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Linear algebra in Chaps. 7 and 8 consists of the theory and application of vectors and

matrices, mainly related to linear systems of equations, eigenvalue problems, and linear
L i e s ot el
transformations. |

Linear algebra is of growing importance in engineering research and teaching because it
forms a foundation of numeric methods (see Chaps. 20-22), and its main instruments,
matrices, can hold enormous amounts of data—think of a net of millions of telephone
connections—in a form readily accessible by the computer.

Linear analysis in Chaps. 9 and 10, usually called vector calculus, extends differentiation
01 functions of one variable to functions of several variables—this includes the vector
differential operations grad, div, and curl. And it generahze‘; integration to integrals over
curves, surfaces, and solids, with transformations of these integrals into one another, by
the basic theorems of Gauss, Green, and Stokes (Chap. 10).

Software suitable for linear algebra (Lapack, Maple, Mathematica, Matlab) can be found
in the list at the opening of Part E of the book if needed.

Numeric linear algebra (Chap. 20) can be studied directly after Chap. 7 or 8 because
Chap. 20 is independent of the other chapters in Part E on numerics.

n
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CHAPTER 7

Linear Algebra: Matrices,
Vectors, Determinants. |
Linear Systems

This is the first of two chapters on linear algebra, which concerns mainly systems of
linear equations and linear transformations (to be discussed in this chapter) and eigenvalue
: ——
problems (to follow in Chap. 8). |

Systems of linear equations, briefly called linear systems, arise in electrical networks, -
mechanical frameworks, economic models, optimization problems, numerics for.
differential equations, as we shall see in Chaps. 21-23, and so on.

As main tools, linear algebra uses matrices (rectangular arrays of numbers or functions)
and yeetors. Calculations with matrices handle matrices as single objects, denote them by
single letters, and calculate with them in a very compact form, almost as with numbers,
so that matrix calculations constitute a powerful “mathematical shorthand”.

Calculations with matrices and vectors are defined and explained in Secs. 7.1-7.2.
Sections 7.3-7.8 center around linear systems, with a thorough discussion of Gauss
elimination, the role of rank, the existence and uniqueness problem for solutions (Sec. 7.5),
and matrix inversion. This also includes determinants (Cramer’s rule) in Sec. 7.6 (for
quick reference) and Sec. 7.7. Applications are considered throughout this chapter. The
last section (Sec. 7.9) on vector spaces, inner product spaces, and linear transformations
is more abstract. Eigenvalue problems follow in Chap. 8.

COMMENT. Numeric linear algebra (Secs. 20.1-20.5) can be studied immediately
after this chapter.

Prerequisite: None.
Sections that may be omitted in a short course: 7.5, 7.9.
References and Answers to Problems: App. 1 Part B, and App. 2.

/.1 Matrices, Vectors:
Addition and Scalar Multiplication

In this section and the next one we introduce basic concepts a atrix _a
ector algebra. The main application to linear systems (systems of linear equations) begins
in Sec. 7.3.

272
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SEC. 7.1 Matrices, Vectors: Addition and Scalar Multiplication 273

A matrix is a rectangular array of numbers (or functions) enclosed in brackets. These
numbers (or functions) are called the entries (or sometimes the elements) of the matrix.
e S R
For example,

aiq i a3
0.3 1 -5 L
, a1 Aoz azs) TR}
(1) azy dazg as3 | S 5
aall 47 ey
s la, ay as]
% 4x 3

are matrices. The first matrix has two rows (horizontal lines of entries) and three columns

Tows ( columns.
(vertical lines). The second and third matrices are square matrices, that is, each has as
many rows as columns (3 and 2, respectively). The entries of the second matrix have two
indices giving the location of the entry. The first index is the number of the row and the
second is the number of the column in which the entry stands. Thus, ays (read a two three)
is in Row 2 and Column 3, etc. This notation is standard, regardless of whether a matrix
is square or not.

Matrices having just a single row or column are called vectors. Thus the fourth matrix
in (1) has just one row and is called a_row vector. The last matrix in (1) has just one
column and is called a column vector.

We shall see that matrices are practical in various applications for storing and processing.
data. As a first illustration let us consider two simple but typical examples.

EXAMPLE 1 Linear Systems, a Major Application of Matrices

B

In a system of linear equations, briefly called a linear system, such as

dxy + 6xg + 9x3= 6
6-\:1 = ZX-:; = 20

561 — 8xp + x3=10

the coefficients of the unknowns x,, x5, x5 are the entries of the coefficient matrix, call it A,

4 6 9 4 6 9 6
A=|6 0 -2]. The matrix A=l6 0 -2 20
5 -8 1 5 =8 | 10
is obtained by augmenting A by the right sides of the linear system and is called the augmented matrix of the

system. In A the coefficients of the system are displayed in the pattern of the equations. That is, their position
in A corresponds to that in the system when written as shown. The same is true for A.

We shall see that the augmented matrix A contains all the information about the solutions of a system,
so that we can solve a system just by calculations on its augmented matrix. We shall discuss this in great
detail, beginning in Sec. 7.3. Meanwhile you may verify by substitution that the solution is x; = 3, xg = 1
Xz == 1.

The notation x, X5, X5 for the unknowns is practical but not essential; we could choose x, y, z or some other
letters. B
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274 CHAP. 7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems
EXAMPLE 2 Sales Figures in MatrixForm—

Sales figures for three products I, II, IIT in a store on Monday (M), Tuesday (T), - - - may for each week be
arranged in a matrix

‘M T w Th F S \O T

400 330 810 0 20 407 /TN 09
A= 0 120 780 500 500 960 | | m

100 0 0 270 430 78] 1M

- : bl e i e L : —b T
entries of these matrices we can gel a mafrix sEowmg the total sales of each product on each day, Can you think
D et Fp v TS e ST R M-ty S et e : ;

of other data for which matrices are feasible? For instance, in transportation or storage problems? Or in recording
phone calls, or in listing distances in a network of roads? i

If the company has ten stores, we can set up ten such matrices, one for each store. Then by adding corresponding

General Concepts and Notations

We shall denote matrices by capital boldface letters -+ ,or by writing the general
entry in brackets; thus A = [ay], and so on. By an m_X n matrix (read m by n matrix)
we mean a matrix with m rows and n columns—rows come always first! m X n is called
the size of the matrix. Thus an m X n matrix is of the form

e i
[ a1y dyg aypn
gy Qog Aoy,
2 A = [az] =
LAm1 dma amﬂ_

The matrices in (1) are of sizes 2 X 3,3 X 3,2 X 2,1 X 3, and 2 X 1, respectively.

Each entry in (2) has two subscripts. The first is the row number and the second is the
column number. Thus as; is the entry in Row 2 and Column 1.

If m = n, we call A an n X n square matrix. Then its diagonal containing the entries
dqy, Ags, * * * , Ay, 1s called the main diagonal of A. Thus the main diagonals of the two
square matrices in (1) are ayy, dg9, dzz and e ¥, 4x, respectively.

Square matrices are particularly important, as we shall see. A matrix that is not square_

is called a rectangular matrix.

Vectors

A vector is a matrix with only one row or column. Its entries are called the components

of the vector. We shall denote vectors by lowercase boldfa , * * - Or by Its

R e e i - -
general component in brackets, a = [a,], and so on. Our special vectors in (1) suggest
that a (general) row vector is of the form

e ——

A= oy 8x v Gyl For instance, a=[=2 5 08 0 1]
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SEC. 7.1 Matrices, Vectors: Addition and Scalar Multiplication

A column vector is of the form

by
4
by
b = A For instance, b = 0
7
_b'm-_.

Matrix Addition and Scalar Multiplication

What makes matrices and vectors really useful and particularly suitable for computers is
the fact that we can calculate with them almost as easily as with numbers. Indeed, we
now introduce rules for addition and for scalar multiplication (multiplication by numbers)
that were suggested by practical applications. (Multiplication of matrices by matrices
follows in the next section.) We first need the concept of equality.

DEFINITION Equality of Matrices
Two matrices A = |c.11-g§| and B = [b;;] are g_qy_g:l, written.A = B, if and only if thf:y
have the same size and the corresponding entrics are equal, that is,

ayy = byy, ays = bys, and so on. Matrices that are not equal are called different.
Thus, matrices of different sizes are always different.

EXAMPLE 3 Equality of Matrices
Let
ayy dyn 4 0
A= and B= ;
day das 3 —l
Then
ay; < 4._ s 0.
A=B if and only if

agy =3, age= —L

The following matrices are all different. Explain!

[ o e S N

DEFINITION Addition of Matrices
The sum of two matrices A = [a;,] and B = [bj| of the same size is written

A + B and has the entries a;;; + by obtained by adding the corresponding entries
of A and B. Matrices of different sizes cannot be added._

As a special case, the sum a + b of two row vectors or two column vectors, which must
have the same number of components, is obtained by adding the corresponding

components.
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EXAMPLE 4

DEFINITION

EXAMPLE 5

CHAP. 7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems

Addition of Matrices and Vectors.

—

—4 6 3 5 1 0 1 3 3
If A= and B = , then A+B= ;
0 1 2 3 1 0 3 2 2

A in Example 3 and our present A cannot be added. If a = [5 7 2] and b = [—6 2 0], then
a+b=[-1 9 2]
An application of matrix addition was suggested in Example 2. Many others will follow. 5]

Scajar Multiplication {Multiplication by a Number)
The product of any m X n matrix A = [a;;,] and annumber ¢) is written

cA and is the m X n matrix ¢cA = [ca;;] obtained by multiplying each entry of A
by c. ———

Here (—1)A is simply written —A and is called the negative of A. Similarly, (—k)A is
written —kA. Also, A + (—B) is written A — B and is called the difference of A and B _
(which must have the same size!).

Scalar Multiplication

.
27 -18 =27 18 3 2 0 07\

10 -.

If A=|0 09|, then -A=| 0 —09|, —FA=]0 | .lIUA= 0 0f. |
90 —45 =90 45 16 =51 \ o o)/

If a matrix B shows the distances between some cities in miles, 1.609B gives these distances in kilometers. i}

Rules for Matrix Addition and Scalar Multiplication.. From the familiar laws for the

addition of numbers we obtain similar laws for the addition of matrices of the same size
m X n, namely,

(a) A+B=B+A
8 b) A+B)+C=A+B+COC (written A + B + C)
3
(c) A+0=A
(d) A+ (—A)=0.
Here 0.denotes the zero matrix (of size-m> u).thatis, the m X n matrix with all entries

zero. (The last matrix in Example 5 is a zero matrix.)
Hence matrix addition is commutative and associative [by (3a) and (3b)].
S'i'r'n"ifarly, for scalar multiplication we obtain the rules

(@ c(A+B)=cA+cB

(b) (c + kA = cA + kA

(c) c(kA) = (ck)A (written ckA)
(d) 1A = A.

H W x, 8

)
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Q=<0

Fig. 153. Networks in Team Project 16(b)

(¢) Graph the three networks corresponding to the
nodal incidence matrices

1 0 0
L =] 1 =]
0f —1 1
0 0 _l I . )
-1 1 0
<l 1 0 0
0 0 =1

6§ el | 0 -1

(d) Mesh incidence matrix. A network can also be
characterized by the mesh incidence matrix M = [my],
where

/.2 Matrix Multiplication

CHAP. 7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems

(+1 if branch k is in mesh

and has the same orientation

mje = 1 —1 if branch k is in mesh

and has the opposite orientation

| 0 if branch  is not in mesh

and a mesh is a loop with no branch in its interior (or
in its exterior). Here, the meshes are numbered and
directed (oriented) in an arbitrary fashion. Show that
in Fig. 154 the matrix M corresponds to the given
figure, where Row | corresponds to mesh 1, etc.

1 0 -1 0 0

0 0 0 1 -1 1
M=

0 -1 1 0 1 0

| 0 1 0 0 1

Fig. 154. Network and matrix M in
Team Project 16(d)

(e) Number the nodes in Fig. 154 from left to right 1,
2, 3 and the low node by 4. Find the corresponding
nodal incidence matrix.

Matrix multiplication means multiplication of matrices by matrices. This is the last
algebraic operation to be defined (except for transposition, which is of lesser importance).
Now matrices are added by adding corresponding entries. In multiplication, do we multiply
corresponding entries? The answer is no. Why not? Such an operation would not be of
much use in applications. The standard definition of multiplication looks artificial, but
will be fully motivated later in this section by the use of matrices in “linear

transformations,” by which this multiplication is suggested.
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SEC. 7.2 Matrix Multiplication 279

DEFINITION Multiplication of a Matrix by a Matrix

The product C = AB (in this order) of an m X n matrix A = [ay] times an r X p

matrix B = [b;;] is defined if and only if » = n and is then the m X p matrix
: f [

C = [cj;] with entries

J=lse ¢ 4y Wit

n
(1 Cite — E aj;blk T ajlblk i a_..,-zbzk_ DR ajnbnk. : ]
I=1 c=1,%++, p.

The condition » = n means that the second factor, B, must have as many rows as the first
factor has columns, namely n. As a diagram of sizes (denoted as shown):

A B = C
[m X n][nXr]=[mXr]

¢k in (1) is obtained by multiplying each entry in the jth row of A by the corresponding
entry in the kth column of B and then adding these n products. For instance,
Co1 = do1byy + aasbsy + -+ + agyby, and so on. One calls this briefly a
“multiplication of rows into columns.” See the illustration in Fig. 155, where n = 3.

n=3 p=2 p=2
@y, % 93 by by, 11 Ci2
5 Sops Sooni g byy by | =] o "
). = 5 3 m=
s B3y Bgo. 'Y by by, C31 Caz
g % %43 €y Caz
Fig. 155. Notations in a product AB = C )
EXAMPLE 1 Matrix Multiplication

3 8=l 2 =2 3 1 22 —2 43 42
AB = 4 0 2 ) 0 7 8| = 26 —16 14 6
—6 =3 2 9 —4 1 1 -9 4 =37 —28

Here ¢c;q = 3+2 + 5+5 + (—1)+9 = 22, and so on. The entry in the box is cg3 = 43 + 0:7 +2-1 = 14.
The product BA is not defined. B

EXAMPLE 2 Multiplication of a Matrix and a Vector >

4 273 4:3+2-5 22 /3114 2
- - whereas | is undefined. M
| 8 3 13+ 8-5 43 : 5 1 8 o

EXAMPLE 3 (Products of Row and Column VectorsJ

-~

1 I 3" 6 1
B3 6 11]|2]=(91) 2l e 1= 6 12 2]. ]
4 \,]J \ L4 12 24 4
A .'I FA fJ /]‘ \
=z .r"'}"\,"\ . _{ I \ ;\/
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280 CHAP. 7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems

EXAMPLE 4 CAUTION! Matrlx Multiplication Is Not Cornmutatlve, AB # BA i in General

This is illustrated by Examples 1 and 2, where one of the two products is not even defined, and by Example 3,
where the two products have different sizes. But it also holds for square matrices. For instance,

1 1 -1 | 0 0 =] 1 1 1 99 99
= but = :
100 100 ] 0 0 1 -1 100 100 —-99 -99

It is mtcrcstlr_lg_ that this also shows that AB 0 does not necessarlly lmply BA=0o0orA=0o0rB =0 We

Our examples show that the order of factors in matrix products must always be observed
léety cmi_‘ugly Otherwise matrix mu!t:phcatmn satisfies rules similar to those for numbers,

namely.

(a) (kA)B = k(AB) = A(kB) written kAB or AkB

(b) A(BC) = (AB)C written ABC

(2)
(¢ (A+B)C=AC+ BC

d CA+B)=CA+CB

provided A, B, and C are such that the expressions on the left are defined; here, & is any

scalar. (2b) is called the asseciative law. (2c) and (2d) are called the distributive laws.

Since matrix multiplication is a multiplication of rows into columns, we can write the
defining formula (1) more compactly as

3)

where a; is the jth row vector of A and by, is the kth column vector of B, so that in
agreement with (1),

blk
ajbk = [ajl ajz " Bk ajnJ : = jlblk + aj2b2k et 4 ey ajnbnk.

bﬂk

EXAMPLE 5 Productin Terms of Row and Column Vectors
If A = [aj] is of size 3 X 3 and B = [by;] is of size 3 X 4, then
a;b; ajbs ajbg a;by
(4) AB = | agh, agh, asbhy agh,
aghy ashg agbg aghy

Takinga; = [3 5 —1],az =1[4 0 2], etc, verify (4) for the product in Example 1. [ |

Parallel pr ing of products on the computer is facilitated by a variant of (3) for
computing C = AB, which is used by standard algorithms (such as in Lapack). In this
method, A is used as given, B is taken in terms of its column vectors, and the product is

computed columnwise; thus,

(5) AB = A[b, by - by]=[Ab; Ab, ‘- Ab,].

e —
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SEC.7.2 Matrix Multiplication 281

Columns of B are then assigned to different processors (individually or several to each
processor), which simultaneously compute the columns of the product matrix Ab;, Ab,, etc.

EXAMPLE 6 @'r;'l;ut;ng Products Columnwise by (5)
To obtain
4 I 3 0 7 11 4 34
AB = =
-5 2 =1 4 6 =17 g =23

from (3), calculate the columns

ol e i 1 e e M o

of AB and then write them as a single matrix, as shown in the first formula on the right. 1

Motivation of Multiplication by Linear Transformations

Let us now motivate the “unnatural” matrix multiplication by its use in linear
transformations. For n = 2 variables these transformations are of the form

Y1 = Xy T dpeXs
(6%)
Vg = dgiXy T dggXp

and suffice to explain the idea. (For general n they will be discussed in Sec. 7.9.) For
instance, (6%) may relate an x,x,-coordinate system to a y;yp-coordinate system in the
plane. In vectorial form we can write (6%) as

Vi ayy iz | | 21 ayxy + djpky
(6) y = = Ax = = .

V2 dzy dos | | X2 g1X1 T AgpXy
Now suppose further that the x,x,-system is related to a wywy-system by another linear
transformation, say,

X1 by, by2 Wy byywy + biaws

Il
I
==}
=
Il
Il

(7) X
Xo by boo | [ W2 boywy + bagwy

wish to express this relation directly. Substitution will show that this direct relation isa
linear transformation, too, say,

C11 Ciz2 | | W1 C1iWy T C1aWs
(8) y=Cw-=
Co Cag Wo CoiWy T CaaWa

Indeed, substituting (7) into (6), we obtain

Then the y;y,-system is related to the wyw,-system indirectly via the x;Xp-system, and we

y1 = ay1(byywy + biaws) + ara(byywy + baaws)
= (ay1by1 + aiabg))wy + (a1byg + a12ba2)ws
Vo = Agy(byywy + biaws) + aga(baywy + baaws)

= (ag1by1 + Gooboy)Wy + (Ag1b12 + aagbog)Ws.
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DEFINITION

EXAMPLE 7

CHAP. 7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems

Comparing this with (8), we see that

¢11 = aybyy + agabgy €12 = aybyp t ayabsy

Cp1 = Agybyy + agabsy Cop = Ao1b1a + agobss.

This proves that C = AB with the product defined as in (1). For larger matrix sizes the
idea and result are exactly the same. Only the number of variables changes. We then have
m variables y and n variables x and p variables w. The matrices A, B, and C = AB then
have sizes m X n. n X p, and m X_p, respectively. And the requirement that C be the
product AB leads to formula (1) in its general form. This motivates matrix multiplication

comgfe!efy.

Transposition

Transposition provides a transition from row vectors to column vectors and conversely.
More generally, it gives us a choice to work either with a matrix or with its transpose,
whatever will be more practical in a specific situation.

Transposition of Matrices and Vectors

The transpose of an m X n matrix A = [aj;] is the n X m matrix AT (read A transpose)
o o % e e ™

that has the first row of A as its first column, the second row of A as its second

column, and so on. Thus the transpose of A in (2) is AT = [ay;]. written out

ayp; dap, Tt dm
4 ajp  dap ttt Ame
® A’ = [ay] =
_aln dayp T amn_

As a special case, transposition converts row vectors to column vectors and
———— e — e —— e e __,...,.—'—-—'-_'
conversely.

Transposition of Matrices and Vectors

5 4
5 -8 1
If = yo stisne AT = b R 100
4 0 0
1 0
A little more compactly, we can write
% 4
2 = I 3 01" 3 8
= —8 U . =
4 0 0 | 0 -1
1 0
6 67"
TR ) LU 2| =6 2 3
3 3

Note that for a square matrix, the transpose is obtained by interchanging entries that are symmetrically positioned
with respect to the main diagonal, e.g., a3y and ay;, and-so.on.
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SEC. 7.2 Matrix Multiplication 283

Rules for transposition are

(a) AN =A

(b) (A+B) =AT+B'
(10)

(c) (cA)" = cAT

(d) (AB)" = BA".
CAUTION! Note that in ( 10d) the transposed matrices are in reversed order. We leave
the proofs to the i student. (See Ptob. 22)/] £ o

Special Matrices

Certain kinds of matrices will occur quite frequently in our work, and we now list the
most important ones of them.

Symmetric and Skew-Symmetric Matrices. Transposition gives rise to two useful
classes of matrices, as follows. Symmetric matrices and skew-symmetric matrices are
square matrices whose transpose equals the matrix itself or minus the matrix, respectively:

e

11) AT=A  (thus a; = ap). AT = —A  (thus a; = —a. hence a;; = 0).

B e o R
Symmetric Matrix Skew-Symmetric Matrix
EXAMPLE 8 Symmetric and Skew-Symmetric Matrices

20 120 200 0 P i)

A=1120 10 150 is symmetric, and B=|-I Oyt is skew-symmetric.

[#5]

200 150 30 2. .0

ey e
For instance, |fﬁl’n.ompdny has three building sup Q }j “centers Cy, Co. C;;]tht:n A could show costs, say, aj; for
handling 1000 bags of cement on center Cj, and aj, (j # 4) the cost of shipping 1000 bags from C; to Cj.
Clearly, aj, = aj; becaus because xhlppmg in the oppuzlge direction will usually cost | the same.

Symmetric matrices ices have several general properties which make them n‘nporldnl This will be seen as we
proceed. ]

Triangular Matrices. Upper triangular matrices are square matrices that can have
nonzero entries only on and above the main diagonal, whereas any entry below the diagonal
must be zero. Similarly, lower triangular matrices can have nonzero entries only on and
below the main diagonal. Any entry on the main  diagonal of a triangular_ matrix may be_

Zero or not.
[

EXAMPLE 9 Upper and Lower Triangular Matrices

1 4 2 2 0 0
I3 9 -3 0 0
[ g '3 4l 8 -1 0 ot
0 2 E & 2 /0
0 0 6 i 6 8
1 9 3 6
Upper triangular Lower triangular
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284 CHAP. 7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems

Diagonal Matrices. These are square matrices that can have nonzero entries only on
the main diagonal. Any entry above or below the main diagonal must be zero.

If all the diagonal entries of a diagonal matrix S are equal, say, ¢, we call S a scalac
‘matrix because multiplication of any square matrix A of the same size by S has the same
effect as the multiplication by a scalar, that is, o

(12) AS = SA = cA.

S e it

In particular, a scalar matrix whose entries on the main diagonal are all 1 is called a
unit matrix (or identity matrix) and is denoted by T, or simply by I. For T, Tormula (12)
becomes

(13) Al = 1A = A.

EXAMPLE 10 Diagonal Matrix D. Scalar Matrix S. Unit Matrix |

tJ

0 0 C 0 0 l 0 0

D=|(0 -3 01, S=1|0 I 4l ek I='"1"@ 1 0 [ |

0 0 0 0 0 [s 0 0 1

Applications of Matrix Multiplication

Matrix multiplication will play a crucial role in connection with linear systems of
equations, beginning in the next section. For the time being we mention some other simple
applications that need no lengthy explanations.

EXAMPLE 11 Computer Production. Matrix Times Matrix

Supercomp Ltd produces two computer models PC1086 and PC1186. The matrix A shows the cost per computer

(in thousands of dollars) and B the production figures for the year 2005 (in multiples of 10000 units.) Find a

matrix C that shows the shareholders the cost per quarter (in millions of dollars) for raw material, labor, and
. e
miscellaneous.

v
f?}/ Quarter \ !‘;f’ 0
PC1086 PC1186 \0"\ () i 3 B A
1.2 1.6 | Raw Components
3 8 6 9 PC1086
A=1]03 0.4 | Labor B =
6 2 4 3 PC1186
0.5 0.6 | Miscellaneous
Solution.
4
Quarter . }\ 47
1 2 3 4 A\Up
: Vi)
({33) 12.8 13.6 (5,6\ Raw Components
A
G=AB=| 33 3.2 34 | 39 Labor
5.1 3.2 54 I\___6.3 Miscellaneous

Since cost is given in multiples of $1000 and production in multiples of 10 000 units, the entries of C are
multiples of $10 millions; thus ¢;; = 13.2 means $132 million, etc. ’ ™

o 7/)
s KL fV‘ r\':l‘-
{E*/-’\ yo
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SEC. 7.2 Matrix Multiplication - 285

EXAMPLE 12 Weight Watching. Matrix Times Vector

Suppose that in a weight-watching program, a person o!’ 185 1b _burns 350 cal/hr in walking (3 mph), 500 in
bycycling (13 mph) and 950 in jogging (5.5 mph). Bill, weighing 185 Ib, plans to exercise according to the

matrix shown. Verify the calculations (W = Walking, B = Bicycling, ] = Jogging).

- 1 /|

W B/ JBW Co ke [N
MON [10 0 05 8257 MON

350
WED | 1.0 1.0 05 1325 | WED

500 | =
FRI |15 0 05 1000 | FRI

950
SAT |20 15 10 2400 | SAT &

EXAMPLE 13 Markov Process. Powers of a Matrix. Stochastic Matrix__
Suppose that the 2004 state of land-use in a city pf 60 n1i2-';zlf' built-up area is

C: Commercially Used 25% I: Industrially Used 20% R: Residentially Used 55%.

Find the states in 2009, 2014, and 2019, assuming that the transition probabilities for 5-year intervals are given
by the matrix A and remain practically the same over the time considered,
—————

From C From1 From R

07, 0.1 0 To C
A=102 0.9 0.2 Tol
0.1 0 0.8 To R

N

A is a stochastic matrix, that is, a square matrix with all entries nonnegative and all column sums equal to .
Our example concerns a Markov process , that is, a process for which the probability of entering a certain state

depends only on the last state occupied (and the matrix A), not on any ea rlier state.
Solution. From the mitrix A and the 2004 state we can compute the 2009 state,
93¢ I-2C R—=2C v
C [0.7:25+0.1-20 +_0+55 0.7 0.1 0 25 19.5
I 02-25+09-20+02-55| =102 0.9 0.2 20 | = | 34.0
R 01:25+ 0-20+0.8-55 0.1 0 0.8 55 46.5

To explain: The 2009 figure for C equals 25% times the probability 0.7 that C goes into C, plus 20% times the
probability 0.1 that I goes into C, plus 55% times the probability O that R goes into C. Together,

2507 +20-0.1 + 55-0 = 19.5 [%]. Also 25:0.2 + 2009 + 55-0.2 = 34 [%].
Similarly, the new R is 46.5%. We see that the 2009 state vector is the column vector
y = [19.5 34.0 46.5]T =Ax=A[25 20 SS}T

where the column vector x = [25 20 55]T is the given 2004 state vector. Note that the sum of the entries of
y is 100 [%]. Similarly, you may verify that for 2014 and 2019 we get the state vectors

,, {

2= Ay = AAx) = A% = [17.05 4380 39.I5]" = 25,47
u=Az = A%y = A% = (16315 50660 33.025]. —» _ g

LANDREI ANDREJEVITCH MARKOV (1856-1922), Russian mathematician, known for his work in
probability theory.
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Answer.

In 2009 the commercial area will be 19.5% (11.7 mi?‘), the industrial 34% (20.4 miz) and the

residential 46.5% (27.9 mi®). For 2014 the corresponding figures are 17.05%, 43.80%, 39.15%. For 2019 they
are 16.315%, 50.660%, 33.025%. (In Sec. 8.2 we shall see what happens in the limit, assuming that those

robabilities remain the same. In the meantime, can you experiment or guess?) o
£ . on)
L0 1y, e

MULTIPLICATION, ADDITION, AND
TRANSPOSITION OF MATRICES AND

VECTORS
Let
6 =2 =2 9 4 —4
A= 10 -3 1], B= 4 7 0
=10 5 ] —4 0 11
3 1 5

Calculate the following products and sums or give reasons
why they are not defined. (Show all intermediate results.)
1. Aa, Ab, Ab", AB

2. AbT + Bb", (A + B)b", bA, B — BT

3. AB, BA, AAT, ATA

4. A2, B2, (AT}2, (A:!)T

5. a"A, bA, 5B(3a + 2b7), 15Ba + 10Bb"

6. ATb, b"B, (3A — 2B)"a, a"(3A — 2B)

7. ab, ba, (ab)A, a(bA)

8. ab — ba, —(4b)(7a), —28ba, 5abB

9. (A + B)2, A2 + AB + BA + B2 A2 + 2AB + B?
10. (A + B)(A — B), A2 — AB + BA — B%, A2 — B2
11. A%B, A3, (AB)?, A2B2

12. B3, BC, (BC)2, (BC)(BC)T
13. a'Aa, a"(A + AT)a, bBb", (B — B")b"
@ a’CCTa, a7 2%, HCTCH", BCC'HT

PROBLEM SET 7.2

(b) Show that for every square matrix C the matrix
C + C"is symmetric and C — CT is skew-symmetric.
Write C in the form C = 8§ + T, where S is symmetric
and T is skew-symmetric and find S and T in terms of
C. Represent A and B in Probs. 1-14 in this form.

(¢) A linear combination of matrices A, B, C, - - -,
M of the same size is an expression of the form

(14) aA + bB + ¢C + - - - + mM,

where a, - - -, m are any scalars. Show that if these
matrices are square and symmetric, so is (14);
similarly, if they are skew-symmetric, so is (14).

(d) Show that AB with symmetric A and B is
symmetric if and only if A and B commute, that is,
AB = BA.

(e) Under what condition is the product of skew-
symmetric matrices skew-symmetric?

20. (Idempotent and nilpotent matrices) By definition,
A is idempotent if A = A, and B is nilpotent if
B™ = 0 for some positive integer m. Give examples
(different from 0 or I). Also give examples such that
A? = 1 (the unit matrix).

21. (Triangular matrices) Let U;, Uy be upper triangular
and L;. L, lower triangular. Which of the following
are triangular? Give examples. How can you save half
of your work by transposition?

U; + Uy, UiUy, U3, U; + Ly, ULy, Ly + L,

2
Irl]a2., l‘l

_ @Transposition of products) Prove (10a)—(10c).
15. (General rules) Prove (2) for 2 X 2 matrices A = [a;y], Ilustrate the basic formula (10d) by examples of your

B = [b;]. C = [cji] and a general scalar.

16. (Commutativity) Find all 2 X 2 matrices A = [a;;]
that commute with B = [b;,.], where b_.,-k =j+k

17. (Product) Write AB in Probs. 1-14 in terms of row
and column vectors.

18. (Product) Calculate AB in Prob. 1 columnwise. (See
Example 6.)

19. TEAM PROJECT. Symmetric and Skew-
Symmetric Matrices. These matrices occur quite
frequently in applications, so it is worthwhile to study
some of their most important properties.
(a) Verify the claims in (11) that a); =
symmetric matrix, and ay; = —a;y for a skew-symmetric
matrix. Give examples.

a;. for a
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own. Then prove it.

APPLICATIONS

23. (Markov process) If the transition matrix A has the
entries ayy; = 0.5, a1 = 0.3, a9y = 0.5, asy = 0.7 and
the initial state is [1 I]T. what will the next three
states be?

24. (Concert subscription) In a community of 300 000
adults, subscribers to a concert series tend to renew their
subscription with probability 90% and persons presently
not subscribing will subscribe for the next season with
probability 0.1%. If the present number of subscribers
is 2000, can one predict an increase, decrease, or no
change over each of the next three seasons?
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25.

26.

27,

28.

CAS Experiment. Markov Process. Write a program
for a Markov process. Use it to calculate further steps in
Example 13 of the text. Experiment with other stochastic
3 X 3 matrices, also using different starting values.
(Production) In a production process, let N mean “no
trouble” and 7 “trouble.” Let the transition probabilities
from one day to the next be 0.9 for N — N, hence 0.1
for N— T, and 0.5 for T— N, hence 0.5 for T — T.
If today there is no trouble, what is the probability of
N two days after today? Three days after today?
(Profit vector) Two factory outlets F; and Fy in New
York and Los Angeles sell sofas (S), chairs (C), and
tables (T) with a profit of $110, $45, and $80.
respectively. Let the sales in a certain week be given by
the matrix

S G T

600 400 1007 Fy
A:

300 820  205] F,

Introduce a “profit vector” p such that the components
of v = Ap give the total profits of F; and Fj.
TEAM PROJECT. Special Linear Transformations.
Rotations have various applications. We show in this
project how they can be handled by matrices.

(a) Rotation in the plane. Show that the linear
transformation y = Ax with matrix

cos # —sin @ X
A= and X = ;
sinf@  cos @ Xo
Y1
y —
Y2

is a counterclockwise rotation of the Cartesian x;x,-
coordinate system in the plane about the origin, where
@ is the angle of rotation.

(b) Rotation through n6. Show that in (a)

cos nfl  —sinnd
A= g
cos ntl

sin nf
Is this plausible? Explain this in words.

287

(¢) Addition formulas for cosine and sine. By
geometry we should have

cosa —sina| |[cosB —sinf
sina  cos a sinf  cosf
cos (@ + B) —sin(a + B)
- sin(a + B) cos(a+ ) .

Derive from this the addition formulas (6) in App. A3.1.
(d) Computer graphics. To visualize a three-
dimensional object with plane faces (e.g., a cube), we
may store the position vectors of the vertices with
respect (o a suitable x;xpx3-coordinate system (and a
list of the connecting edges) and then obtain a two-
dimensional image on a video screen by projecting
the object onto a coordinate plane, for instance, onto
the x,x,-plane by setting x3 = 0. To change the
appearance of the image, we can impose a linear
transformation on the position vectors stored. Show
that a diagonal matrix D with main diagonal entries
3, 1, 3 gives from an x = [x;] the new position vector
y = Dx, where y; = 3x; (stretch in the x,-direction
by a factor 3), y, = xp (unchanged), y3 = 3x3
(contraction in the xs-direction). What effect would a
scalar matrix have?

(e) Rotations in space. Explainy = Ax geometrically
when A is one of the three matrices

1 0 0
0 cos @ —sinf

0 sinf@ cos 6

cos @ 0 —sing cos tfy  —sin i 0
0 1 0 ; sinyy cos Y 0
sin ¢ 0 cose. 0 0 |

What effect would these transformations have in
situations such as that described in (d)?

/.3 Linear Systems of Equations.

Gauss Elimination

The most important use of matrices occurs in the solution of systems of linear equations,
briefly called linear systems. Such systems model various problems, for instance, in
frameworks, electrical networks, traffic flow, economics, statistics, and many others. In
this section we show an important solution method, the Gauss_elimination. General
properties of solutions will be discussed in the next sections.
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Linear System, Coefficient Matrix, Augmented Matrix
A linear system of m equations in #z unknowns.x;, * * * , x,, is a set of equations of the form

Gyt 2 gk, Dy

alel + L + agnx.n — bz
(1)

@ Tl ssabreg s s=ab

The system is called Linegr because each variable x; appears in the first power only, just

as in the equation of a straight line. @y, ", @, are given numbers, called the
coefficients of the system. by, - - -, b, on the right are also given numbers. If all the b; §
S —————

are zero, then (1) is called a homogeneous system. If at least one b; is not zero, then (1)
is called a nonhomogeneous system,

A solution of (1) is a set of numbers x;, * * -, x,, that satisfies all the m equations.
A solution vector of (1) is a vector x whose components form a solution of (1). If the
system (1) is homogeneous, it has at least the trivial solution x; = 0, - - -, x,, = 0.

Matrix Form of the Linear System (1). From the definition of matrix multiplication
we see that the m equations of (1) may be written as a single vector equation

(2) Ax=b

where the coefficient matrix A = [a;;] is the m X n matrix

1
(a1 a1zt diy b1 7]
g1 dzg """  dn
A= , and x=] - and b =
_aml o e a?n'n_ _bm,_
x?’i.

are column vectors. We assume that the coefficients a;;, are not.all zerq, so that A is not

a zero matrix. Note that x has n components, whereas b has m components. The matrix

Gy v @y ' by
|

P
Il

|
|
|
mi1 """ Qymn | bm

is called the Wof the system (1). The dashed vertical line could be
omitted (as we shall do later); it is merely a reminder that the last column of A does not

belong to A.
The augmented mamx A determines the system (1) comptetely because it contains all

the glven numbers gppearmg m (]) pdd e

eatp——

Printed with FinePrint - purchase at www.fineprint.com



SEC. 7.3 Linear Systems of Equations. Gauss Elimination 289

EXAMPLE 1 Geometric Interpretation. Existence and Uniqueness of Solutions
If m = n = 2, we have two equations in two unknowns xy, xg
apxy + aipxy = by
agixy + assxs = bs.
If we interpret xy, X as coordinates in the x;x,-plane, then each of the two equations represents a straight line,

and (x, x9) is a solution if and only if the point P with coordinates xy, x5 lies on both lines. Hence there are
three possible cases:

fa) Precisely one solution if the lines intersect.
(b) Infinitely many solutions if the lines coincide.
(c) No solution if the lines are parallel

For instance,

X tx=1 X +x,=1 X, +xp=1
B 2x,-x,=0 2x) +2x,=2 X +x,=0
e Case (a) Case (b) Case (¢)
Xz X2 Xz
Infinitely \

many solutions

i

NP \

l\ e 1 X, 1 %)

e

/

If the system is homogenous._ Case (c) cannot happen, because then those two _straight lines pass through the
01‘lglni whose coordinates 0, 0 constitute the trivial solution. If y¢ you wish, consider three equations in three
unknowns as representations of three planes in space and discuss the various possible cases in a similar fashion.
See Fig. 156. [

Our simple example illustrates that a system (1) may perhaps have no solution. This poses
the following problem. Does a given system (1) have a solution? Under what conditions
does it have precisely one solution? If it has more than one solution, how can we
characterize the set of all solutions? How can we actually obtain the solutions? Perhaps
the last question is the most immediate one from a practical viewpoint. We shall answer
it first and discuss the other questions in Sec. 7.5.

Gauss Elimination and Back Substitution

No solution This is a standard elimination method for solving linear systems that proceeds
Fig. 156. Three  systematically irrespective of particular features of the coefficients. It is a method of great
equations in practical importance and is reasonable with res[_)ect to computing time and storage demand

three unknowns  (two aspects we shall consider in Sec. 20.1 in the chapter on numeric linear algebra). We

interpreted s pa0in by motivating the method. If a system is in “triangular form,” say,
planes in space

2%, + 5x = 2

13X2 o _26

we can solve it by “back substitution,” that is, solve the last equation for the variable,
X9 = —26/13 = —2, and then work backward, substituting x, = —2 into the first equation
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EXAMPLE 2

CHAP. 7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems

and solve it for x;, obtaining x; = 3(2 — 5x3) = 3(2 — 5+ (—2)) = 6. This gives us the idea
of first reducing a general system to triangular form. For instance, let the given system be

> 2x; + Sxp = 2 2 5 2
Its augmented matrix is
—4x; + 3x, = —30. —4 3 —30

We leave the first equation as it is. We eliminate x, from the second equation, to get a triangular
system. For this we add twice the first equation to the second, and we do the same operation
on the rows of the augmented matrix. This gives —4x; + 4x; + 3xp + 10x, = =30 + 2-2,
that is,

2x; + Sxg = 2 2 5 2
13xy = —26 Row2 + 2Row 1 |LO 13 —-26
e N

where Row 2 + 2 Row | means “Add twice Row | to Row 2" in the original matrix.
This is the Gauss__g!_imjna ion (for 2 equations in 2 unknowns) giving the triangular form,
from which back substitution now yields x, = —2 and x; = 6, as before.

Since a linear system is completely determined by its augmented matrix, Gauss
elimination _can be done by.merely considering the matrices, as we have just indicated.
We do this again in the next example, emphasizing the matrices by writing them first and
the equations behind them, just as a help in order not to lose track.

Gauss Elimination. Electrical Network

Solve the linear system

%= X3+ x3= 0
—=%pF  xs— Xgo=o 0
10x; + 25x3 = 90

20x; + 10xg = B

Derivation from the circuit in Fig. 157 (Optional). This is the system for the unknown currents
x; = iy, X3 = g, X3 = i3 in the electrical network in Fig. 157. To obtain it, we label the currents as shown,
choosing directions arbitrarily: if a current will come out negative, this will simply mean that the current flows
against the direction of our arrow. The current entering each battery will be the same as the current leaving it.
The equations for the currents result from Kirchhoff’s laws:

Kirchhoff’s EFI{'_{’_!‘}?K,&CU- At any point of a circuit, the sum of the inflowing currents equals the sum
of the outflowing currents.

Kirchhoff’s voltage law (KVL). In any closed loop, the sum of all voltage drops equals the impressed
electromotive force. i

Node P gives the first equation, node Q the second, the right loop the third, and the left loop the fourth, as
indicated in the figure.

20Q 10Q
Q Node P i— i+ i,= 0
0 iy
Node @: —i + i,— iy= 0
80 Vl = glo Q lgov

’ T Right loop: 104, + 25, = 90

2
P 150 Leftloop:  20i, + 10i, =80

Fig. 157. Network in Example 2 and equations relating the currents
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Solution by Gauss Elimination. This system could be solved rather quickly by noticing its particular
form. But this is not the point. The point is that the Gauss elimination is systematic and will work in general,
also for large systems. We apply it to our system and then do back substitution. As indicated let us write the
augmented matrix of the system first and then the system itself:

o 4 A

Equations

Augmented Matrix A

) ;
Gn-m }— @ ~] 1 0 Pivot 1 ———)— xpt xz3= 0
—x

I
I

Bl 1 -1 0 + xp— x3= 0
|

Eliminate——>| [ 0 [ 10 25 | 90 Eliminate —> 10x5 + 25x3 = 90
|

20| 10 0 1 80 20x1| + 10xg = 80.

Step 1. Elimination of x,
Call the first row of A the pivot row and the first equation the pivot equation. Call the coefficient ] of its
x;-term the pivot in this step. Use this equation to eliminate x; (get rid of x;) in the other equations. For this, do:

Add 1 times the pivot equation to the second equation.
Add —20 times the pivot equation to the fourth equation.

This corresponds to row operations on the augmented matrix as indicated in BLUE behind the new matrix in
(3). So the operations are performed on the preceding matrix. The result is

1 -1 1 : 0 x3— xg+ x3= 0
0 0 0 1 0 Row 2 + Row 1 0= 0
(3) ! e e AR I B S0 %58
Oresetlll 1,25 1490 10xy + 25x3 = 90
|
0 30 =20 1 80 Row 4 — 20 Row | 30x5 — 20x3 = 80.

kst

The first equation remains as it is. We want the new second equation to serve as the next pivot equation. But
since it has no xo-term (in fact, it is 0 = 0), we must first change the order of the equations and the corresponding
rows of the new matrix. We put 0 = 0 at the end and move the third equation and the fourth equation one place
up. This is called partial pivoting (as opposed to the rarely used fotal pivoting, in which also the order of the
unknowns is changed). It gives

Step 2. Elimination of x»

1 =1 1 l 0 X3— X+ x3 =0
Pivot 10— | 0 25 | 90 Pivot 10——>+ 25x5 = 90
Eliminate 30— | 0 -20 i 80 Eliminate 30xy ——> — 20x3 = 80
o 0 01 0 0=0
To eliminate xy, do:
Add —3 times the pivot equation to the third equation.
The result is
1 -1 L5480 3= xp+ x3= 0
g .16 25 90 10y + 2553 = 90
& 0 0 —95} —190 [ Row 3 = 3 Row 2 — 95x3 = —190
o 0 01 0 0= 0

Back Substitution. Determination of x3, x5, X, (in this order),

Working backward from the last to the first equation of this “triangular™ system (4), we can now readily find

X3, then x5, and then x;:
—95x3 = —190 x3 =iz 7 2 [A]
|

10xg + 25x3= 90 Xo = 75(90 — 25x3) = iy T 4[4 !
X - x2+ X3 = 0 X1=X2_J.‘3=.I:1 —%[ 1}
where A stands for “amperes.” This is the answer to our problem. The msq_lulion is unique. B
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Elementary Row Operations. Row-Equivalent Systems

Example 2 illustrates the operations of the Gauss elimination. These are the first two of
three operations, which are called

Elementary Row Operations for Matrices:

Interchange of two rows

Addition of a constant multiple of one row to another row-

Multiplication of a row by a nonzero constant c.

it o il Sedbhdili Mildcsuimi it
CAUTION! These operations are for rows, not for columns! They correspond to the
following

Elementary Operations for E’E’Lﬁa'lﬁonS)

Interchange of W
g’drdu;qdr; of a constant multiple of one %Véﬁarg'qfi to another uatfgﬁ

Multiplication of a@n})ﬂy a nonzero constant c.

Clearly, the interchange of two equations does not alter the solution set. Neither does that
addition because we can undo it by a corresponding subtraction. Similarly for that
multiplication, which we can undo by multiplying the new equation by 1/c (since ¢ # 0),
producing the original equation.

We now call a linear system S; row-equivalent to a linear system S, if S; can be
obtained from S, by (finitely many!) row operations. Thus we have proved the following

N

reésult, which also justifies the Gauss elimination.

'Row-Equivalent Systems

Row-equivalent linear.sysiems-have-the.same-set-of -solutions..

Because of this theorem, systems having the same solution sets are often called
equivalent.systems. But note well that we are dealing with row operations. No column
operations on the augmented matrix are permitted in this context because they would
generally alter the solution set.

A linear system (1) is called overdetermined if it has more equations than unknowns,
as in Example 2, determined if m = n, as in Example 1, andm_@g_ﬁlmﬁg
fewer equations than unknownps.

““Furthermore, a system (1) is called consistent if it has at least one solution (thus, one
solution or infinitely many solutions), but inconsistent if it has 'ﬁd'soiutidﬁ_%mm
x; +x, = [, x; + x5 = 0 in Example 1.

Gauss Elimination: The Three Possible Cases of Systems

The Gauss elimination can take care of linear systems with a unique solution (see Example
2), with infinitely many solutions (Example 3, below), and without solutions (inconsistent
systems; see Example 4).
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EXAMPLE 3 Gauss Elimination if Infinitely Many Solutions Exist

Solve the following linear systems of three equations in four unknowns whose augmented matrix is

30 20 20 -50 1 80 + 2.0x5 + 2.0x3 — 5.0x4 = 8.0

(5) 06 15 15 —-54 | 27]. Thus, 06x;|+ 1.5xg + 1.5x3 — Sdxg = 27
I

1.2 —-03 —-03 24 1 21 szl e 0.312 = 0.3).'3 + 2.4).'4 = 2.1

Solution. As in the previous example, we circle pivots and box terms of equations and corresponding entries
to be eliminated. We indicate the operations in terms of equations and operate on both equations and matrices.

Step 1. Elimination of x, from the second and third equations by adding
— 0.6/3.0 = —0.2 times the first equation to the second equation,

— 1.2/3.0 = —0.4 times the first equation to the third equation.

This gives the following, in which the pivot of the next step is circled.

3.0 2.0 20 —50 8.0 3.0x; + 2.0x5 + 2.0x3 — 5.0xq4 = 8.0

(6) 0 11 11 —44! 11| Row2—02Row! + 1.1xg — 4.4x4 =

0 -11 -11 441 —11] Row3 - 04Row I — 1.1xg + 4.4x4 =

e e Y

Step 2. Elimination of x from the third equation of (6) by adding

[.1/1.1 = 1 times the second equation to the third equation.

This gives

30 20 20 =501 80 3.0x; + 2.0xp + 2053 — 5054 = 8.0
(7 07 A4t S =4 ) 1 Llxg + Llxg — 4dxg = 1.1
I
| oﬁff'f/ / o o 0 01 0] Row3+Row? 0= 0 .
4 t SO
depe

P' \ Back Substitution. From the second equation, xo = 1 — x3 + 4x4. From this and the first equation,
’_[Yaé_' c'lt?fw\ x; = 2 — x4. Since xz and x4 }Emuin we have infinitely many solutions. If we choose a value of

x3 and a value OF xg, then the corresponding Values of x; and xy are uniquely determined.

On Notation. 1f unknowns renjain agbitrars it is also,gustomary to denote them by OtEr IGHErS. fan (o

In this example we may thus write x; = —xs=2—tpxg=1—xg+dny=1-—n+ 4tg, x5 = 1y (first
arbitrary unknown), xq4 = fg (second arbitrary unknown).

EXAMPLE 4 Gauss Elimination if no Solution Exists

What will happen if we apply the Gauss elimination to a linear system that has no solution? The answer is that
in this case the method will show this fact by producing a contradiction. For instance, consider

+ 2xy + =
3w 2RI @)t 2+ x3=3
g% skt Wt 10 2|+ xz+ x3=0

|
6 2 416 6x;|+ 2xp + 4x3 = 6.

Step 1. Elimination of xy from the second and third equations by adding

~2 times the first equation to the second equation,

—$ = —2 times the first equation to the third equation.
This gives
S s Gy + 2+ x3= 3
0 -4 1!-2( Row2-ZRowl + lig= -2
0 -2 2 | 0] Row3—2Rowl 2]t 25= O
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Step 2. Elimination of x5 from the third equation gives

3 2 1 : 3 3.r1 a5 2)(2 + X3 = 3
0 “'% % :_2 - %12 + %Xz = =2
|
0 0 0 Qz Row 3 — 6 Row 2 b= iZ
The false statement 0 = _I2_ shows that the system has no solution. |

e R Y et s A -

Row Echelon Form and Information From It
At the end of the Gauss elimination_the form.of-the-coeffieient-matrix; the.augmented

matrix, and the system itself are called the row_echelon form. In it, rows of zeros, if
present, are the last rows, and in each nonzero row the leftmost nonzero entry is farther
to the right than in the previous row. For instance, in Example 4 the coefficient matrix
and its augmented in row echelon form are

| % B lid 3

I
% and 0 —% % i —2
0 0 g ot 12

Note that we do not require that the leftmost nonzero entries be 1 since this would have
no theoretic or numeric advantage. (The so-called reduced echelon form, in which those
entries are 1, will be discussed in Sec. 7.8.)

At the end of the Gauss elimination (before the back substitution) the row echelon form
of the augmented matrix will be

ay, | by
Can 1' b,
. {%
A
®) ko | By
I br+1
|72
12
by
Here, r = m and a;; # 0, ¢33 # 0, - - -, kyy # 0, and all the entries in the blue triangle

as well as in the blue rectangle are zero. From this we see that with respect to solutions
of the system with augmented matrix (8) (and thus with respect to the originally given
system) there are three possible cases:

(a) Exactlz one solution if mgg_,.&”z, s -.,&Em if present,.are zero, To get the
solution, solve the nth equation corresponding to (8) (which is k,,x, = b,,) for x,,, then

the (n — 1)st equation for x,,_;, and so on up the line. See Example 2, where r = n =3
and m = 4.

(b) Infinitely many solutions if r < n and Bryqstiss M@@. To obtain
any of these solutions, choose values of x, ,, - -, x,, arbitrarily. Then solve the rth equation
for x,., then the (r — 1)st equation for x,._;, and so on up the line. See Example 3.

(¢) No solution if r < m and one of the entries b, * * -, by, is not zero. See Example
4, where r =2 <m =3 and b,,, = bg = 12.

AL
WY
e X
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20.

21.

23.

24,

CHAP. 7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems

(Wheatstone bridge) Show that if R./R; = R,/R, in
the figure, then I = 0. (R, is the resistance of the
instrument by which 7 is measured.) This bridge is a
method for determining R,. Ry, R,, R; are known. Ry
is variable. To get R,, make / = 0 by varing R4. Then
calculate R, = R3R,/R,.

(Traffic flow) Methods of electrical circuit analysis
have applications to other fields. For instance, applying
the analog of Kirchhoff’s current law, find the traffic
flow (cars per hour) in the net of one-way streets (in
the directions indicated by the arrows) shown in the

figure. Is the solution unique?
@Models of markets) Determine the equilibrium

solution (D; = Sy, D, = §5) of the two-commodity
market with linear model (D, S, P = demand, supply,
price; index 1 = first commodity, index 2 = second

commodity)
D]_ = 60_ 2P1 - Pz, Sl :4P1 — 2P2 -+ 14

(Equivalence relation) By definition, an equivalence

relation on a set is a relation satisfying three conditions

(named as indicated):

(i) Each element A of the set is equivalent to itself
(“Reflexivity”).

(ii) If A is equivalent to B, then B is equivalent to A
(“Symmetry”).

(iii) If A is equivalent to B and B is equivalent to C,
then A is equivalent to C (“Transitivity”).

Show that row equivalence of matrices satisfies these

three conditions. Hint. Show that for each of the three

elementary row operations these conditions hold.

PROJECT. Elementary Matrices. The idea is that
elementary operations can be accomplished by matrix
multiplication. If A is an m X n matrix on which we
want to do an elementary operation, then there is a
matrix E such that EA is the new matrix after the
operation. Such an E is called an elementary matrix.
This idea can be helpful, for instance, in the design of
algorithms. (Computationally, it is generally preferable

25,

to do row operations directly, rather than by
multiplication by E.)

(a) Show that the following are elementary matrices,
for interchanging Rows 2 and 3, for adding —5 times
the first row to the third, and for multiplying the fourth

row by 8.

1 0 0 0]
0 0 1 0
El T .
0 1 0 0
L 0 0 0 1
1 0 0 0]
0 1 0 0
E2 T
-5 0 | 0
0 0 0 1]
1 0 0 0]
0 1 0 0
E3 —
0 0 1 0
L0 0 0 8

Apply E,, E,, E; to a vector and to a 4 X 3 matrix of
your choice. Find B = EzE,E, A, where A = [aj] is
the general 4 X 2 matrix. Is B equal to C = E,E,E;A?
(b) Conclude that E,, E,, E; are obtained by doing
the corresponding elementary operations on the 4 X 4
unit matrix. Prove that if M is obtained from A by an
elementary row operation, then

M = EA,

where E is obtained from the n X n unit matrix 1,, by
the same row operation.

CAS PROJECT. Gauss Elimination and Back
Substitution. Write a program for Gauss elimination
and back substitution (a) that does not include pivoting,
(b) that does include pivoting. Apply the programs to
Probs. 13-16 and to some larger systems of your choice.

7.4 Linear Independence. Rank of a Matrix.

Vector Space

In the last section we explained the Gauss elimination with back substitution, the most
important numeric solution method for linear systems of equations. It appeared that such
a system may have a unique solution or infinitely many solutions, or it may be inconsistent,
that is, have no solution at all. Hence we are confronted with the questions of existence
and uniqueness of solutions. We shall answer these questions in the next section. As the
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key concept for this (and other questions) we introduce the rank of a matrix. To define
rank, we first need the following concepts, which are of general importance.

Linear Independence and Dependence of Vectors

Given any set of m vectors ag). - °, Au (with the same number of components), a linear
combination of these vectors is an expression of the form

ciagy + Co8gy T 0 T CmBan

where ¢y, €2, * * * » €y, ar€ 2Ny Scalars. Now consider the equation
(1) 18y t+ CoBgy T 0 F Crllamy = 0.

Clearly, this vector equation (1) holds if we choose all ¢;’s zero, because then it becomes
0 = 0. If this is the only m-tuple of scalars for which (1) holds, then our vectors
81y *  » Agy are said to form a linearly independent set or, more briefly, we call them
linearly independent. Otherwise, if (1) also holds with scalars not all zero, we call these
vectors linearly dependent, because then we can express (at least) one of them as a
linear combination of the others. For instance, if (1) holds with, say, ¢; # 0, we can
solve (1) for agy:

8y = kol + ¢ » o+ kpagy  where ki = — gl

(Some k;'s may be zero. Or even all of them, namely, if a;, = 0.)

Why is this important? Well, in the case of linear dependence we can get rid of some
of the vectors until we arrive at a linearly independent set that is optimal to work with
because it is smallest possible in the sense that it consists only of the “really essential”
vectors, which can no longer be expressed linearly in terms of each other. This motivates
the idea of a “basis” used in various contexts, notably later in our present section.

e L

EXAMPLE 1 Linear Independence and Dependence

(_The three vectors™
apn=[ 34 0 2 2]

ag=[-6 42 24 54
ag =121 -21 0 —15)

are linearly dependent because
e
bay, :__%_acza_ ~ag =0
Although this is easily checked (do it!), it is not so easy o discover. However, a systematic method for finding
out about linear independence and dependence follows below.
The first two of the three vectors are linearly m@a-la( 1.+ €8¢ = 0 implies f2 = (¥(from
the second components) and then ¢; = 0 (from any other component of a(y)). . "

Rank of a Matrix

DEFINITION The rank of a matrix A is the maximum number of linearly independent row vectors
of A. It is denoted by rank A.
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EXAMPLE 2

THEOREM 1

EXAMPLE 3

THEOREM 2

CHAP. 7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems

Our further discussion will show that the rank of a matrix is an important key concept for
understanding general properties of matrices and linear systems of equations.

Rank
The matrix P S 2
3 .0 2. 2 7 &SN
) bow- A=|-6 42 24 s
v -’\'ﬂ,"-’"lt-\ "
i 21 21 0 —15

has rank 2, because Example 1 ahowx that the _Il_rst two row vectors are linearly independent, whereas. all threg
row vectors are linearly dependent.
Note further that rank A = 0 if and only if A = 0. This follows directly from the definition. |

We call a matrix A, row-equivalent to a matrix A, if A; can be obtained from A, by
(finitely many!) elementary row operations.

Now_the maximum_number of linearly independent row vectors.of a matrix does not
chaqg_mg__wg change the order of rows or multiply a row by an nonzero ¢ or take a linear
combination by adding a multiple of a row to another row. This proves that rank is

invariant under elementary row operations;

e kS T

Row-Equivalent Matrices

Row cﬁuwafent matrtces have the same rank.

S i et e L U —

Hence we can determine the rank of a matrix by reduction to _row-echelon form
(Sec. 7.3) and then s see the rank directly.

Determination of Rank

For the matrix in Example 2 we obtain successively

3 0 2 27]
A=|-6 42 24 54| (given)
21 -21 0 —15]
3 0 2 o
0 42 28 58] Row2+ 2Rowl
0 -21 —-14 -29] Row3 — 7 Row I

5 anl 2 27
k\
0\, 42 28 58

<

0 0 0 /0] Row3+1iRow2 1=

Since rank is defined in terms of two vectors, we immediately have the useful

Linear Independence and Dependence of Vectors

p vectors with n components each are linearly independent if the matrix with these

vectors as row vectors has rank p. but they are linearly depena’em if Ihar rank is
less than p. iy 5
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THEOREM 3

PROOF

EXAMPLE 4

Further important properties will result from the basic

Rank in Terms of Column Vectors

R SR N e T

The rank r of a matrix A equals the maximum number of linearly. independent
column vec tors of A.
Hence A and its transpose . AT have the same rank.

P o o s e T 7

In this proof we write simply “rows” and “columns” for row and column vectors. Let
A be an m X n matrix of rank A = r. Then by definition of rank, A has r lmearl
Wﬂ\&&ﬂhjﬁbﬁgdg}ote by Vi), * " * , Vi (regardless of their position in A),

and all the rows aq), * * * » 8y Of A arg linear combinations of those, say,

ag = Vo + Ve + 0 T Vo

g = €V T CoaVey T2 0+ €2V

(3) : :

.

Ay = CoaVay T CmaVeey T ° * * + Cop Vo

These are vector equations for rows. To switch to columns, we write (3) in terms of
components as n such systems, with k = 1, - - -, n,

ayg = Cn@+ Cioloiy +°** T Crrlrid

[

that each oﬁf%e n_columns is a linear r combination of the same r columns on the right
Hence A cannot have more linearly independent columns than rows, ~whose number is
rank A = r. Now rows of A are columns of the transpose AT. For A our conclusion is

that AT cannot have more linearly. independent columns than rows, so that A cannot have

more hnearly 1ndependent rows than columns. Togcther the number of linearly
independent columns of A must be r, the rank of A. This completes the proof. ]

Illustration of Theorem 3

Aop = CopUr T CogUgpe T+ -+ Coplpk

(4) : . i :
mi = CmiV1k T CmaVlzk + ot CrUrk [1)_} & \f\'\t"""\

N DR o
and collect components in columns. Indeed, we can write (4) as -~ i M 2
N K il Mgy . /4 A;,,v/ ’&; 5
i‘\\ o’ W Ay 1 €12 Cir il
2.
v(s' P dgy C21 Cag Cor
(5) . =Uig | - + Vg | - LI i 2
% ’
i L Ame ] __le A | Cm2_] _Cmr_
where k = , n. Now the vector on the left is the kth column vector of A. g see

The matrix in (2) has rank 2. From Example 3 we see that th
and by “working backward” we can verify that Row 3 = 6 R

vectors are linearly independent
) jSimilarly, the first two columns

are linearly independent, and by reducing the last matrix in Example 3 by columns we find that

Column 3 = 2 alumn + % dﬁxmn}) and Column 4 =
— : i % - e e
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Combining Theorems 2 and 3 we obtain

THEOREM 4 Linear Dependence of Vectors
0 R e— p vectors with n_< p components.are_albways linearly.dependent,

e
L}
o PROOF The matrix A with those p vectors as row vectors has p rows and n < p columns; hence by
Theorem 3 it has rank A = n < p, which implies linear dependence by Theorem 2. M

Vector Space

The following related concepts are of general interest in linear algebra. In the present
context they provide a clarification of essential properties of matrices and their role in
connection with linear systems.
A yector space is a (nonempty) set.V.of vectors such that with any. two.vectors a and
_4ype bin Vall their linear combinations aa + Bb (a, B any real numbers).are.elements of V,
f o7 ss and these vectors satisfy the laws (3) and (4) in Sec. 7.1 (written in lowercase letters a,
e\ ‘b‘_’\f{' We b, u, - - -, which is our notation for vectors). (This definition is presently sufficient.
k N AL General vector spaces will be discussed in Sec. 7.9.)
['he maximum number of linearly independent vectors in-V-is-called the dimension-ef
V.and is denoted by dim,V., Here we assume. the dimension to be finite; infinite dimension
=6 will be defined in Sec. 7.9.
o \J A linearly independent set in V consisting of a maximum possible number of vectors
é‘i“‘“‘- in V is called a basis for V. Thus the number of vectors of a basis for V equals dim V.
The set of all linear combinations of given.vectors ag,, * * *, ) with the same
number of components 1s called the span of these vectors. Obviously, a span is a vector
space.
By a subspace of a vector.space V we mean a nonempty. subset-of V (including V itself)
that forms itself a vector space with respect to the two algebraic operations (addition and
scalar multiplication) defined for the vectors of V.

EXAMPLE 5 Vector Space, Dimension, Basis

The span of the three vectors in Example 1 is a vector space of dimension 2, and a basis is ay), a(g), for instance,
Or A1), A(z), CLC. = e, ®
IR~

We further note the simple

THEOREM 5 Vector Space R”

The vector space R™ consisting of all vectors with n components (n real numbers)
has dimension n.
[ e

PROOF A basis of n vectors is ag, = [I O -+ 0], ag =1[0 1 O --- 0],---,
Ay = [0 =+ 0 T]. B

In the case of a matrix A we call the span of the row vectors the row space of A and the
span of the column vectors the column space of A.
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Now, Theorem 3 shows that a matrix A has as many linearly independent rows as
columns. By the definition of dimension, their number is the dimension of the row space
or the column space of A. This proves

THEOREM 6 Row Space gnd Colgmﬂ Space

S

The row space and the column space of a matrix A have the same dimension, equal
to rank A.

Finally, for a given matrix A the solution set of the homogeneous system Ax = 0 is a
vector spage, called the null space of A, and its dimension is called the nullity of A. In

the next section we motivate and prove the basic relation

(6) rank A + nullity A = Number of columns of A. ,,,/&Q
_ X : ST Sl SR
km/\#h S \M'f“\,-y ) d\m%thg YA U’;ﬂgg . 2 o

PROBLEM SET 7.4

RANK, ROW SPACE, COLUMN SPACE | atis 38 sorare will
Find the rank and a basis for the row space and for the 2 3 4 5
column space. Hint. Row-reduce the matrix and its 4)_)
transpose. (You may omit obvious factors from the vectors Soodly a8 g
of the:se bases.) : 4 5 6 5
. =2 8 2 5
" 2 4 8 16
1 0 0 2. |16 6 29
16 8 4 2
L—-3 6 | 4 0 -7 11.
i 4 8 16 2
0 -2 1 3 " X
&, .. B9V, 58 2 16 8 4
3.4 ] 0 7 4
| b a c E — 1
) 5 o) 3 0 ¢ y
551005 (18 4 PR s Dhoziofhey 2t 51
5.]-3 0 -5 6.1 a 1 s AL Sl
=2 5 9 e 1 4 Lok afnd, 9
(8 0 4 L2 A LINEAR INDEPENDENCE
5 0 2 -3 JernEy Are the following sets of vectors linearly independent?
T 8. (Show the details.)
4 B2 L 13.[3 -2 0 4,5 0 0 1L,[=6 1 0 1],
L0 4 0 4 -1 2 -3 2 0 0 3]
- 14.[1 1 0,1 O O], I 1
{ 0 3 0 [ I [ .] [ |
1560 "3~ 1 42,0 =1 2 7 0 3]
0 3 8§ 37 12 3 0 =19 8 -=11]
9.
3 3 7 0 16. 3 4 71,[2 0 31,[8 2 3L[5 5 6]
17. [02: 1.2 53- 28 16];
| 0 —37 0 37 43 34 09 2.0 -—-4.3]
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18. [3 2 11,0 0 0l,[4 3 6] 25. If the row vectors of a square matrix are linearly
19.1 & L 43 4L E 1L independent, so are the column vectors, and
| l] conversely.
o ol 26. Gi les showing that the rank of a product of
20. [I 9 3 41‘ [2 3 4 5]‘ [3 4 5 6]. . IVe‘ examplies snowing that the rdn. ol a pro uct o
matrices cannot exceed the rank of either factor.
4 5 6 7]
21. CAS Experiment. Rank. (a) Show experimentally VECTOR SPACES
that the n X n matrix A = [a] with aj, = j + k — 1 Is the given set of vectors a vector space? (Give reason.) If
has rank 2 for any n. (Problem 20 shows n = 4.) Try  your answer is yes, determine the dimension and find a
to prove It. basis. (vy, Vs, * *  denote components.)
(b) Do the same when aj;, = j + k + ¢, where ¢ is 27. All vectors in R® such that v, + vy = 0
iti int ;
e Koo i o 28. All vectors in R* such that 2v, — 3v, = k

(¢) What is rank A if @z, = 2/*¥~22 Try to find other

large matrices of low rank independent of n. 29. All vectors in R® with v; Z 0, v, = —4us

30. All vectors in R? with v, = v,
5.
@ :?quzaoziigjsmr:: 31. All vectors in R® with 4v, + vy = 0, 3v, = vs
32. All vectors in R* with vy — vy = 0, v3 = 5v;, 04 =0

Show the following.
S T i f [ e e e e
GELBTAT - ot BB s b s 33. All vectors in R™ with |v)| = 1forj=1,---,n

23. rank A = rank B does not imply rank A% = rank B 34. All ordered quadruples of positive real numbers

(Give a counterexample.) 35. All vectors in R® with v; = 2v, = 3v; = 4v, = Svs
24. If A is not square, either the row vectors or the column 36. All vectors in R* with
vectors of A are linearly dependent. v, —v3 =0,2v, + 3vy —4vy, =0

/.5 Solutions of Linear Systems:
Existence, Uniqueness

Rank as just defined gives complete information about existence, uniqueness, and general
structure of the solution set of linear systems as follows.

A linear system of equations ir{ punknowns has a unique solution if the coefficient matrix
and the augmented matrix have the same rank n, and infinitely many solution if that common

rank is less than n. The system has no solution if those two matrices have different rank.
e et

To state this precisely and prove it, we shall use the (generally important) concept of
a submatrix of A. By this we mean any matrix obtained from A by omitting some rows
or columns (or both). By definition this includes A itself (as the matrix obtained by omitting

no rows or columns); this is practical.

THEOREM 1 Fundamental Theorem for Linear Systems
(a) Existence. A linear system of m equations in n unknowns xy, * * * , X,
. apXy + apxs + 00t ayx, = by
> Qu-v\’ 1%y + Aopxy + -+ + agpx, = by
(1) A
G :'_)/ 7 I o e e
Y
Am1X1 T AmaXz S AmnXn = bm
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PROOF

SYI2e

. pel tolwr
”7..-“ ﬂ;g‘%%ﬁ
.

ol

0 Z

- -

Ao
22UV .

is consistent, that is, has solutions, if and only if the coefficient matrix A and the
augmented matrix A have the same rank. Here,
e g —

any > Ayp any L T by

Ama T Qmn | dma i Qn | bm_

(b) Uniqueness. The system (1) has precisely one solution if and only if this (W”'/k *
v e

common rank r of A and A equals n. 12T

(c) Infinitely many solutions. If this common rank r is less than n, the system
(1) has infinitely many solutions. All of these solutions are obtained by determining
r suitable unknowns (whose submatrix of coefficients must have rank r) in terms of
the remaining n — r unknowns, to which arbitrary values can be qﬁssr’gned‘ (See
Example 3 in Sec. 7.3.) W =Y %\@7,;; v o)e(efcz)-

(d) Gauss elimination (Sec. 7.3). If solutions exist, they can all be obtained by _
the Gauss elimination. (This method will automatically reveal whether or not
solutions exist; see Sec. 7.3.)

(a) We can write the system (1) in vector form Ax = b or in terms of column vectors
C(l), T oy C(n) Of A:
Yardo ¥ €

(2) CayXy + CXg + 0t F CpXy = b 22, colura~ F
o 7 ot
A is obtained by augmenting A by a single column b. Hence, by Theorem 3 in Sec. 7.4,

rank A equals rank A or rank A + 1. Now if (1) has a solution X, then (2) shows that b
must be a linear combination of thoseWthm

maximum number of linearly independent column vectors and thus the same rank.

Conversely, if rank A = rank A, then b must be a linear combination of the column

vectors of A, say,

%

(2%) b=acq + -+ e = & ¢ 21% 3%
_fi’ [ ]

since otherwise rank A = rank A + 1. But (2*%) means that (1) has a solution, namely,

Xy = ay, " *,X, = @ as can be seen by comparing (2*) and (2).

(b) If rank A = n, the n column vectors.in-(2)-arelinearly-independent-by Theorem 3
in Sec. 7.4. We claim that then the representation (2) of b_is uni becausew

CpX Tt F CopXn = CpXy 00+ o MT‘%"
This would imply (take all terms to the left, with a minus sign)
(xp — XDeay + 00+ (B — Xy = 0

and x;, — X; = 0,---,x, — X, = 0 by linear independence. But this means that the
scalars xq, - * *, X,, in (2) are uniquely determined, that is, the solution of (1) is unique.
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(¢) If rank A = rank A=r< n, then by Theorem 3 in Sec. 7.4 there is a linearly
independent set K of r column vectors of A such that the other n — r column vectors of
A are linear combinations of those vectors. We renumber the columns and unknowns,
denoting the renumbered quantities by *, so that {cm, £ % €] is that linearly independent
set K. Then (2) becomes._ _T_ At 5 4 o
“-‘ LNk x i ] e (w0t )

( ’W C(l)xl i + c{r)xr —H c(r+1)xr+1 et é{mj:n — bs
/
N e) " ; A s
N C fw\ c(,,ﬂ), , €4y are linear combinations of the vectors of K, and so are the vectors
Cx) 4 A7\ ™M Rr41€r1y * * > £u€ony- Expressing these vectors in terms of the vectors of K and collecting
% F0 . ; .
A"I ?7\ 55 77 terms, we can thus write the system in the form
3) Eg_)_)__g_i‘_‘_,_ + Epyr =b,
with y; = £; + B;, where B; results from the n_— r 8 Gt pifcety *© “5Coptn; here
. j =1, -+, r. Since the system has a solution, there are y,, - * -, y, satlsfymg (3). These
,)“7’1 scalars are unique since K is linearly independent. Choosingfr,l, -+, X, fixes the” [3)
(j < /\. L a i and corresponding X; = y; — B;, where j = I_ Sl
\{4?\ (d) This was discussed in Sec. 7.3 and is restated here as a reminder. 5]
’;{‘M\ /A'?7
R
2 2% ,?\ The theorem is illustrated in Sec. 7.3. In Example 2 there is a unique solution since
i /, z(g’ 0~ rank A = rank A = n = 3 (as can be seen from the last matrix in the example). In Example

3 we have rank A = rank A = 2 < n = 4 and can choose x5 and x, arbitrarily. In Example
4 there is no solution because rank A = 2 < rank A = 3.

Homogeneous Linear System

Recall from Sec. 7.3 that a linear system (1) is called homogeneous if all the b;’s are
zero, and nonhomogeneous if one or several b;’s are not zero. For the homogeneous

system we obtain from the Fundamental Theorem the following results.

THEOREM 2 Homogeneous Linear System
A homogeneous linear_system,

Ay Xy + aioxs + 0+ ayx, =0

d51X) + GogXp + 77 T Gapky — 1
4)

Ay1Xy t Qpoxe + + a. xhi=i0)

alaps has i vl sohmuon = 0.5+ 2% =0 NoWorvial solinons g fand
only if rank A < n. If rank A = r < n, these solutions, together with x = 0, form a
vector space (see Sec. 7.4) of dimension n — r, called the solution space of (4).)
e
In particular, if X, and X, are solution vectors of (4), then X = ¢;Xg, T ch!g)
with any scalars ¢, and cy IS @ solution vector of (4) (This does not hold for
nonhomogeneous systems. Also, the term solution space is used for homogeneous
systems only.) o
e e s B
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PROOF / The first proposition can be seen directly from the system. It agrees with the fact that
A B / \WM—MA’ so that a homogeneous system is always consistent.
[ 3= A - If rank A = n, the trivial solution is the unique solution according to (b) in Theorem 1.
N o H ' If rank A < n, there are nontrivial solutions according to (c).in-Theorem 1. The solutions
o / “form a vector space because if X, and Xy, are any of them, then Axg) =0, AXpp) = 0,
and this implies A(Xy, + X)) = AXq), + Ax, = 0 as well as Alcxqy) = cAxg, = 0,

) O™
Mmdw" where ¢ is arbitrary. If rank A = r < n, Theorem 1 (c) implies that we can choose
n — r suitable unknowns, call them x,,.- - -, X,, in an arbitrary fashion, and every
solution is obtained in this way. Hence a basis for the solution space, briefly called a basis
. / of solutions of (4), 18 V13, * * *, ym_ﬂ, where the basis vector y,;, is obtained by choosing
MY ’: : x,+; = 1 and the other x,4, * * -, Xx,, zero; the corresponding first » components of this
ole) \Fr e solution vector are then determined. Thus the solution space of (4) has dimension n — r.
é -0 ) This proves Theorem 2. @
o A
M ;
el v\ " The solution space of (4) is also called the(null spa f A becanse Ax = 0 for every X .
» < &}_)g‘ pd LY.
Y= o mion space of (4) Its dimension is called the-nullity-of A. Hence Theorem 2
L Xt Vo states that
e~ /
W —_—

w”
(5) rank A + nullity A = n )

where n is the number of unknowns (number of columns of A). —
Furthermore, by the definition of rank we have rank A = m in (4). Hence if m < n,
then rank A <n. By Theorem 2 this gives the practically important

e N, V.
yow 2y BT KT

THEOREM 3 Homogeneous Linear System with Fewer Equations Than Unknowns

A homogeneous linear system with fewer equations than unknowns has always _
nontrivial solutions.

Nonhomogeneous Linear Systems
The characterization of all solutions of the linear system (1) is now quite simple, as follows.
B
T g
THEOREM 4 Nonhomogeneous Linear System /7 ?V‘

If a nonhomogeneous linear system (1) is consistent, then all of its solutions are
obtained as

(6) X = KO - Xh

where X is any (fixed) solution of (1).and X, runs through all the solutions of the
corresponding homogeneous system((4).

PROOF The difference X, = X — X, of any two solutions of (1) is a solution of (4) because
_Ax), = A(x — Xg) = AX — Ax, = b—b = 0, Since x is any solution of (1),.we get all
the solutions of (1) if in (6) we take any solution X, of (1) and let x; vary throughout the

solution space of (4). L
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7.6 For Reference:
Second- and Third-Order Determinants

We explain these determinants separately from the general theory in Sec. 7.7 because they
will be sufficient for many of our examples and problems. Since this section is for
reference, go on to the next section, consulting this material only when needed.

A determinant of second o is denoted and defined by

a1 12| 4

(1) D = det A = = 011099 — dq9daq.

Aay Aag

So here we have bars (whereas a matrix has brackets).
Cramer’s rule for solving linear systems of two equations in two unknowns

(@) ayxy + agpxs = by

(2)
(b)  az1x; + agexs = by
is
i byags — ayby
D ?
3
ay [ by
_ a2 by _ apby — bay,
Xo 7 =
D D
with D as in (1), provided
D # 0.
R
The value D = 0 appears for inconsist homo us systems and for homogeneous
e — .

%‘ systems with nontrivial solutions.
PROOF We prove (3). To eliminate x,, multiply (2a) by ay, and (2b) by —a;- and add,
(a11G95 — A12031) %1 = byagy — ayabs.
Similarly, to eliminate x;, multiply (2a) by —a,; and (2b) by a,; and add,
(a11G22 — G12a21) Xy = ay1by — byas;.

Assuming that D = ay1as5 — ajpas, # 0, dividing, and writing the right sides of these
two equations as determinants, we obtain (3). [ |
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EXAMPLE 1 Cramer’s Rule for Two Equations

123 4 12
4.‘[1 -+ 3.»\12 = ]2 —8 5 84 2" —8 —56
If then x; = =26 ag=—— = e
2x; + Sxp = —8 &3 14 A= 14
2 5 BEN5

Third-Order Determinants

A determinant of third order can be defined by
N i)

a1z i3

Qgp d3z

Note the following. The signs on the right are + — +. Each of the three terms on the
right is an entry in the first column of D times its minor, that is, the second-order
determinant obtained from D by deleting the row and column of that entry: thus, for a;;
delete the first row and first column, and so on.

If we write out the minors in (4), we obtain

@*) D 2(4_::)022&33 —(@183035 +lz013032 ~ @g1P1233 +(@31012a23 — @31013022:

Cramer’s Rule for Linear Systems of Three Equations
ayXy + aypxy + agsxs = by

(&) A91X1 T dogXy + dgzXz = by
a31X1 T AgeXy + dzzX3 = b3

is

D, D, Dy
(6) = X2 = AR (D # 0)

with the determinant D of the system given by (4) and

a3 a b) ay3 a;;  aye /m

asz| , Do = |ax l by| as3|, D3= |az a2 Kﬁ‘: .
dss az “bs) ass dsy Az

Note that Dy, Dy, Dy are obtained by replacing Columns 1, 2, 3, respectively, by the
column of the right sides of (3).

Cramer’s rule (6) can be derived by eliminations similar to those for (3), but it also
follows from the general case (Theorem 4) in the next section.
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/.7 Determinants. Cramer’s Rule

Determinants were originally introduced for solving linear systems. Although impractical
in computauons they have important engineering applications in eigenvalue problems
(Sec 8.1), differential equations, vector algebra (Sec. 9.3), and so on. They can be
introduced in several equivalent ways. Our definition is particularly practical in connection
with linear systems.

Aﬂﬁ&mmant.oﬁmdar.mS a scalar associated with an n X n (hence square!) matrix

= [aj.], which is written

ayy di2 i din
day Aas T don
(1) D = detA =
ana ) I Ay
4 > ) \' and is defined for n = 1 by
P\o . e e
= ¥
- M e
C(ejgt @ D = ay
and for n = 2 by
}’D e (3a) b= Gy T@pCn ++ -+ a,Cn (J=1,2,7++ 0rn)
or
( o 0 (3b) D& a1Crxt agCop + -+ + ayCrpe (k=1,2,---,0rn)
&
Here, N

X v
CO%OLQ ’“@: (m_l_)_j+ Egﬂc )/ &

and Mj;. is a determinant of order n — 1, namely, the determinant of the submatrix of A
obtained from A by omitting the row and column of the entry aj, that is, the jth row and
the kth column,

In this way, D is defined in terms of n determinants of order n — 1, each of which is,
in turn, defined in terms of n — 1 determinants of order n — 2, and so on; we finally
arrive at second-order determinants, in which those submatrices consist of single entries
whose determinant is defined to be the entry itself.

From the definition it follows that we may expand D by any row or column, that is,
choose in (3) the entries in any row or column, similarly when expanding the Cj;.’s in (3),
and so on.

This definition is unambiguous, thatis,.yields the same value for D no matter which

columns or rows we choose in expanding. A proof is given in App. 4.
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Terms used in connection with determinants are taken from matrices. In D we have n2

entries a;, also n rows and n columns, and a main diagonal on which ay4, ass, * * -

stand. Two terms are new:

f{ik_is called the minor of a;. in D, and Cj, the cofactor of a;, in D.

For later use we note that (3) may also be written in terms of minors

(4a) D =2 (1) au My
k=1

(4b) D = >, (- 1y *a; My,
j=1

EXAMPLE 1 Minors and Cofactors of a Third-Order Determinant

* aﬂ."ﬂ.

In (4) of the previous section the minors and cofactors of the entries in the first column can be seen directly.

For the entries in the second row the minors are

az dy3 ayy a3
Mgy = My = Mys =
aga a33 asy Aza
and the cofactors are Coy = —Mayy, Cog = +Mag, and Cag = —Mag. Similarly for the third row—uwrite these

down yourself. And verify that the signs in Cj;, form a ¢heckerboard patiern)
/ R A
o 0
\ /
\+ Joomi; —LaE

EXAMPLE 2 Expansions of a Third-Order Determinant

This is the expansion by the first row. The expansion by the third column is

2 6 | 3 1 3
D=0 —4 &=
=1 0 -1 0 2 6
Verify that the other four expansions also give the value —12.
EXAMPLE 3 Determinant of a Triangular Matrix
0
= —3-4-5=—60.
o

=1(12—-0)—3@+4 +00 +6)5 —12)

=0-12+0=[12, )

Inspired by this, can you formulate a little theorem on determinants of triangular matrices? Of diagonal

matrices?
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General Properties of Determinants

To obtain the value of a determinant (1), we can first simplify it systematically by
elementary row operations, similar to those for matrices in Sec. 7.3, as follows.

THEOREM 1 Behavior of an nth-Order Determinant under Elementary Row Operations

(a) Interchange of two rows multiplies the value of the determinant by —1.

(b) MMEM to another row does not alter the value of the
determinant.

(¢) Multiplication of a row by a nonzero constant ¢ multiplies the value of the
determinant by c. (This holds also when ¢ = 0, but gives no longer an elementary
row operation.)

PROOF (a) By induction. The statement holds for ﬂ because
a b ¢ d
c d a b

We now make QQMWE that (a) holds for determinants of ordern — 1 = 2
and show that it then holds for determinant . Let D be of order n. Let E be

obtained from D by the interchange of two rows. Expand D and E by a row that is not

= ad — bc, but = bec — ad.

AN 5 DD/\ ., otle of those interchanged, call it the jth row. Then by (4a),

:) W CA)‘ : ‘@I/ T ! n )
P O D=3 (-1y**apMy,  E=3 (—1¥ " a;N

Nd k=1 k=1

where N is obtained from the minor M, of a; in D by the interchange of those two
rows which have been interchanged in D (and which N; must both contain because we

and nother_row!). Now these minors are of order n — 1. Hence the induction
hypothesis applies and gives MTMS E = —D by (5).

(b) Add ¢ times Row i to Row j. Let D be the new determinant. Its entries in Row j are
a;, + cay,. If we expand D by this Row j, we see that we can write it as D = D, + ¢D,,
where D, = D has in Row j the a;,, whereas D, has in that Row j the aj, from the addition.
Hence D, has a;;, in both Row i and Row j. Interchanging these two rows gives Dy back,
but on the other hand it gives —Dj by (a). Together D, = —Dy = 0, so that b=Dp,=p,

(¢) Expand the determinant by the row that has been multiplied.

CAUTION! det(cA) = c"det A (notcdetA). Explain why. =

EXAMPLE 4 Evaluation of Determinants by Reduction to Triangular Form

Because of Theorem 1 we may evaluate determinants by reduction to triangular form, as in the Gauss elimination
for a matrix. For instance (with the blue explanations always referring to the preceding determinant)

2 0 -4 6
4 5 1 0
D=
0 2 6 =1
= 8 9 1
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THEOREM 2

PROOF

THEOREM 3

2 0 —4 6
0 5 ] - Row 2 — 2 Row |
) T ey v
0 8 3 10 Row 4 + 1.5 Row 1
2 0 —4 6
0 5 9 =12
: 0 0 2.4 38 Row 3 — 0.4 Row 2
0 Dioesllids 05292 Row 4 — 1.6 Row 2
2 0 —4 6
0 3 9 =12
o cnpw TS
0 0 =() 47.25 Row 4 + 4.75 Row 3

=2-5-24-4725=1134.

n

Further Properties of nth-Order Determinants

(a)—(c) in Theorem 1 hold aisa@; columns.)

(d) Transposition leaves the ermi altered.

(e) A zero row or column renders the value of a determinant zero.

(f) Proportional rows or columns render the value of a determinant zero. In

particular, a determinant with two identical rows or columns has the value zero.
O — e —— e

(a)—(e) follow directly from inant can be expanded
column. In (d), transposition is defined as for matrices, that is, the jth row becomes the
jth column of the transpose.

(f) If Row j = ¢ times Row i, then D = ¢D;, where Dy has Row j = Row i. Hence an
interchange of these rows reproduces Dj, but it also gives —D; by Theorem 1(a). Hence
D; = 0 and D = ¢D; = 0. Similarly for columns.

It is quite remarkable that the important concept of the rank of a matrix A, which is the

maximum number of linearly independent row or column vectors of A (see Sec, 7.4), can

be related to determinants. Here we may assume that rank A > 0 because the only matrices
with rank O are the zero matrices (see Sec. 7.4).

Rank in Terms of Determinants

An m X n matrix A = [az;] has rank r = 1 if and only if A has anr X r submatrix.
with nonzero determinant, whereas every square submatrix with more than r rows
that A has (or does not have!) has determinant equal to zero.

In particular, if A is square, n X n, it has rank n if and only if

det A # 0.
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PROOF The key idea is that elementary row operations (Sec..7.3) alter neither rank (by Theorem
1 in Sec. 7.4) nor the Broniny of a determinant being.nonzero-(by Theorem 1 in this
\ sectlonw of A (see Sec. 7.3) has r nonzero row vectors (which are

the first r row vectors) if and only if rank A = r. Let R be the r X r submatrix in the lef[
e __D_QQE.C.QmEL.Qf_A (so that the entries of R are in both the first r rows and r columns of A)

D 0 Now R is triangular, with all diagonal entries.z;; nonzero, Thus, det R = ryq - - - 7, # 0.
] Also det R # 0 for the corrcgpondl_r}g r X r submatrix R of A becay_g_RmuMm R

by elementary row operations. Slrmldrly, det S = 0 for any square submatrix S of r + 1
or more rows perhaps contained in A because the corresponding submatrix S of A must
contain a row of zeros (otherwise we would have rank A = r + 1), so that det S = 0 by
Theorem 2. This proves the theorem for an m X n matrix.

In particular, if A is square, n X n, then rank A = n if and only if A contains an n X n
submatrix with nonzero determinant. But the only such submatrix can bé A itself, hence
det A # (. S

Cramer’s Rule

Theorem 3 opens the way to the classical solution formula for linear systems known as
Cramer’s rule, which gives solutions as quotients of determinants. Cramer’s rule is not
practical in computations (for which the methods in Secs. 7.3 and 20.1-20.3 are suitable),
but is of theoretical interest in differential equations (Secs. 2.10, 3.3) and other theories
that have engineering applications.

THEOREM 4 Cramer’s Theorem (Solution of Linear Systems by Determinants)

(@) If a linear system of n equations in the same number of unknowns x, * * * , X,
ay1Xq S 19X & O AypXy = b]_

©) ApXy T AooXg + * * * + GgpX,, = by

ik igers hassrh an Xy = by

has a nonzero coefficient determinant D = det A, the system has precisely one
solution. This solution is given by the formulas

D
(7) X = X, = D (Cramer’s rule)

where Dy, is the determinant obtained from D by replacing in D the kth column by
the column with the entries by, * * * ,b,,.

(b) Hence if the system (6) is homogeneous and D + 0, it has only the trivial

solutionx; = 0, x5 =0, ++,x, = 0. If D = 0, the homw
nontrivial-selutions.

2GABRIEL CRAMER (1704-1752), Swiss mathematician.
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PROOF The augmented matrix A of the system (6) is of size n X (n + 1). Hence its rank can be
at most n. Now if

(8) D = detA = # 0,

Apa i Aun

then rankA = n by Theorem 3. Thus rank A = rank A. Hence, by the Fundamental

W the system (6) has a unigue solution.

Let us now prove (7). Expanding D by its kth column, we obtain

AN
EQ A CD\\: ) D = a3, Cype + a9 Cop + * = + GpiCp,
wfX where C;; is the cofactor of entry a;;, in D. If we replace the entries in the kth column of
D by any other numbers, we obtain a new determinant, say, D. Clearly, its expansion by
the kth column will be of the form (9), with ay;, * * * , a,. replaced by those new numbers

and the cofactors C;;, as before. In particular, if we choose as new numbers the entries

%
\”ﬁy\@% aqg, , @,,; of the column of (where [ # k), we have a new determinant D which
,? (N

Jﬁ 2 & 7~ has twice the column [ay, S nr'.] once as its /th column, and once as its kth
_,).ng\&\ & because of the replacement. Hence D _= 0 by Theorem 2(f). If we now expand D by the
Q_ % column that has been replaced (the kth column), we thus obtain
22
WL

(IO) auclk = %Cgk + 4 anlan = 0 (} +* k)

We now multiply the first equation in (6) by Cy; on both sides, the second by Cyy, - - -,
the last by C,;, and add the resulting equations. This gives
2224 youd X Cre M 18322 yoLd x Cande
an Cir(@13%, T <+~ + GypXy) + 00 + Conl@pixy + «* ° + ApuXy)
=b1Cyp +* -+ + bpCo.

Collecting terms with the same x;, we can write the left side as

X1(a11Cre + @01Cop + * * * + 81 Cpp) T+ * © * + 2,(@1,Cix + a2,Cop + * * * + ApnCrie)-

From this we see that x;, is multiplied by

alkclk + azkczk "t @ Crge- )

Equation (9) shows that this equals D. Similarly, x; is multiplied by

ayCie + anCop + * + - + a4 Gy

Eguatlog ( 101 §hows that this is zero when [ # ccordingly, the left side of (11) equals
glmply x;.D, so that (11) becomes

L) D{( b A e

b "”1:5'1?:,’-( ﬂ}f 14/ 30m)
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Now the right side of this is(Dy)as defined in the theorem, expanded by its kth column,
so that division by D gives (7)” This proves Cramer’s rule.

If (6) is homogeneous and D # O.-then each Dy, has a column of zeros, so that D), = 0
by Theorem 2(e), and (7) gives the trivial solution.

Finally, if (6) is homogeneous and D = 0, then rank A < n by Theorem 3, so that
nontrivial solutions exist by Theorem 2 in Sec. 7.5. A

Ilustrations of Theorem 4 for n

= 2 and 3 are given in Sec. 7.6, and an important

0
4’ ) % application of the present formulas will follow in the next section.

PROBLEM SET 7.7

1.

(Second-order determinant) Expand a general second-
order determinant in four possible ways and show that
the results agree.

. (Minors, cofactors) Complete the list of minors and

cofactors in Example 1.

. (Third-order determinant) Do the task indicated in

Example 2. Also evaluate D by reduction to triangular
form

{Scalar multiplication) Show that det (kA) = k™ det A

(not kdet A), where A is any n X n matrix. Give an
example.

5-16| EVALUATION OF DETERMINANTS
Evaluate, showing the details of your work.

5.

11.

13.

13 8\ cos nfl  sin n@
6.

=2 7 —sinnf@ cosnb
14 2 5

cos @ sin a
Y ) 0 8

sin 8 cos 3
5 8§ =2
70.4 0.3 0.8 2 1 2
0 0.5 2.6 10. |2 2 1
0 0 =19 1 Diav2
0 3 -1 0 a b
=3 0 -4 12i5n 0 &
1 4 0 =he =6 0
1. _g=1 0 0
u v w
4 3 5 0
w u v 14.
0 2 7 5
v w u
0 0 2 4

Printed with FinePrint - purchase at www.fineprint.com

1 2 0 0 0 -2 1 0

3 4 0 0 2 (=2 B
15. 16.

0 0 5 6 =1 2z £O 1

0 0 7 8 0—=4--=] 0

17. (Expansion numerically impractical) Show that the
computation of an nth-order determinant by expansion
involves n! multiplications, which if a multiplication
takes 107 sec would take these times:

n 10 15 20 25

0.004 22 77 05-10°

Time .
sec min years years

18-20| CRAMER’S RULE

Solve by Cramer's rule and check by Gauss elimination and
back substitution. (Show details.)

18. 2x — 5y = 23

4x + 6y = —2

19: 3y + 4z = 14.8
4x + 2y — z = —6.3
A B B = o )

@w-l—lr — 3z =130

4x — 5y + 2z =13
2w + 8x —4dy + z =42
3w R A )

21-23| RANK BY DETERMINANTS

Find the rank by Theorem 3 (which is not a very practical
way) and check by row reduction. (Show details.)




SEC. 7.8 Inverse of a Matrix. Gauss—Jordan Elimination
i w i 4
=
o8- 3
s 1 0
22 13 -—13 12
| =3 5 —4
0.4 0 — 2% 3.0
2%. | 12 0.6 0 0.3
b e TSR

24.

TEAM PROJECT. Geometrical Applications:
Curves and Surfaces Through Given Points. The
idea is to get an equation from the vanishing of
the determinant of a homogeneous linear system as the
condition for a nontrivial solution in Cramer’s theorem.
We explain the trick for obtaining such a system for
the case of a line L through two given points Py: (xy, 1)
and Po: (X, y2). The unknown line is ax + by = —c¢,
say. We write it as ax + by + ¢+1 = 0. To get a
nontrivial solution a, b, ¢, the determinant of the
“coefficients” x, y, 1 must be zero. The system is

ax+by +c-1=0 (LinelL)
(12) -~ ak] + byy + ¢+ L =10.(P; on L)
axs + by, + ¢+1 =0 (PyonL).

7.8 Inverse of a Matrix.
Gauss—Jordan Elimination

In this section we consi

25.

26.

315

(a) Line through two points. Derive from D = 0 in

(12) the familiar formula
X—Xx = ¥a
Y17 Y2

X — Xg

(b) Plane. Find the analog of (12) for a plane through
three given points. Apply it when the points are (1, I, 1),
(3, 2, 6), (5,0, 5).

(¢) Circle. Find a similar formula for a circle in the
plane through three given points. Find and sketch the
circle through (2, 6), (6, 4), (7, 1).

(d) Sphere. Find the analog of the formula in (c) for
a sphere through four given points. Find the sphere
through (0, 0, 5), (4, 0, 1), (0, 4, 1), (0, 0, —3) by this
formula or by inspection.

(¢) General conic section. Find a formula for a
general conic section (the vanishing of a determinant
of 6th order). Try it out for a quadratic parabola and
for a more general conic section of your own choice.
WRITING PROJECT. General Properties of
Determinants. Illustrate each statement in Theorems
1 and 2 with an example of your choice.

CAS EXPERIMENT. Determinant of Zeros and
Ones. Find the value of the determinant of the n X n
matrix A, with main diagonal entries all O and all others
1. Try to find a formula for this. Try to prove it by
induction. Interpret A; and A4 as “incidence matrices”
(as in Problem Set 7.1 but without the minuses) of a
triangle and a tetrahedron, respectively; similarly for
an “n-simplex”, having n vertices and n(n — 1)/2 edges
(and spanning R"~*, n = 5,6, ).

trices exclusivel

The inverse of an n X n matrix A = [a;,] is denoted by A~! and is an n X n matrix
S

such that

(1

AA1=A"1A=1

where I is the n X n unit matrix (see Sec. 7.2).
If A has an inverse, then A is called a nonsingular matrix. If A has no inverse, then

A is called a singular matrix.

If A has an inverse. the inverse_is unique.

Indeed, if both B and C are inverses of A, then AB = I and CA = I, so that we obtain

the uniqueness from

B =1IB = (CA)B = C(AB) = CI = C.

(Am I ess
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We prove next that A has an inverse (is nonsingular) if and only if it has maximum
possible rank n. The proof will also show that Ax = b implies x = A~'b provided A~!
exists, and will thus give a motivation for the inverse as well as a relation to linear systems.
(But this will not gi f solving Ax = b numerically becaus Gauss
elimination in Sec. 7.3 requires fewer computations.)

THEOREM 1 Existence of the Inverse

The inverse- A~" of an n X n matrix A exists if and only if rank A = n, thus (by
Theorem 3, Sec. 7.7) if and only if M. Hence A is nonsingular if rank A = n,

and is singular if rank A < n.

PROOF Let A be a given n X n matrix and consider the linear system
@) Ax = b.

If the inverse A~' exists, then multiplication from the left on both sides and use of (1)

gives
AT = Ay

Theorem in Sec. 7.5.

This shows that (2) has a unique solution.x. Hence A must have rank n by the Fundamental
\

;\ onversely;Tet rank A = n. Then by the same theorem, the system (2) has a unique
053 g, solution x for any b. Now the back substitution following t imination (Sec. 7.3)
2 \"‘(ow‘? shows that the components x; of x are linear combinations of those of b. Hence we can

U‘PLL,» = write =

a7/ v Y
9\\\ " WQ} "’DV\ a
s X=Bb LR N
v
B& ﬂ’l' with B to be determined. Substitution into (2) gives

Ax = A(Bb) = (AB)b =Cb =b (C = AB)
for any b. Hence C = AB = I, the unit matrix. Similarly, if we substitute (2) into (3) we
gCt / ( ) {J &ﬁ%

v
x = Bb = B(Ax) = (E{\_')x

for any x (and b = Ax). Hence BA = L. Together, B = A~ exists. L]

SWILHELM JORDAN (1842-1899), German mathematician and geodesist. [See American Mathematical
Monthly 94 (1987), 130-142.]

We do not recommend it as a method for solving systems of linear equations, since the number of operations
in addition to those of the Gauss elimination is larger than that for back substitution, which the Gauss—Jordan
elimination avoids. See also Sec. 20.1.
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A

Determination of the Inverse
by the Gauss—Jordan Method

For the practical determination of the inverse A" of a nonsingular n X n matrix A we
can use the Gauss elimination (Sec. 7.3), actually a variant of it, called the Gauss-Jordan
elimillgti(m3 (footnote of p. 316). The idea of the method is as follows.

Using A, we form n linear systems

Axg) = eq), S AXy,) = ey
where €4y, -, €y are the columns of the n» X »n_unit matrix. I; thus,
e =01 0 -+ 0], ey =[0 1 0 --- 0], etc. These are n vector equations
in the unknown vectors X, * * * , Xu,. We combine them into a single matrix equation

AX = 1) with the unknown matrix X having the columns Xq,, * ", X¢,)-

orrespondingly, we combine the n augmented matrices [A eq,], * *,[A  €yy] into
one n X 2n “augmented matrix” K = [A 1]. Now multiplication of AX = I by A~!
from the left gives X = A~ = A~'. Hence, to solve AX = I for X, we can apply the
Gauss elimination to A = [A__TJ. This gives a matrix of the form [U H] with upper
triangular U because the Gauss elimination triangularizes systems. The Gauss—Jordan
method reduces U by further elementary row operations to diagonal form, in fact to the
unit matrix L. This is done by eliminating the entries of U above the main diagonal and
making the diagonal entries all 1 by multiplication (see the example below). Of course,
the method operates on the entire matrix [U H], transforming H into some matrix K,
hence the entire [U H] to [I K]. This is the “augmented matrix” of IX = K. Now
IX = X = A, as shown before. By comparison, K = A, so that we can read A~}
directly from [I K].

The following example illustrates the practical details of the method.

EXAMPL 1 Inverse of a Matrix. Gauss—Jordan Elimination

Determine the inverse A~ of

Solution. We apply the Gauss elimination (Sec. 7.3) to the following n X 2n = 3 X 6 matrix, where BLUE
always refers to the previous matrix.

=f 2~ 5 1 240 g+
B D=8 i o= 5250
! SRtk o B 1l
Tk A PR MR i
0 2 7 3 1 0 Row 2 + 3 Row 1
i 50 2 2 =1 0 15 Row 3 — Row 1
"—Il/,/ 1 '2: et T [N
b 2 L7 b - sl s
SE L BT o e T e S
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This is [U H] as produced by the Gauss elimination. Now follow the additional Gauss—Jordan steps, reducing
U to I, that is, to diagonal form with entries 1 on the main diagonal.

=i} 0 0 — Row 1
1.5 0.5 0 0.5 Row 2

0.8 02, 02 | —0.2 Row 3
0 06 04 -—-047 Row 1 + 2 Row 3
0 1 0 -1.3 =0.2 0.7 Row 2 — 3.5 Row 3
L0 0 2 1 0.8 02 -02.1
B /6 0 \. =07 =02 ‘\'\‘0.3- Row | + Row 2
. F 4 | / 1
W 0.1, 0| 18 -02 p7
s N A 8 £02
[ 0~L0.2 11 0.8 0.2 | J t
N A
The last three columns constitute A~*. Check: -A
i 1 2 —0.7 0.2 0.3 1 0 0
3 —1 1 —1.3 =02 07| =|0 1 0
it 3 4 0.8 02 -02 0 0 1
Hence AA™! = L Similarly, A™'A = 1. @

Useful Formulas for Inverses

The explicit formula (4) in the following theorem is often useful in theoretical studies (as
opposed to computing inverses). In fact, the special case n = 2 occurs quite frequently in
geometrical and other applications.

Inverse of a Matrix

The inverse of a nonsingular n X n matrix A = [aji] is given by

Cll C21 Cﬂl

P 1 i @_ 1 Ciz Cap e Che
) AT 7Y e STy . : R

_Cln ,C2n Cnn_

where Cy is the cofactor of ay, in det A (see Sec. 7.7). (CAUTION! Note well that
in A", the cofactor C; occupies the same place as ay; (not az;) does in A.)
In particular, the inverse of

ayy a2 : 4 1 Qa2 ~—di2
4*) A= is A = e ;
as (7] i —dx as;
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PROOF We denote the right side of (4) by B and show that BA = L. We first write

2 %, (5) BA = G = [g4]
Ry ;.
$ W i and then show that G = L. Now by _the definition of matrix multiplication and because of
v the form of B in (4), we obtain (CAUTION! Cj, not Cy,)
Y - &
T Csk 1 R /Q - ,‘?e 9_?_ u.-£1 !\t—
(6) 8 = 2 A YT e Gulue ot auCuy)) D =detA

Now (9) and (10) in §&c. 7.7 show that the sum (- - -) on the right is D = det A when
I = k, and is zero when [ :# k. Hence

= d tA =1,
gkk ~ detA € o
=0 (+ k),
In particular, for n = 2 we have in (4) in the first row Cy; = dss, C3; = —ay3 and in
the second row Cy3 = —dg;. Cog = ayq. This gives (4%). )

EXAMPLE 2 Inverse of a2 X 2 Matrix
<A Py 04 —0.1
i e e L "
& o 0|2 3 -02 03
EXAMPLE 3 Further lllustration of Theorem 2
Using (4), find the inverse of

=i 1 2
A= S et 1
=1 3 4
Solution. We obtain detA = —1(=7) — 1:13 +2-8 = 10,Jand in (4),
pasng { jiii=g 2 17 49
3 4 3 4 " =1 |
3 | —1 2 = 2
CIZ_ - = —13 sz— = =7 C32= =7,
229 4 -1 4 3 1
9l = 1 =] |
Ciz = =8, Caz = — =2, C33 = =l
= 3 | 3 -1
so that by (4), in agreement with Example 1, G/ Cz ,/
07 (02 @3
Al=]|-13 -02 07]. B

8. i02=1=02
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EXAMPLE 4

CHAP. 7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems

Diagonal matrices A = [a;], aj. = 0 when j # k, have an inverse if and only if all
a; # 0. Then A~ lis diagonal, too, with entries 1/ayy, - - -, /ayy,.

For a diagonal matrix we have in (4)

% = - ail ; etc. a
Inverse of a Diagonal Matrix
Let
—0:5 0 0
A= 0 4 0
0 0 1
Then the inverse is
=2 0 0
AT il 0. 0202520 |
0 0 1

Products can be inverted by taking the inverse of each factor and multiplying these
inverses in reverse order,

(7) AC) = CrLAG):

Hence for more than two factors,

(8) ACi~-POt=0Pt-»C A

The idea is to start from (1) for AC instead of A, that is, AC(AC)~! = I, and multiply
it on both sides from the left, first by A~!, which because of AA =1 gives

A~{ACAC) = |

and then multiplying this on both sides from the left, this time by C™! and by using
c'c=1,
C!ICAC)™ = (AC)™' = C'A™L,

This proves (7), and from it, (8) follows by induction. B

We also note that the inverse of the inverse is the given matrix, as you may prove,

9) A H1 = A,
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SEC. 7.8 Inverse of a Matrix. Gauss—Jordan Elimination N

Unusual Properties of Matrix Multiplication.
Cancellation Laws

Section 7.2 contains warnings that some ertie ma | 2 cylate |
those for numbers, and we are now able to cxplam the restricted vahdny of the so- _called
cancellation laws [2.] and [3.] below, using rank and inverse, concepts that were not yet
available in Sec. 7.2. The deviations from the usual are of great practical importance and
must be carefully observed. They are as follows.

[1.] Matrix multiplication is_not commutative, that is, in general we have

AB # BA.
[2.] AB = 0 does not generally imply A = 0 or B = 0 (or BA = 0); for example,
1 1 =1 1 0 0
[2 2}[ 1 —1}:[0 0]
[3.] AC = AD does not generally imply C =.D (even when A # 0).,

Complete answers to [2.] and [3.] are contained in the following theorem.

THEOREM 3 Cancellation Laws
Let A, B, C be n X n matrices. Then:
(a) Ifrank A = n and AB = AC, then B = C. Lol ramk

(b) If rank A = n, then AB = 0 implies B = 0/Hence if AB = 0, but A # 0
as well as B # 0, then rank A < n and ragk B < n.

() IfA is@%ﬂﬂ) so are BA and AB.

) Mb Tmuerse  onnatviX

PROOF (a) The inverse of A exists by Theorem 1. Multiplication by A™* from the left gives
A"IAB = A7'AC, hence B = C.
(b) Let rank A = n. Then A~! exists, and AB = 0 implies A™'AB = B = 0. Similarly
when rank B = n. This implies the second statement in (b).
(¢;) Rank A < n by Theorem 1. Hence Ax = 0 has iontrivial solutions)by Theorem.2
in Sec. 7.5. Multiplication by B shows that WM
so@my Theor: A Theorem 1.

(c2) AT is singular by Theorem 2(d) in _,S_ﬁ;c ? ? Hence BTT is smgular by part (¢y),
and is equal to (AB)' by (10d) in Sec. 7.2. Hence AB is singular by Theorem 2(d) in
Sec.. 7.7 ®

Determinants of Matrix Products

The determinant of a matrix product AB or BA can be written as the product of the
determinants of the factors, and it is interesting that det AB = det BA, although AB # BA
in general. The corresponding formula (10) is needed occasionally and can be obtained
by Gauss-Jordan elimination (see Example 1) and from the theorem just proved.
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322 CHAP. 7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems

THEOREM 4 Determinant of a Product of Matrices

For any n X n matrices A and B,

(10) det (AB) = det (BA) = det A det B.

PROOF If A or B is singular, so are AB and BA by Theorem 3(c), and (10) reduces to 0 = 0 by
Theorem 3 in Sec. 7.7.

Now let A and B be nonsingular. Then we can reduce A to a diagonal matrix A= |am|

< o\ UP& %~ by Gauss-Jordan steps. Under these operations, def A retains its value, by Theorem 1 in
A '5:_% G ) 2 z 7)- Sec. 7.7, (a) and (b) [not (c)] except perhaps for a sxgn reversal i in row interchanging when
*’;';’ % 1% pivoting. But the same operations reduce AB to AB with the same effect on det (AB).
:{{ ”\’f\ C %M/’ﬁ G/ Hence it remains to prove (10) for AB written out,
L g
7 “"}& [ =7 ot e 2
ay 0 i 0 b1y b1a i, bin
: Uiy Dermon e s 2 TR ERRRRTES . =
AB =
o 0 0 5 &nﬂ._ _bnl by E N Dy gl
C31 i1 51 b12 & s @’m ]
TR 6\/;;\1'\"‘\ %\ doobay A92bss A dsgzbay
0\‘1 L% = ;
ANE\ ; A T
= \P\ _annbnl annbnz et armbnn_
We now take the determinant det (AB) On the right we can take out a factor 011 from
the first row, a5 from the second, - ,, from the nth. But this product @y; dss = * * Gy
equals det A because A is diagonal. The remammg determinant is det B. This proves (10)
“.) for det (AB), and the proof for det (BA) follows by the same idea. ]
Y\\ \% This completes our discussion of linear systems (Secs. 7.3-7.8). Section 7.9 on vector
% spaces and linear transformations is optional. Numeric methods are discussed in Secs.
" 20.1-20.4, which are independent of other sections on numerics.

g ‘z,,w, w, \f

PROBLEM SET 7.8

1-12| INVERSE
Find the inverse by Gauss—Jordan [or by (4¥) if n = 2] or

2 1 2

state that it does not exist. Check by using (1). T G Z Z ?
120  4.64 06 08 3 : Co e daes S

1. 2 —sin 260 cos 20 ; g n
0.50 3.60 0.8 —0.6 3 s 5a
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SEC. 7.9 Vector Spaces, Inner Product Spaces, Linear Transformations
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Optional 323

ok st 10 13. (Triangular matrix) Is the inverse of a triangular
matrix always triangular (as in Prob. 7)? Give reason.
sl 100 S O =50 14. (Rotation) Give an application of the matrix in Prob.
581} =01 19 3 that makes the form of its inverse obvious.
15. (Inverse of the square) Verify (A%)™' = (A™1)? for
1 2 5 A in Prob. 5.
e =1 2 16. Prove the formula in Prob. 15.
17. (Inverse of the transpose) Verify AN = @AYy
L2 * % for A in Prob. 5.
0 g 0 rove the formula in Prob. 17.
19. (Inverse of the inverse) Prove that (A™1)"! = A.
LS el e 20. (Row interchange) Same question as in Prob. 14 for
2 0 0 the matrix in Prob. 9.
EXPLICIT FORMULA (4) FOR THE
f--¢d 2% %9 INVERSE
ja fomy iy 19 Formula (4) is generally not very practical. To understand
¢ its use, apply it:
et 2 21. To Prob. 9. 22. To Prob. 4. 23. ToProb. 7.

9 Vector Spaces, Inner Product Spaces,

Linear Transformations

Optional

In Sec. 7.4 we have seen that special vector spaces arise quite naturally in connection
with matrices and linear systems, that their elements, called vectors, satisfy rules quite
similar to those for numbers [(3) and (4) in Sec. 7.1], and that they are often obtained as
spans (sets of linear combinations) of finitely many given vectors. Each such vector has
n real numbers as its components. Look this up before going on.

Now if we take all vectors with n real numbers as components (“real vectors”), we
obtain the very important real n-dimensional vector space R". This is a standard name
and notation. Thus, each vector in R™ is an ordered n-tuple of real numbers.

Particular cases are R?, the space of all ordered pairs (“vectors in the plane”) and R3.
the space of all ordered triples (“vectors in 3-space’). These vectors have wide applications
in mechanics, geometry, and calculus that are basic to the engineer and physicist.

Similarly, if we take all ordered n-tuples of complex numbers as vectors and complex
numbers as scalars, we obtain the complex vector space C", which we shall consider in
9ec.. 8.5.

This is not all. There are other sets of practical interest (sets of matrices, functions,
transformations, etc.) for which addition and scalar multiplication can be defined in a
natural way so that they form a “vector space”. This suggests to create from the “concrete
model” R" the “abstract concept” of a “real vector space” V by taking the basic properties
(3) and (4) in Sec. 7.1 as axioms. These axioms guarantee that one obtains a useful and
applicable theory of those more general situations. Note that each axiom expresses a simple
property of R™ or, as a matter of fact, of R*. Selecting good axioms needs experience and
is a process of trial and error that often extends over a long period of time.
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330 CHAP. 7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems
13. (Different bases) Find three bases for RZ. p. | Moy e D e T B
14. (Uniqueness) Show that the representation
o +

V = cia, + * - -+ cpa, of any given vector in Yz % T Jaitads

an n-dimensional vector space V in terms of a given yg = —2xy + 2%, + 4xg

basis aqy, * * * , @y for V is unique.
1520/ LINEAR TRANSFORMATIONS 21-26/ INNER PRODUCT. ORTHOGONALITY

Find the inverse transformation. (Show the details of your Find the Euclidean norm of the vectors

work.) 2. [4 2 -6]"
15. Y= X1 — 212 16. Yy = le —- X5 22; [D a=d 3 U 5 l]T
A - ’ 23. [16.- =32 0]
= ANy o =A%y T
Y2 1 2 Y2 1 2 24.[4 8 % 2]
L ¢ R e IR 1 B
17. 5 3XI = - Xb 18- M= 0.2511 =Y 0.113 - [g 1 [ ]
2. 3 % 3
= —5x; + 2x Yo = Xy 2 0:8%
s . < % 7 s 27. (Orthogonality) Show that the vectors in Probs. 21
Y= 0.2x3 and 23 are orthogonal.
28. Find all vectors v in R® orthogonal to [2 0 1]".
19. y, = 2xy — 3x3 29. (Unit vectors) Find all unit vectors orthogonal to

[4 —3]". Make a sketch.

yo = —10x; + 16x5 + x3
30. (Triangle inequality) Verify (4) for the vectors in
yg = =Tx3 + llxg + x3 : Probs. 21 and 23.
CHAPTER 7 REVIEW QUESTIONS AND PROBLEMS
1. What properties of matrix multiplication differ from 11, 9x — 3y = 15
those of the multiplication of numbers? What about
division of matrices? Sx + 4y = 48
(2)Let A be a 50 X 50 matrix and B a 50 X 20 matrix. 12. —2x — 4y + 7z = —6
Are the following expressions defined or not? A + B,
AZ, B2, AB, BA, AA", B'A, B'B, BB", B'AB. (Give x+2 +16g= 13
reasons.)
3. How is matrix multiplication motivated? 13.3% o3y, 7 B2, 518 Sx =10y =*2
4. Are there any linear systems without solutions? With xX+2y—-3z2="6 3x+ y=13
one solution? With more than one solution? Give simple
examples. =56
5. How can you give the rank of a matrix in terms of row
vectors? Of column vectors? Of determinants? 15. —8x Gl e e L e S
6. What is the role of rank in connection with solving 6y + 4z =3 2x + 3y = z=-12
linear systems?
7. What is the row space of a matrix? The column space? 12x + 2y =2 Sx —4y+3z2= 32
The null space?
8. What is the idea of Gauss elimination and back 17-3x +7y = 0 18. —x +4y - 2z= 1
substitution? 5x — 4y = 47 3x + 4y + 6z = 1
9. What is the inverse of a matrix? When does it exist?
How would you determine it? 6x°+ 9y"=15 el i e

10. What is Cramer’s rule? When would you apply it?
19, TeE9y' = 142'="2136

11-19| LINEAR SYSTEMS

Find all solutions or indicate that no solution exists. (Show
the details of your work.) 2x+ y— 4z= 4

—x Ay &  DQz.=—10
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Summary of Chapter 7
CALCULATIONS WITH MATRICES AND

VECTORS

Calculate the following expressions (showing the details of
your work) or indicate why they do not exist, when

9 2 8 0 PR
) ) 18 10 B=|-2
8 10 15 —6 3 0
3 4
a=|7], b=1]0
1 2
20. AB, BA 21. A - AT
22. A% + B2 23. det A, det B, det AB
24, AAT, ATA 25. 0.2BB"
26. Aa, a"A, a"Aa 27. a'b, b'a, ab”
28. b"Bb 29. a'B, BTa
30. 0.1(A + AT(B — B")
31-36 RANK

Determine the ranks of the coefficient matrix and the
augmented matrix and state how many solutions the linear
system will have.

31. In Prob. 13
34,) In Prob. 14

32. In Prob. 12
35. In Prob. 19

33. In Prob. 17
36. In Prob. 18

SUMMARY OF CHAPTER 7

331

37-42| INVERSE

Find the inverse or state why it does not exist. (Show details.)
37. Of the coefficient matrix in Prob. 11

38. Of the coefficient matrix in Prob. 15

39, Of the coefficient matrix in Prob. 16

40, Of the coefficient matrix in Prob. 18

0 =31, Of the augmented matrix in Prob. 14

42, Of the diagonal matrix with entries 3, —1, 5

NETWORKS

Find the currents in the following networks.

43. 'i/?\/!:, 44. 3800V
I .
3 50 Q
1.—}—'\/\/\,—<L .
1,7 200
{1
Sk —AW—
2 —
20V Sl
1, J—T 1020 V
| i
L3008 T tsao v
20 Q

Linear Algebra: Matrices, Vectors, Determinants

Linear Systems of Equations

matrix is called square. A 1 X n
a column vector (Sec. 7.1).

Anm X n matrix A = [a;;] is a rectangular array of numbers or functions (“entries”,
“elements”) arranged in m horizontal rows and n vertical columns. If m = n, the
i L columns,

The sum A + B of matrices of the same size (i.e., both m X n) is obtained by

matrix is called a row vector and an m X | matrix

defined only when r = n, and is

(1) G = aj].{b1

adding corresponding entries. The product of A by a scalar ¢ is obtained by
multiplying each a;;, by ¢ (Sec. 7.1).
The product C = AB of an m X n matrix A by an r X p matrix B = [b;] is

the m X p matrix C = [c;;] with entries

(row j of A times

k T ajsboy, + - column k of B).

SERE a_'}"l‘?-bﬂk
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This multiplication is motivated by the composition of linear transformations
(Secs. 7.2, 7.9). It is associative, but is not commutative: if AB is defined BA_ may

not be defined, but even if BA is defined, AB_# BA in general. Also AB = 0 may
not imply A = 0 or B =0.0cBA-=0 (Secs. 7.2, 7.8). Illustrations:

SRR
A
o Al [o ool

The transpose A" of a matrix A = [a;,] is AT = [ay,]; rows become columns and
conversely (Sec. 7.2). Here, A need not be square. If itis and A = AT, then A is called
symmetric; if A = —AT, it is called skew-symmetric. For a product, (AB)" = BTAT
T

A main application of matrices concerns linear systems of equations

(2) Ax=Db (Sec. 7.3)
i AT

(m equations in n unknowns xy, - * *, x,,; A and b given). The most important method

of solution is the Gauss elimination (Sec. 7.3), which reduces the system to

“triangular” form by elementary row operations, which leave the set of solutions
unchanged. (Numeric aspects and variants, such as Doolittle’s and Cholesky’s
methods, are discussed in Secs. 20.1 and 20.2)

Cramer’s rule (Secs. 7.6, 7.7) represents the unknowns in a system (2) of n
equations in n unknowns as quotients of determinants; for numeric work it is
impractical. Determinants (Sec. 7.7) have decreased in importance, but will retain
their place in eigenvalue problems, elementary geometry, etc.

The inverse A~! of a square matrix satisfies AA™" = A~'A = L It exists if and
only if det A" # 0. It can be computed by the Gauss—Jordan elimination (Sec. 7.8).

The rank r of a matrix A is the maximum number of linearly independent.rows.
or columns of A or, equivalently, the number of rows of the largest square submatrix

of A with nonzero determinant (Secs. 7.4, 7.7).
"~ The system (2) has solutions if and only if rank A = rank [A b],)where [A b]
is the augmented matrix (Fundamental Theorem, Sec. 7.5).

The homogeneous system

3) Ax =0

has solutions x # 0 (“nontrivial solutions”) if and only if rank A_< n, in the case
m = n equivalently if and only if det A = 0.(Secs. 7.6, 7.7).

Vector spaces, inner product spaces, and linear transformations are discussed in
Sec. 7.9. See also Sec. 7.4.
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