
Introduction to TransactionIntroduction to Transaction

Processing Concepts and TheoryProcessing Concepts and Theory
406.426 Design & Analysis of Database Systems406.426 Design & Analysis of Database Systems

Jonghun ParkJonghun Park

jonghun@snu.ac.krjonghun@snu.ac.kr

Dept. of Industrial EngineeringDept. of Industrial Engineering

Seoul National UniversitySeoul National University

2

chapter outline

Introduction to Transaction Processing

Transaction and System Concepts

Desirable Properties of Transactions

Characterizing Schedules based on Recoverability

Characterizing Schedules based on Serializability

Transaction Support in SQL

3

single-user vs. multi-user systems

concurrency

single-user, multi-user

multi-programming

interleaving vs. parallel processing

resources that are concurrently accessed: the stored data items

4

Transactions, and Read / Write Operations

transaction

an executing program that forms a logical unit of DB processing

includes one or more DB access operations

transaction boundaries

“begin transaction” and “end transaction”

in TP, a DB is basically represented as a collection of named data

items

a transaction includes read_item and write_item operations to

access and update the DB

read_item(X): reads a DB item named X into a program variable

write_item(X): writes the value of program variable X into the DB item

named X

5

2 sample transactions

named data item: # of reserved seats

(a) T1 transfers N reservations from one flight whose # of reserved

seats is stored in the database item named X to another flight whose

of reserved seats is stored in the database item named Y

(b) T2 reserves M seats on the first flight (X) referenced in transaction

T1

6

motivation for concurrency control

lost update problem

when two transactions that access the same database items have their

operations interleaved in a way that makes the value of some database

items incorrect

7

motivation for concurrency control

temporary update (dirty read) problem

when one transaction updates a database item and then the transaction

fails for some reason

8

motivation for concurrency control

incorrect summary problem

if one transaction is calculating an aggregate summary function on a number of

records while other transactions are updating some of these records, the

aggregate function may calculate some values before they are updated and

others after they are updated

9

why recovery is needed

whenever a transaction is submitted to a DBMS for execution, the
system is responsible for making sure that

either (1) all the operations in the transaction are completed successfully
and their effect is recorded permanently in the DB,

or (2) the transaction has no effect whatsoever on the DB or on any
other transactions

types of failures

computer failure (system crash)

transaction or system error: e.g., division by zero

local errors or exception conditions detected by the transaction: e.g.,
data not found

concurrency control enforcement: e.g., abort enforcement

disk failure

physical problems and catastrophes: e.g., theft

10

transaction states and additional operations

transaction is an atomic unit of work that is either completed in its

entirety or not done at all

recovery manager keeps track of the following operations:

BEGIN_TRANSACTION, READ, WRITE, END_TRANSACTION,

COMMIT_TRANSACTION, ROLLBACK (or ABORT)

11

transaction states and additional operations

at the “Partially Committed” state, some recovery protocols need to

ensure that a system failure will not result in an inability to record

the changes of the transaction permanently

this is usually done by recording changes in the system log

12

system log

to be able to recover from failures that affect transactions, the system

maintains a log to keep track of all transaction operations that

affect the values of database items

if the system crashes, we can recover to a consistent DB state by

examining the log and using one of the recovery methods

types of log entries

[start_transaction, T]

[write_item, T, X, old_value, new_value]

[read_item, T, X]

[commit, T]

[abort, T]

13

commit point of a transaction

a transaction T reaches its commit point when all its operations that

access the database have been executed successfully and the effect of

all the transaction operations on the database have been recorded in

the log

beyond the commit point, the transaction is said to be committed,

and its effect is assumed to be permanently recorded in the database

transaction then writes a [commit, T] into the log

if a system failure occurs, we search back in the log for all

transactions T that have written a [start_transaction, T] into the log

but have not written their [commit, T] record yet

these transactions may have to be rolled back to undo their effect on

the DB during the recovery process

14

desirable properties of transactions

ACID properties

atomicity: a transaction is either performed in its entirety or

not performed at all -> responsibility of the recovery system

consistency: complete execution of a transaction takes the

DB from one consistent state to another -> responsibility of

the programmer

isolation: execution of a transaction should not be interfered

with by any other transactions executing concurrently ->

responsibility of the concurrency control system

durability: changes applied to the DB by a committed

transaction must persist in the DB (i.e., should not be lost) -

> responsibility of the recovery system

15

schedules of transactions

a schedule S of n transactions T1, T2, …, Tn is an ordering of the

operations of the transactions subject to the constraint that

for each transaction Ti that participates in S, the operations of Ti

in S must appear in the same order in which they occur in Ti

note: operations from other transactions Tj can be interleaved

with the operations of Ti in S

notation

r: read_item, w: write_item, c: commit, a: abort

16

example

Sa: r1(X); r2(X); w1(X); r1(Y); w2(X); w1(Y)

Sb: r1(X); w1(X); r2(X); w2(X); r1(Y); a

17

more on schedules

2 operations in a schedule are said to conflict if they satisfy the
following conditions

they belong to different transactions

they access the same item X

at least one of the operations is a write_item(X)

examples

r1(X) and w2(X) conflict

r1(X) and r2(X) do not conflict

a schedule S of n transactions T1, T2, …, Tn, is said to be a complete
schedule if the following conditions hold

operations in S are exactly those operations in T1, T2, …, Tn, including a
commit or abort operation as the last operation for each transaction in S

for any pair of operations from the same transaction Ti, their order of
appearance in S is the same as their order of appearance in Ti

for any two conflicting operations, one of the two must occur before
the other in S consistently (i.e., w.r.t. Ti) -> allows for a partial order
among the nonconflicting operations

18

recoverability of schedules

transaction T reads from transaction T’ in a schedule S if some item
X is first written by T’ and later read by T

schedule S is recoverable if

no transaction T in S commits until all transactions T’ that have written
an item that T reads have committed

T’ must not have been aborted before T reads item X

there should be no transactions that write X after T’ writes it and before
T reads it

examples

S’a: r1(X); r2(X); w1(X); r1(Y); w2(X); c2; w1(Y); c1; => recoverable

Sc: r1(X); w1(X); r2(X); r1(Y); w2(X); c2; a1;

T2 reads item X from T1, and then T2 commits before T1 commits =>
unrecoverable

c2 must be postponed until after T1 commits => Sd: r1(X); w1(X); r2(X); r1(Y);
w2(X); w1(Y); c1; c2; is recoverable

if T1 aborts instead of committing, then T2 should also abort => e.g., Se:
r1(X); w1(X); r2(X); r1(Y); w2(X); w1(Y); a1; a2;

19

cascadeless schedule

cascading rollback: an uncommitted transaction has to be rolled back

because it read an item from a transaction that is aborted

cascadeless schedule: every transaction in a schedule reads only

items that were written by committed transactions

example

Sd: r1(X); w1(X); r2(X); r1(Y); w2(X); w1(Y); c1; c2; is not cascadeless

=> r1(X); w1(X); r1(Y); w1(Y); c1; r2(X); w2(X); c2; is cascadeless

20

strict schedule

strict schedule

transactions can neither read nor write an item X until the last

transaction that wrote X has committed (or aborted)

process of undoing a write_item(X) operation of an aborted

transaction is simply to restore the before-image of data item X

example

Sf: w1(X,5); w2(X,8); a1; => cascadeless, but not strict

implications

strict schedule => cascadeless schedule

cascadeless schedule => recoverable schedule

21

serial schedules

schedule S is serial if, for every transaction T participating in the
schedule, all the operations of T are executed consecutively in the
schedule without interleaving; o.w. nonserial

if we consider the transactions to be independent, every serial
schedule is correct

example: two airline reservation clerks submit to the DBMS
transactions T1 and T2

22

problems with the serial schedules

limit concurrency or interleaving of operations

if a transaction waits for an I/O operation to complete, we cannot switch

the CPU to another transaction, thus wasting the CPU time

if some transaction T is quite long, the other transaction must wait for T

to complete all its operations before commencing

e.g., what if a transaction involves the credit card charge operation which

happens to fail?

unacceptable in practice

23

nonserial schedules

example

X = 90, Y = 90, N = 3, M = 2

serial schedule: X = 89, Y = 93

schedule C: X = 92, Y = 93

schedule D: X = 89, Y = 93

some nonserial schedules give the correct result => which of the nonserial schedules always
give a correct result and which may give erroneous results?

24

serializability

a schedule S of n transactions is serializable if it is equivalent to

some serial schedule of the same n transactions

trivially, serial schedule is serializable

2 schedules are called result equivalent if they produce the same

final state of the database

in the example below, S1 and S2 are result equivalent if X = 100

25

conflict equivalences

2 schedules are said to be conflict equivalent if the order of any two

conflicting operations is the same in the both schedules

recall that 2 operations in a schedule are said to conflict if they belong

to different transactions, access the same database item, and at least one

of them is a write_item operation

example

S1: r1(X); w2(X) and S2: w2(X); r1(X) are not conflict equivalent

a schedule S is conflict serializable if it is conflict equivalent to

some serial schedule S’

we can reorder the nonconflicting operations in S until we form the

equivalent serial schedule S’

26

example of conflict serializable schedule

schedule C

conflicting operations: r1(X) -> w2(X), r2(X) -> w1(X), w1(X) -> w2(X)

=> T1 -> T2, T2 -> T1, T1 -> T2 => not serializable

schedule D

conflicting operations: r1(X) -> w2(X), w1(X) -> r2(X), w1(X) -> w2(X)

=> T1 -> T2, T1 -> T2, T1 -> T2 => serializable

27

testing for conflict serializability

precedence graph

a directed graph G = (N, E) that consists of a set of nodes N = {T1, ...,

Tn} and a set of directed edges E = {e1, ..., em}

there is one node in the graph for each transaction Ti in the schedule

each edge ei in the graph is of the form (Tj -> Tk), 1 j, k n,

where Tj is the starting node of ei and Tk is the ending node of ei

an edge is created if one of the operations in Tj appears in the schedule

before some conflicting operation in Tk

cycle

a sequence of edges C = ((Tj -> Tk), (Tk -> Tp), ..., (Ti -> Tj)) with the

property that the starting node of each edge in C (except for Tj -> Tk) is

the same as the ending node of the previous edge

28

algorithm for testing conflict serializability of S

1. for each transaction Ti participating in S, create a node labeled Ti

in the precedence graph

2. for each case in S where Tj executes a read_item(X) after Ti

executes a write_item(X), create an edge (Ti -> Tj) in the precedence

graph

3. for each case in S where Tj executes a write_item(X) after Ti

executes a read_item(X), create an edge (Ti -> Tj) in the precedence

graph

4. for each case in S where Tj executes a write_item(X) after Ti

executes a write_item(X), create an edge (Ti -> Tj) in the precedence

graph

5. schedule S is serializable iff the precedence graph has no cycles

29

Example

30

another example

31

another example (cont.)

32

a precedence graph with two equivalent serial schedules

33

uses of serializability

a serializable schedule gives the benefits of concurrent execution

while being able to be correct

if the transactions are executed at will and then the resulting

schedule is tested for serializability, we must cancel the effect of the

schedule if it turns out not to be serializable

hence, the approach taken in most commercial DBMS is to design

concurrency control protocols that will ensure serializability of all

schedules in which the transactions participate

two-phase locking

timestamp ordering

multiversion protocols

optimistic protocols

34

other types of equivalence of schedules

serializability of schedules is sometimes considered to be too

restrictive

example: debit-credit transactions

T1: r1(X); X = X – 10; w1(X); r1(Y); Y = Y + 10; w1(Y);

T2: r2(Y); Y = Y – 20; w2(Y); r2(X); X = X + 20; w2(X);

Sh: r1(X); w1(X); r2(Y); w2(Y); r1(Y); w1(Y); r2(X); w2(X); =>

nonserializable, but still correct

35

transaction support in SQL

no explicit Begin_Transaction statement

every transaction must have an explicit end statement, which is either a COMMIT
or a ROLLBACK

each transaction has certain characteristics

access mode: READ ONLY or READ WRITE

diagnostic area size: the # of conditions that can be held simultaneously

isolation level: READ UNCOMMITTED, READ COMMITTED,
REPEATABLE READ, or SERIALIZABLE

nononoSERIALIZABLE

yesnonoREPEATABLE READ

yesyesnoREAD COMMITTED

yesyesyesREAD UNCOMMITTED

PhantomNonrepeat

able read

Dirty readIsolation level

36

types of violations

dirty read

a transaction T1 may read the update of a transaction T2, which has not

yet committed. If T2 fails and is aborted, then T1 would have read a

value that does not exist and is incorrect

nonrepeatable read

a transaction T1 may read a given value from a table. If another

transaction T2 later updates that value and T1 reads that value again, T1

will see a different value

phantoms

a transaction T1 may read a set of rows from a table based on some

condition specified in the SQL WHERE clause. Now T2 inserts a new

row that also satisfies the condition used in T1, into the table used by T1.

if T1 is repeated, then T1 will see a phantom, a row that previously did

not exist

37

example SQL code

EXEC SQL WHENEVER SQLERROR GOTO UNDO;

EXEC SQL SET TRANSACTION

READ WRITE

DIAGNOSTIC SIZE 5

ISOLATION LEVEL SERIALIZABLE;

EXEC SQL INSERT INTO EMPLOYEE (FNAME, LNAME, SSN, DNO, SAL)

VALUES (‘J’, ‘HOWE’, ‘99999999’, 1, 800000);

EXEC SQL UPDATE EMPLOYEE

SET SAL = SAL * 2.0 WHERE DNO = 1;

EXEC SQL COMMIT;

GOTO THE_END;

UNDO: EXEC SQL ROLLBACK;

THE_END; ...;

