
Relational Algebra andRelational Algebra and

Relational CalculusRelational Calculus

 406.426 Design & Analysis of Database Systems406.426 Design & Analysis of Database Systems

Jonghun ParkJonghun Park

jonghun@snu.ac.krjonghun@snu.ac.kr

Dept. of Industrial EngineeringDept. of Industrial Engineering

Seoul National UniversitySeoul National University

2

outline

unary relational operations

SELECT, PROJECT, RENAME, operation sequences

relational algebra operations from set theory

UNION, INTERSECTION, MINUS, Cartesian product

binary relational operations

JOIN, DIVISION, EQUIJOIN, NATURAL JOIN, JOIN variations

additional relational operations

aggregate functions, grouping, recursive closure, outer JOIN, outer

UNION

3

SELECT

used to select a subset of the tuples from a relation that satisfy a
selection condition

can be visualized as a horizontal partition of the relation into two
sets of tuples

notation: <selection condition>(R)
the selection condition is a Boolean expression specified on the
attributes of relation R

the Boolean expression is made up of a number of clauses of the form
<attribute name> <comparison op> <constant value>

<attribute name> <comparison op> <attribute name>

the clauses can be connected by the Boolean operators

R is a relational algebra expression whose result is a relation

the relation resulting from the SELECT operation has the same
attributes as R

commutative: <cond1>(<cond2>(R)) = <cond2>(<cond1>(R))

cascade: <cond1>(<cond2>(...(<condn>R))...)) =

<cond1>AND<cond2>AND...<condn>(R)

4

example

(DNO=4 AND SALARY>25000) OR (DNO=5 AND SALARY>30000)(EMPLOYEE)

5

PROJECT

selects certain columns from the table

can be visualized as a vertical partition

notation: <attribute list>(R)

<attribute list> is the desired list of attributes from the attributes of

relation R

the result has only the attributes specified in <attribute list> in the

same order as they appear in the list

duplicate elimination

when the attribute list includes only nonkey attributes of R

the # of tuples in a relation resulting from a PROJECT operation is

always less than or equal to the # of tuples in R

subsumption: <list1>(<list2>(R)) = <list1>(R) if <list2> contains

<list1>

6

example

LNAME,FNAME,SALARY(EMPLOYEE)

SEX,SALARY(EMPLOYEE)

duplicate

eliminated

7

sequence of operations

FNAME,LNAME,SALARY(DNO=5(EMPLOYEE))

TEMP <- DNO=5(EMPLOYEE)

R(FIRSTNAME, LASTNAME, SALARY) <-

FNAME,LNAME,SALARY(TEMP)

8

RENAME

renames either the relation name or the attribute names, or both

S(B1,B2, ..., Bn)(R)

S is the new relation name

B1, ..., Bn are the new attribute names

S(R)

renames the relation only

(B1,B2, ..., Bn)(R)

renames the attributes only

9

UNION, INTERSECTION, SET MINUS

union compatibility

2 relations on which any of three operations are applied must have the

same type of tuples

R(A1, A2, ..., An) and S(B1, B2, ..., Bn) are said to be union compatible if

they have the same degree n and if dom(Ai) = dom(Bi) for all i

union: R S

a relation that includes all tuples that are either in R or in S or in both R

and S

duplicate tuples are eliminated

intersection: R S

a relation that includes all tuples that are in both R and S

set minus: R – S

a relation that includes all tuples that are in R but not in S

UNION and INTERSECTION are commutative and associative

10

examples

11

Cartesian product

aka cross product, cross join

used to combine tuples from two relations in a combinatorial fashion

notation: R(A1, A2, ..., An) S(B1, B2, ..., Bm)

relation Q with degree n + m attributes Q(A1, A2, ..., An, B1, B2, ..., Bm)

if |R| = nR and |S| = nS, then |R S| = nR * nS

12

example

to retrieve a list of names of each female employee’s dependents

FEMALE_EMPS <- SEX=‘F’(EMPLOYEE)

EMPNAMES <- FNAME, LNAME, SSN(FEMALE_EMPS)

13

example (cont.)

EMP_DEPENDENTS <- EMPNAMES DEPENDENT

14

example (cont.)

ACTUAL_DEPENDENTS <- SSN=ESSN(EMP_DEPENDENTS)

RESULT <- FNAME, LNAME, DEPENDENT_NAME(ACTUAL_DEPENDENTS)

15

JOIN

to combine related tuples from two relations into single tuples

notation: R(A1, A2, ..., An) <join condition>S(B1, B2, ..., Bm)

relation Q with n + m attributes Q(A1, A2, ..., An, B1, B2, ..., Bm)

Q has one tuple for each combination of tuples (consists of one
from R and one from S) whenever the combination satisfies the
join condition

i.e., CARTESIAN PRODUCT followed by SELECT

the join condition

<condition> AND <condition> AND ... AND <condition>

each condition is of the form Ai Bj, where Ai is an attribute of R, Bj

is an attribute of S, Ai and Bj have the same domain, is one of the
comparison operators

if |R| = nR and |S| = nS, then 0 |R <join condition>S| nR * nS

if there is no join condition, JOIN degenerates into a CARTESIAN
PRODUCT -> called CROSS JOIN

16

Example

DEPT_MGR <- DEPARTMENT MGRSSN=SSN EMPLOYEE

17

EQUIJOIN & NATURAL JOIN

EQUIJOIN

the only comparison operator used is =

we always have one or more pairs of attributes that have identical

values in every tuple

NATURAL JOIN (*)

created to get rid of the superfluous attribute in an EQUIJOIN

condition

requires that the two join attributes (or each pair of join attributes) have

the same name in both relations

18

example

DEPT <- (DNAME,DNUM,MGRSSN,MGRSTARTDATE)(DEPARTMENT)

PROJ_DEPT <- PROJECT * DEPT

19

complete set of relational algebra operations

the set of relational algebra operations { , , , -, x} is a complete

set -> any of the other original relational algebra operations can be

expressed as a sequence of operations from this set

example

INTERSECTION

R S = (R S) – ((R – S) (S – R))

JOIN

R <condition>S = <condition>(R S)

20

DIVISION

notation: R(Z) ÷ S(X)

Z X

let Y be the set of attributes of R that are not

attributes of S (i.e., Y = Z – X)

the result is a relation T(Y) that includes a

tuple t if tuples tR appear in R with tR[Y] = t

and with tR[X] = tS for every tuple tS in S

for a tuple t to appear in the result T, the

values in t must appear in R in combination

with every tuple in S

the reverse of cross join

example

Z = {A, B}, X = {A}, Y = {B}

21

Example

SSNS(SSN) <- SSN_PNOS ÷ SMITH_PNOS

SSNs of employees who work on all

the projects that Smith works on!

22

aggregate functions and grouping

to specify mathematical aggregate functions on collections of values

from the DB

e.g., SUM, AVERAGE

notation: <grouping attributes> <function list> (R)

<grouping attributes> is a list of attributes of the relation specified in R

<function list> is a list of (<function> <attribute>) pairs

in each pair, <function> is one of the allowed functions, such as SUM,

AVERAGE, MAXIMUM, MINIMUM, COUNT, and <attribute> is an

attribute of R

the resulting relation has the grouping attributes plus one attribute for

each element in the <function list>

if no grouping attributes are specified, the functions are applied to all

the tuples in the relation

23

example

24

recursive closure

applied to a recursive relationship between tuples of the same type

example: retrieval of all supervisees of ‘James Borg’ up to two levels

BORG_SSN <- SSN(FNAME=‘JAMES’ AND LNAME=‘BORG’(EMPLOYEE))

SUPERVISION(SSN1, SSN2) <- SSN, SUPERSSN(EMPLOYEE)

RESULT1(SSN) <- SSN1(SUPERVISION SSN2=SSN BORG_SSN)

RESULT2(SSN) <- SSN1(SUPERVISION SSN2=SSN RESULT1)

RESULT <- RESULT2 RESULT1
in general, the implementation of recursive closure using the basic relational
algebra requires a looping mechanism

25

OUTER JOIN

used when we want to keep all the tuples in R, or all those in S, or all

those in both relations in the result of the JOIN, regardless of

whether or not they have matching tuples in the other relation

LEFT OUTER JOIN:

keeps every tuple in the left, in R S

RIGHT OUTER JOIN:

keeps every tuple in the right in R S

FULL OUTER JOIN:

keeps all tuples in both the left and right relations when no matching

tuples are found

26

example

a list of all employee names and also the name of the departments

they manage if they happen to manage a department; if they do not

manage any, an indication is made with a null value

TEMP <- (EMPLOYEE SSN=MGRSSN DEPARTMENT)

RESULT <- FNAME, MINIT, LNAME, DNAME (TEMP)

27

OUTER UNION

to take the union of tuples from two relations if the relations are not

union compatible but partially compatible, meaning that only some

of their attributes, X, are union compatible

two tuples t1 in R and t2 in S are said to match if t1[X] = t2[X], and

are considered to represent the same relationship instance -> unioned

into a single tuple in the result, T

tuples in either relation that have no matching tuple in the other

relation are padded with null values

example

STUDENT(Name, SSN, Department, Advisor) and

INSTRUCTOR(Name, SSN, Department, Rank)

the result: STUDENT_OR_INSTRUCTOR(Name, SSN, Department,

Advisor, Rank)

