fig. 98. Network in Prob. 19

20. WRITING PROJECT. Undetermined Coefficients.
Write a short report in which you compare the
application of the method of undetermined coefficients
to a single ODE and to a system of two ODEs, using
ODEs and systems of your choice.
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1. State some applications that can be modeled by systems 53 i
of ODEs.

2. What is population dynamics? Give examples. Y2

_6_)’1 == 5)’2 &+ 4€—t

3. How can you transform an ODE into a system of ODEs? " s
. ) 24.}’1:)’1""2}12_311'11
4, What are qualitative methods for systems? Why are they -
important? ya = 3y; — 4y; — cost
5. What is the phase plane? The phase plane method? The .
phase portrait of a system of ODEs? 25. y1 =y + 2y, + ¢2
6. What is a critical point of a system of ODEs? How did
we classify these points?

7. What are eigenvalues? What role did they play in this ) 26. {Mixing problem) Tank 7 in Fig. 99 contains initially

y2 = 2y; + ys — 12

chapter? 200 gal of water in which 160 1b of salt are dissolved.
8. What does stability mean in general? In connection with Tank 7, contains initially 100 gal of pure water. Liquid
critical points? is pumped through the system as indicated, and the

mixtures are kept uniform by stirring. Find the amounts

9. What does linearization of a system mean? Give an : ;
of salt y;(#) and y,() in T; and T, respectively.

example.
10. What is a limit cycle? When may it occur in mechanics? Water,
10 gal/min 6 gal/min
11-19] GENERAL SOLUTION. CRITICAL POINTS (=1

Mixture,

Find a general solution. Determine the kind and stability of 10 gal/min

the critical point. (Show the details of your work.)
1L y; = 4y, 12. y; = 9y,

Fig. 99. Tanks in Problem 26

y2 = 16y, Y2 = Vs
27. (Critical point) What kind of critical point does y’ = Ay

13. y5; = ¥5 14. y; = 3y; — 3y, have if A has the eigenvalues —6 and 1?
28. (Network) Find the currents in Fig. 100, where

=6y, — 5 =3y ¥y
Y2 = 01 7 Yo = SN0 R,=05Q R, =07Q,L, =04H L, = 05H,
, E=1kV = 1000 V, and ,(0) = 0, I(0) = 0.
15. yi = 1.5y, — 6y, 16. y; = =3y, — 2y, 1 =
y2 = —4.5y; + 3y, Y2 = —2y; — 3y,
17,95 = 3y, + 2y I8Jyi =3y + 5y,
ya = 2y, + 3yz Y2 = —5y1 — 3ys

19. y; = —y; + 2y,

Y2 = —2y1 = ¥z Fig. 100. Network in Problem 28

20-25| NONHOMOGENEOUS SYSTEMS 29. (Network) Find the currents in Fig. 101 when R = 10 £},

Find a general solution. (Show the details.) L1258, G 00R Fiad h(0) =0y =3 A

20. )’; = 3y2 + 6r 21. y; =y + 2},2 + ezt =
I I,
vz = 12y; + 1 ys = —yy + 1.5¢7% " B i
22. y; =y, + ys + sint “V

ya = 4y; + s Fig. 101. Network in Problem 29
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30-33] LINEARIZATION @ s B =y = 2y
Determine the location and kind of all critical points of the : . »
given nonlinear system by linearization. Y2 = 3n Y2 = Y1~ 2n
30. y; = ys 3. y; = =9y,

_Y; = 4y; — J’13

ya = siny;

SUMMARY OF CHAPTER 4

Systems of ODEs. Phase Plane. Qualitative Methods

Whereas single electric circuits or single mass—spring systems are modeled by single
ODEs (Chap. 2), networks of several circuits, systems of several masses and springs,
and other engineering problems lead to systems of ODEs, involving several unknown
functions yy(1), - - -, y,(r). Of central interest are first-order systems (Sec. 4.2):

y1=Ffiltby, .y

y =@ y), in components,

e R e ”

y':a. — fn(fa 5 ) %) |

to which higher order ODEs and systems of ODEs can be reduced (Sec. 4.1). In
this summary we let n = 2, so that

. . y1 = filt, y1. ¥o)
(1) y =1@,Yy), in components,

ys = folt, Y15 ¥2)

Then we can represent solution curves as trajectories in the phase plane (the
y1Yg-plane), investigate their totality [the “phase portrait” of (1)], and study the
kind and stability of the critical points (points at which both f; and f, are zero),
and classify them as nodes, saddle points, centers, or spiral points (Secs. 4.3, 4.4).
These phase plane methods are qualitative; with their use we can discover various
general properties of solutions without actually solving the system. They are
primarily used for autonomous systems, that is, systems in which 7 does not occur
explicitly.
A linear system is of the form

» 1551 g 1 81
(2) y =Ay +g, where A= , Y= , g= "
Aoy oo Y2 82

If g = 0, the system is called homogeneous and is of the form

(3) y' = Ay.
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If ayy, - - -, agy are constants, it has solutions y = xe™, where A is a solution of the
11 22 y
quadratic equation

ayp — A tyo

I =6y~ NG — X)) — ajz05; =50

azy Agy
and x # 0 has components x;, x, determined up to a multiplicative constant by
(ﬂ]] =i /\)xl + dyoXe = 0.

(These A’s are called the eigenvalues and these vectors x eigenvectors of the matrix
A. Further explanation is given in Sec. 4.0.)

A system (2) with g # 0 is called nonhomogeneous, Jts general solution is of
the form y =y, + y,, where y, is a general solution of (3) and ¥p a particular
solution of (2). Methods of determining the latter are discussed in Sec. 4.6.

The discussion of critical points of linear systems based on eigenvalues is
summarized in Tables 4.1 and 4.2 in Sec. 4.4. It also applies to nonlinear systems
if the latter are first linearized. The key theorem for this is Theorem 1 in Sec. 45,
which also includes three famous applications, namely the pendulum and van der
Pol equations and the Lotka—Volterra predator—prey population model.




