2019 Spring

"Phase Equilibria in Materials"

04.15.2019 Eun Soo Park

1

Office: 33-313 Telephone: 880-7221 Email: espark@snu.ac.kr Office hours: by an appointment

Review of Invariant Binary Reactions

On cooling one phase going to two phases Metatectic reaction: $\beta \leftrightarrow L + \alpha$ Ex. Co-Os, Co-Re, Co-Ru

Review of Invariant Binary Reactions

Peritectic Type

On cooling two phases going to one phase

Chapter 8. Ternary Phase Diagrams Two-Phase Equilibrium

What are ternary phase diagram?

Diagrams that represent the equilibrium between the various phases that are formed between three components, as a function of temperature.

Normally, pressure is not a viable variable in ternary phase diagram construction, and is therefore held constant at 1 atm.

8.1 INTRODUCTION

G=f(comp., temp.)

 \rightarrow Ternary system : A, B, C

 $\rightarrow G = X_A G_A + X_B G_B + X_C G_C + a X_A X_B + b X_B X_C + c X_C X_A + RT(X_A In X_A + X_B In X_B + X_C In X_C)$

Gibbs phase rule : P=(C+2)-F For isobaric systems : P=(C+1)-F For C=3,

(1) f=3, trivariant equil, p=1 (one phase equilibrium)

(2) f=2, bivariant equil, p=2 (two phase equilibrium) $l_1 \rightleftharpoons l_2$, $l \rightleftharpoons \alpha$, and $\alpha \rightleftharpoons \beta$.

(3) $f=1$, monovaiant equil, $p=3$	$\alpha \rightleftharpoons \beta + \gamma,$	$\alpha \rightleftharpoons \beta + l,$	$\alpha \rightleftharpoons l_1 + l_2$
(three phase equilibrium)	$l_1 \rightleftharpoons l_2 + l_3,$	$l_1 \rightleftharpoons \alpha + l_2,$	$l \rightleftharpoons \alpha + \beta$
	$\alpha + \beta \rightleftharpoons \gamma$,	$\alpha + \beta \rightleftharpoons l$,	$l_1 + l_2 \rightleftharpoons l_3$
	$l_1 + l_2 \rightleftharpoons \alpha$,	$l_1 + \alpha \rightleftharpoons l_2,$	$l + \alpha \rightleftharpoons \beta$.
(4) $f=0$, invariant equil, p=4	$\alpha \rightleftharpoons \beta + \gamma + \delta,$	$\alpha + \beta \rightleftharpoons \gamma + \delta,$	$\alpha + \beta + \gamma \rightleftharpoons \delta$
(four phase equilibrium)	$l_1 \rightleftharpoons l_2 + l_3 + l_4,$	$l_1 + l_2 \rightleftharpoons l_3 + l_4,$	$l_1 + l_2 + l_3 \rightleftharpoons l_4$
	$l \rightleftharpoons \alpha + \beta + \gamma$,	$l + \alpha \rightleftharpoons \beta + \gamma$,	$l + \alpha + \beta \rightleftharpoons \gamma$
	$l_1 \rightleftharpoons l_2 + \alpha + \beta$,	$l_1 + l_2 \rightleftharpoons \alpha + \beta,$	$l_1 + l_2 + \alpha \rightleftharpoons \beta$
	$l_1 \rightleftharpoons l_2 + l_3 + \alpha$,	$l_1 + l_2 \rightleftharpoons l_3 + \alpha,$	$l_1 + l_2 + l_3 \rightleftharpoons \alpha$
	$\alpha \rightleftharpoons l_1 + l_2 + l_3,$	$\alpha + l_1 \rightleftharpoons l_2 + l_3,$	$\alpha + l_1 + l_2 \rightleftharpoons l_3$
	$\alpha \rightleftharpoons \beta + l_1 + l_2,$	$\alpha + \beta \rightleftharpoons l_1 + l_2,$	$\alpha + \beta + l_1 \rightleftharpoons l_2$
	$\alpha \rightleftharpoons \beta + \gamma + l,$	$\alpha + \beta \rightleftharpoons \gamma + l,$	$\alpha + \beta + \gamma \rightleftharpoons l$
		$l_1 + \alpha \rightleftharpoons l_2 + \beta.$	

Gibbs Triangle

An Equilateral triangle on which the pure components are represented by each corner.

Concentration can be expressed as either "wt. %" or "at.% = molar %".

 $X_A + X_B + X_C = 1$

Used to determine the overall composition

Overall Composition

8.2 REPRESENTATION OF TERNARY SYSTEMS

Gibbs triangle

8.2 REPRESENTATION OF TERNARY SYSTEMS

2) Overall Composition of X alloy

Gibbs triangle

According to Triangle congruence condition

8.3 TIE LINES AND TIE TRIANGLES

Isothermal section

Fig. 108. Application of the lever rule to a ternary alloy X consisting of the two phases α and β .

$$m_{\alpha}: m_{\beta} = X\beta : \alpha X = b\beta : ab$$

8.3 TIE LINES AND TIE TRIANGLES

Incentive Homework 6: derive the above relationships in tie triangle

P contents in O alloy

$$P\% = \frac{OS}{PS} \times 100$$

S composition in O alloy

$$S\% = \frac{PO}{PS} \times 100$$

S composition = Q alloy + R alloy (tie line), Q contents and R contents in O alloy

$$Q \% = \frac{RS}{QR} \frac{PO}{PS} \times 100$$
$$R \% = \frac{QS}{QR} \frac{PO}{PS} \times 100$$

13

8.3 TIE LINES AND TIE TRIANGLES

$$P \% = \frac{OS}{PS} \times 100$$
$$Q \% = \frac{RS}{QR} \frac{PO}{PS} \times 100$$
$$R \% = \frac{QS}{QR} \frac{PO}{PS} \times 100$$

$$\alpha$$
 : A(10%), B(20%), C(70%)
 β : A(50%), B(20%), C(30%)
 γ : A(30%), B(40%), C(30%)
 \mathbf{m}_{α} : \mathbf{m}_{β} : \mathbf{m}_{γ} = 1: 1: 2

Comp. of X ;

- A : 0.25 x 10%+0.25 x 50%+0.5 x 30%
- B: 0.25 x 20%+0.25 x 20%+0.5 x 40%
- C: 0.25 x 70%+0.25 x 30%+0.5 x 30%

8.3 TIE LINES AND TIE TRIANGLES P=4

8.4.1 Two-phase equilibrium between the liquid and a solid solution

Ternary isomorphous system

A system that has <u>only one solid phase</u>. All components are <u>totally</u> <u>soluble</u> in the other components. The ternary system is therefore made up of three binaries that exhibit total solid solubility.

17

A plot of the temperatures above which a homogeneous liquid forms for any given overall composition.

A plot of the temperatures below which a homogeneous solid phase forms for any given overall composition.

20

Ternary Phase Diagram: three dimensional models

8.4.1 Two-phase equilibrium between the liquid and a solid solution

(1) **Projection** (liquidus & solidus surface)

 \rightarrow No information on 2 phase region

Projections of the liquidus surface are often useful in conveying a clear impression of the <u>shape</u> <u>of the surface</u> and indicating, by <u>folds and valleys, the presence of ternary invariant reactions</u>. ²²

8.4.1 Two-phase equilibrium between the liquid and a solid solution

(2) Isothermal section \rightarrow most widely used \rightarrow F = C - P

8.4.1 Two-phase equilibrium between the liquid and a solid solution

(2) Isothermal section \rightarrow most widely used \rightarrow F = C - P

Ternary Isomorphous System Isothermal section \rightarrow F = C - P

25

Ternary Isomorphous System Isothermal section \rightarrow F = C - P

124. Illustration of the equilibria in Fig. 111 by means of free energy surfaces for the liquid and α phases at various temperatures, (a) between T_B and T_A , (b) at T_A , and (c) between T_A and T_C .

8.4.1 Two-phase equilibrium between the liquid and a solid solution

(2) Isothermal section \rightarrow most widely used \rightarrow F = C - P

Ternary Isomorphous System

8.4.1 Two-phase equilibrium between the liquid and a solid solution

(2) Isothermal section \rightarrow most widely used \rightarrow F = C - P

8.4.1 Two-phase equilibrium between the liquid and a solid solution

How decide position of tie lines?

 \rightarrow by experiment

→ impossible!

– Rules for tie line –

(i) Slope gradually changes.

(ii) Tie lines cannot intersect.

(iii) Extension of tie line cannot intersect the vertex of triangle.

(iv) Tie lines at T's will rotate continuously.

8.4.1 Two-phase equilibrium between the liquid and a solid solution

(i) Slope gradually changes.

(ii) Tie lines cannot intersect at constant temperature.

Fig. 116. Isothermal sections through Fig. 111 at (a) T_A , and (b) between T_A and T_C .

8.4.1 Two-phase equilibrium between the liquid and a solid solution

(iii) Extension of tie line cannot intersect the vertex of triangle.

8.4.1 Two-phase equilibrium between the liquid and a solid solution

(iv) Tie lines at T's will rotate continuously. (Konovalov's Rule)

: Clockwise or counterclockwise

In this form Konovalov's Rule can be applied to ternary systems to indicate the direction of tie lines.

* The lines from B through *s* and *l* intersect the side AC of the triangle at points s¹ and *l*¹ respectively. Then,

$$\frac{X_A^l}{X_C^l} = \frac{l^l C}{l^l A} \quad \text{and} \quad \frac{X_A^s}{X_C^s} = \frac{s^l C}{s^l A}$$

1) Melting point of A is higher than that of C.

2) The relative positions of points I and s are in agreement with Konovalov's Rule.

$$\frac{X_B^s}{X_C^s} > \frac{X_B^l}{X_C^l} \quad \text{and} \quad \frac{X_B^s}{X_A^s} > \frac{X_B^l}{X_A^l}$$

3) Melting point: B > C and B > A thus, B > A > C

4) Konovalov's Rule applies to each pair of components

The tie line ls is rotated anticlockwise by an angle Θ relative to the line Bx¹.

If
$$\Theta = \mathbf{0}$$

then $X_A^S / X_C^S = X_A^l / X_C^l$

in contradiction to Konovalov's Rule.

Tie lines when produced do not intersect the corner of the concentration triangle.

Counterclockwise rotation

Counterclockwise rotation

Locate overall composition using Gibbs triangle

8.4.1 Two-phase equilibrium between the liquid and a solid solution

Two phase equilibrium (f = 2)

 $\rightarrow \ T, \ \ X_A{}^I, \ X_B{}^I \ (X_C{}^I), \ \ X_A{}^\alpha, \ X_B{}^\alpha \ (X_C{}^\alpha)$

(1) If we know T, X_A^{-1} , then others can be decided. \rightarrow Isothermal section

8.4.1 Two-phase equilibrium between the liquid and a solid solution

(2) If we know $X_A^{\ I}$, $X_C^{\ I}$, we can know composition of liq.

8.4.1 Two-phase equilibrium between the liquid and a solid solution

(3) If we know X_c^{I} , X_c^{α} , we can know composition of liq & sol.

8.4.1 Two-phase equilibrium between the liquid and a solid solution

1 Useful for effect of 3rd alloying element

However, it is not possible to draw horizontal tie lines across two-phase regions in vertical sections to indicate the true compositions of the co-existing phases at a given temperature.

② Pseudobinary section: the section from the 3rd component to the compound (congruently-melting compound) can then be a binary section ⁴⁴

Ternary Eutectic System

: Solidification Sequence

Ternary Eutectic System

- * The horizontal lines are not tie lines. (no compositional information)
- * Information for equilibrium phases at different tempeatures 46

④ Polythermal projection

In order to follow the course of solidification of a ternary alloy, assuming equilibrium is maintained at all temperatures, it is useful to plot the liquidus surface contours.

Liquidus phase concentration change during the solidification

Enlarged part of the liquidus projection of Ni-Ti-Ni alloy