

Fracture toughness of FCC High Entropy alloy by IIT

Current Status of Structural Materials

- Final presentation -

2018.06.20

원종호, 안혜상

Seoul National University

High Entropy Alloy

High entropy alloy

: Potential candidate material for extreme environment applications

Mechanical properties of HEA

Ashby map

There are clearly stronger materials, which is understandable given that CrMnFeCoNi is a single-phase material, but the toughness of this high-entropy alloy exceeds that of virtually all pure metals and metallic alloys.

Fracture toughness of HEA

Bernd Gludovatz / SCIENCE VOL 345 ISSUE 6201

Although the toughness of the other materials decreases with decreasing temperature, the toughness of the highentropy alloy remains unchanged.

mechanical properties actually improve at cryogenic temperatures

В

Fracture Toughness Testing

Limitation

- Destructive
- Complex testing procedure
- Cannot apply to in-service

Development of testing method to measure the fracture properties more easily and more economically

Indentation Fracture Toughness

Instrumented Indentation Technique (IIT)

→ In-situ & In-field System, Non-destructive & Local test, Simple & fast

Indentation Cracking Method (cracking in indentation)

[Vickers indenter, Macroscale]

$$K_{IC} = \alpha \left(\frac{E}{H}\right)^{\frac{1}{2}} \left(\frac{P}{c^{\frac{3}{2}}}\right)$$

Only for ceramic materials (very brittle)

Indentation Fracture Toughness

In case of metallic materials (no cracking in indentation)

How to correlate flat punch indentation with crack tip behavior

How to correlate flat punch indentation with crack tip behavior

Flat punch: regarded as a very deep cracked round bar specimen

How to correlate flat punch indentation with crack tip behavior

* Size effect

* Crack initiation point

How to correlate flat punch indentation with crack tip behavior

Von mises yield criterion a : crack length b : ligament radius R : specimen radius

* Load criterion

* For cracked round bar geometry

$$P_L = \pi b^2 \sigma_{YS} \begin{cases} 3.285 & for \quad \frac{a}{R} > 0.65 \\ \frac{R}{b} & for \quad \frac{a}{R} < 0.65 \end{cases}$$

* Evaluation

matching with engineering crack extension $h \approx \Delta a = 0.2 mm$

* Depth criterion

Geometrical similarity

Indentation depth (h) = $\frac{1}{2}$ crack tip opening displacement (CTOD) = crack extension (Δa)

Standard condition

Estimate of J_{IC} = J at Δa = 0.2 mm » $h^{*} \approx 0.2$ mm

$$J = J_e + J_p = \frac{(1 - \nu^2)K_I^2}{E} + \eta_{pl} \frac{A_{pl}}{\pi a^2}$$

Seoul National University

Fracture toughness of cantor alloy

Reference alloy : Cantor alloy – Cr₂₀Mn₂₀Fe₂₀Co₂₀Ni₂₀

Bernd Gludovatz / SCIENCE VOL 345 ISSUE 6201

Process : Arc melting, copper mold drop casting, cold forging and cross rolling at RT, recrystallization

Kjic	Ave. (Mpa·m ^{1/2})	Grain size (µm)	
Cantor @293K	~217	~ 6	
Cantor @200K	~221	~ 6	
Cantor3 @77K	~219	~ 6	

Fracture toughness of cantor alloy

Reference alloy : CrCoNi

Kjlc	Ave. (Mpa·m ^{1/2})	Grain size (μm)
@293K	~205	~ 5
@200K	~265	~ 5
@77K	~273	~ 5

XRD data of cantor alloy

XRD data shows that all specimen have FCC crystal structure

Microstructure of Cantor alloy

Grain size : \sim 97 μ m

~ **107** µm

Indentation test for toughness of cantor alloy

Test condition

Loading rate : 0.3mm/min, Depth control : 100um, Zero index : 0.1kgf

Normalized curve

Result of indentation test

Кјс	Test 1	Test 2	Test 3	Test 4	Ave. (Mpa·m ^{1/2})	Grain size (μm)
Ref.	-	-	-	-	217	~ 6
Cantor1	229.913	225.478	204.192	208.74	217.0808	~ 97
Cantor2	195.559	203.835	198.548	203.291	200.3083	~ 107
Cantor3	230.931	241.726	254.396	252.385	244.8595	~ 4

Ref. and cantor3 which are similar processing condition show 12% deviation

Strength of Ni-Fe-Cr systems

at%	Y.S (MPa)	U.T.S (MPa)	Elongation (%)	Grain size (µm)
Cantor	331.96	693.49	41.3	~ 6
CoCrNi	452.9	927.36	45.21	~ 6.5
NiV	743.49	1174.05	44.53	~ 8.3
Ni ₄₀ Fe ₃₀ Cr ₃₀	470.2	736.8	28.3	~ 3.65
Ni₄₀Fe₃₀Cr₂₅V₅	476.4	785.7	28.6	~ 4.18
Ni ₄₀ Fe ₃₀ Cr ₂₀ V ₁₀	682.7	954.7	19.4	~ 5.75

Heat treatment of specimen

		Heat treatment	Phase	Grain size (µm)
1	$Ni_{40}Fe_{30}Cr_{30}_{1}$	As-cast	FCC	-
2	Ni ₄₀ Fe ₃₀ Cr ₃₀ _3	homogenization + Cold rolling + Recrystallization	FCC	~ 3.7
3	$Ni_{40}Fe_{30}Cr_{20}+V_{10}_{10}$	As-cast	FCC	-
4	Ni ₄₀ Fe ₃₀ Cr ₂₀ +V ₁₀ _3	homogenization + Cold rolling + Recrystallization	FCC	~ 4

Fracture toughness and tensile property

Yield Strength vs Fracture toughness

Ductility vs Fracture toughness

Fracture toughness through IIT yield strength에 의한 영향이 더 큰 것으로 보임.

Grain size effect on fracture toughness

Grain size 가 작아질 수록 Fracture toughness 가 증가하는 것으로 보임.

Grain boundary and fracture toughness

Grain size vs Yield Strength

Zhongyun Fan, Mat. Sci. Eng. A, 191 (1995)

Ŵ

Seoul National University

Grain boundary and fracture toughness

Zhongyun Fan, Mat. Sci. Eng. A, 191 (1995)

Fig. 10. A schematic illustration of the grain boundary zone and grain interior after deformation at large plastic strain.

$$K_{\rm lc} = K^{\circ}_{\rm IC} + k_{\rm F} d^{-1}$$

Fig. 11. Schematic illustration of fracture toughness as a function of volume fraction of the grain boundary zone: (a) $K_{\rm IC}^{\rm GBZ} > K_{\rm IC}^{\rm GI}$, the grain boundary toughening effect; (b) $K_{\rm IC}^{\rm GBZ} < K_{\rm IC}^{\rm GI}$, the grain boundary embrittling effect; (c) $K_{\rm IC}^{\rm GBZ} \approx K_{\rm IC}^{\rm GI}$, $K_{\rm IC}$ is independent of grain size.

Seoul National University