Lecture Note #6B (Fall, 2022)

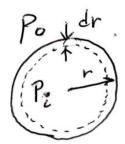
Liquid Interfaces

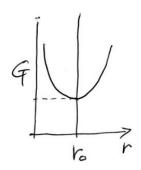
Surface energy and surface tension (5.2.1)
 Liquid surfaces (5.2.2-)
 Liquid films (5.3, 5.4, 5.5, 5.6)
 Thermodynamics of liquid Interfaces (5.7)
 Electrified and charged Interfaces (5.1, 5.8)

Reading: Kolasinski, ch.5, Somorjai, ch.3, Shaw, ch. 4 Pashley Liquid surfaces (curved) (5.2.2)

Phenomena at curved surfaces

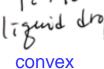
Pressure difference across a surface

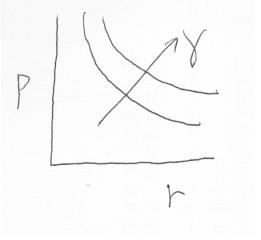

- Liquid drop suspended in air \rightarrow The equilibrium shape is a sphere
- \rightarrow Minimization of surface area for a given volume. (smallest A/V)
- Can you prove it using the calculus of variation?
- The free energy change dG in contraction from $r \rightarrow r$ -dr is


$$dG = -88\pi r dr + \Delta p \cdot 4\pi r dr$$

$$at equilibrium dG = 0.$$

$$\Delta p = \frac{8\pi r 8}{4\pi r^2} = \frac{28}{r} Y_{oung-Laplace lg.}$$
In general, a surface has two principal curvature of radic r, and rz
$$\Delta p = (\frac{1}{r_1} + \frac{1}{r_2})8$$




- $dW = PdV = \gamma dA \rightarrow P[\frac{3}{4}\pi(r + dr)^3 \frac{3}{4}\pi r^3] = \gamma[4\pi(r + dr)^2 4\pi r^2]$
- smallest surface to volume ratio volume V = $\frac{3}{4}\pi r^3$, dV = $4\pi r^2 dr$
- Opposite sign: i) PV: expanding force, ii) γA: contracting force
 i) 4πr²(P_i − P_o)dr
 ii) dA → [4π(r + dr)² 4πr²] = 8πrdr

 $\rightarrow \gamma dA = 8\pi r \gamma dr$

Young-Laplace equation P_{in}

$$_{D} = P_{out} + 2\gamma/r \rightarrow \Delta P = 2\gamma/r$$

 $r \downarrow (droplet \downarrow) \rightarrow \Delta P \uparrow$ $r = \infty \rightarrow \Delta P = 0$

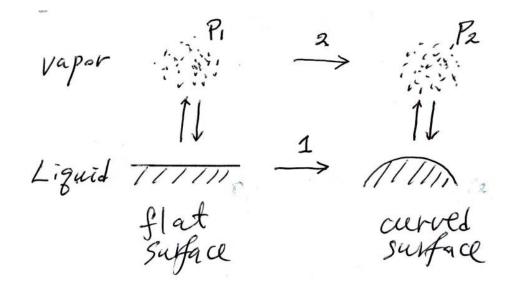
Equilibrium vapor pressure of a liquid drop

A Liquid drop is in a compressed state

 \rightarrow The inner pressure is higher than that of liquid with a flat surface by ΔP

 \rightarrow in a higher free energy state \rightarrow higher vapor pressure.

Chemical potential change in the processes 1 and 2


 $d\mu = -SdT + VdP$

$$\mu_{g}^{(c)} - \mu_{g}^{(f)} = \int V d\rho \sim V_{m} \Delta \rho \\
 \mathcal{M}_{g}^{(c)} - \mu_{g}^{(f)} = RT (n(P_{2}/P_{1}))$$

where V_m is the molar volume of the liquid, which is assumed to be constant. ($V_m = M/\rho$, ρ :density)

The two quantities should be the same, and therefore

$$V_{m} \Delta P = RT [n(P_{2}/P_{1}) \text{ or} \\ \frac{2V_{m}\gamma}{r} = RT (n(P_{2}/P_{1})) \\ P_{2}/P_{1} = exp[\frac{-2V_{m}\gamma}{rRT}] \text{ Kelvin equation} \\ P_{1}: \text{ flat}$$

Smaller particle \rightarrow higher vapor pressure \rightarrow higher evaporation

Kelvin equation $RT \ln(P_r/P_o) = 2\gamma M/\rho r = 2\gamma V_m/r$

 P_o : vapor pressure, P_r : droplet vapor pressure. $V_m = M/\rho$, ρ :density

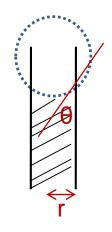
- Droplet: high surface free energy, higher surface to volume ratio than flat, P_r > P_o r → r + dr, area 8πrdr↑ → surface free energy, 8πrγdr↑
- dn mole↑ from flat to droplet by r to r + dr \rightarrow dG = dn-RT ln(P_r/P_o)

 $dn = 4\pi r^2 dr \rho/M$

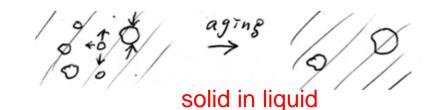
• $8\pi r\gamma dr = dn \cdot RT \ln(P_r/P_o)$

Solubility, condensation, Oswald ripening, sintering

• Size-dependent solubility


The same concept can be equally applied to the solubility of a particle $c_2/c_1 = exp(2V_m \gamma/ rRT)$, where c is the concentration in the solution \rightarrow small particles at solid \rightarrow greater solubility than large particles

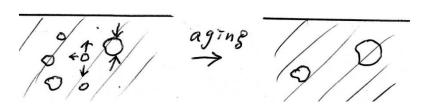
Capillary condensation in porous materials


 \rightarrow easy condensation in capillary at lower pressure

Vapor pressure: droplet: convex(볼록) liquid surface > flat surface capillary: concave(오목) surface < flat surface \rightarrow lower vapor pressure \rightarrow condensation at lower pressure

For concave interface, $RT \ln(P_r/P_o) = -2V_m \gamma \cos\theta/r$

Oswald ripening



dissolution \leftrightarrow deposition process is in a dynamic equilibrium to maintain a constant saturation solubility.

small particle \rightarrow high solubility and large particle \rightarrow low solubility Large particles grow at the expense of the smaller particles \rightarrow aging minimize the total surface area \rightarrow the way to reach a G_{min}, an equilibrium state

Agl sol \rightarrow highly insoluble \rightarrow little tendency of ripening (slow kinetics) CaCO₃ sol \rightarrow highly soluble \rightarrow strong tendency of ripening (fast kinetics)

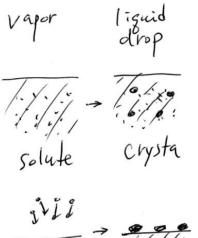
Sintering

solid in (on) solid

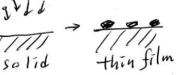
Nucleation and crystal growth

vapor \rightarrow liquid drop solute in a liquid \rightarrow crystal

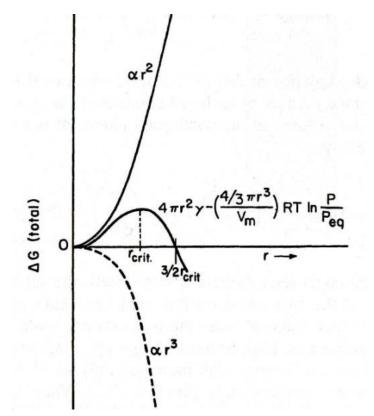
- In the initial stage of condensation a liquid drop of radius r is formed from a supersaturates vapor


- Small drop has a high vapor pressure \rightarrow it tends to reevaporate \rightarrow Therefore, only droplets of a radius greater than a critical radius r_c (embryo) survive and grow.

- This process is called nucleation and the nuclei grow in time.


Consider the free energy change in nucleation of a droplet from a vapor.

nA (gas, P) \rightarrow A_n (small liquid drop, r) $\Delta G = -nRT \ln(P/P_o) + 4\pi r^2 \gamma$ $= -(4/3)\pi r^3(\rho/M)RT \ln(P/P_o) + 4\pi r^2 \gamma$


M= molecular weight, ρ = density P₀ = equilibrium vapor pressure P/P₀ = degree of supersaturation

P 1, 201: →

$$\frac{d(AG)}{dr} = 0 \quad \text{at} \quad r = V_c$$

$$V_c = 2 \frac{3}{V_m} \frac{RT}{n(P/P_o)}$$

This means there is always a free energy barrier of $\Delta G_{\rm m} = 16 \ \pi \ \gamma^3 \ V_{\rm m} \ /3 \ [{\rm RT \ In \ (P/P_0)}]^2$

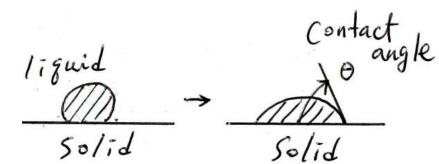
which is overcome by thermal fluctuation.

* Related concepts artificial raining: spraying dry ice particle in the damp air seeding in crystallization: adding a crystal seeds in a supersaturated solution • $P > P_o \rightarrow liquid \uparrow$ $P < P_o \rightarrow vaporize$

 $dn = 4\pi r^2 dr \rho/M \rightarrow n = (4/3)\pi r^3 \rho/M$, molar volume $V_m = M/\rho$

dG = VdP - SdTat const T (isothermal), dG = VdP

 $\rightarrow \Delta G = -nRT \ln(P/P_o) + consider surface free energy$

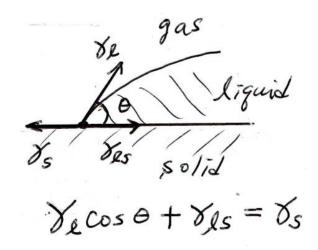

+γ: impede growth (성장 방해)

 $\begin{array}{ll} r_c \sim 0.6 \sim 1 \text{ nm (50} \sim 100 \text{ atoms or molecules)} \\ (i) & \text{Small particle } (r < r_c) \rightarrow 2^{nd} \text{ term dominant, } r^2 \uparrow \rightarrow \Delta G \uparrow \\ (ii) & r > r_c \rightarrow 1^{st} \text{ term dominant, } r^3 \text{ faster than } r^2 \rightarrow \text{ spontaneous} \end{array}$

Capillary rise and depression

- Wetting

 $\theta = 0^{\circ}$:complete wetting $\theta = 180^{\circ}$:complete dewetting


- Wetting occurs to minimize the total free energy which includes the surface and interfacial free energies

- Force balance at the interface

- Criteria for wetting When the interface area is increased by dA,

 $dG = \gamma_{Is} dA + \gamma_{I} \cos \theta dA - \gamma_{s} dA$ =($\gamma_{Is} + \gamma_{I} \cos \theta - \gamma_{s}$) dA = x dA

If $x < 0 \rightarrow$ wetting occurs, and If $x > 0 \rightarrow$ dewetting occurs.

There is a certain contact angle for which x = 0: equilibrium contact angle

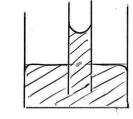
Capillary rise

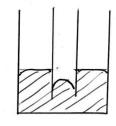
- Force balance at the top of the meniscus

Total wetting force = gravitational force of the water column

 $2\pi \mathbf{r} \gamma \cos \theta = (\rho - \rho_0) (\pi \mathbf{r}^2 \mathbf{h}) \mathbf{g} = \Delta \rho (\pi \mathbf{r}^2 \mathbf{h}) \mathbf{g}$ $\rho = \text{density of the liquid}$ $\rho_0 = \text{density of the air}$

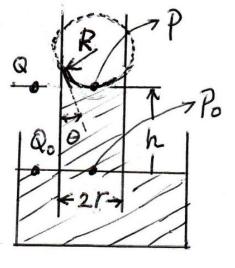
h = 2 γ cos θ / Δρ g r


Another view


pressure difference between the points Q and Q₀ : $\Delta P = \rho_0 g h$ pressure difference btwn the points P and P₀ : $\Delta P = -2 \gamma / R + \rho g h$

The two ΔP 's should be the same. $r = R \cos \theta$

 $2 \gamma / R = \Delta \rho g h \rightarrow h = 2 \gamma \cos \theta / \Delta \rho g r$


More accurately, h' = h + r/3

capillary depression $\gamma_c < \gamma_l$

$$\Delta p = \frac{2Y}{r}$$

$$r \downarrow \rightarrow ap \uparrow (large P_i (internal pressure))$$

$$\Rightarrow liquid \uparrow (liquid rise) \Rightarrow = hydrostabic pressure$$

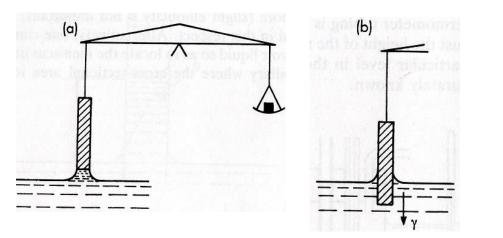
$$to decrease total free energy$$

$$R cos \theta = r$$

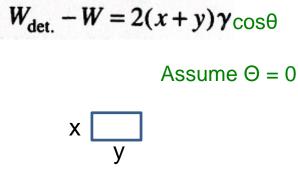
$$R = \frac{r}{as\theta}$$

$$Spgh = \frac{2Y}{R} = \frac{2Y}{r} cos\theta$$

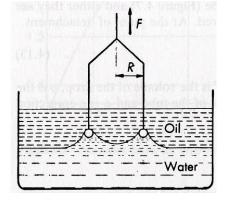
$$ap: density difference between$$


$$liquid = d gas pressure$$

$$if \theta = 0 \Rightarrow Y = \frac{1}{2}rhapg$$

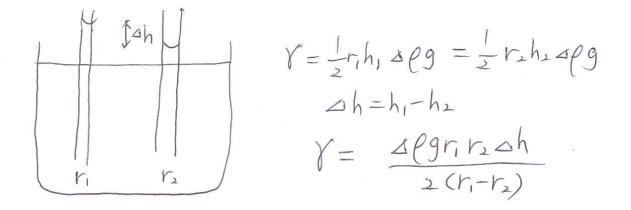

$$Y \uparrow or r \downarrow \Rightarrow h\uparrow^{\dagger}$$

Measurements of surface tension


Measurement of interfacial tension by the ring method

Wilhelmy plate methods: (a) detachment; (b) static

Perimeter, 2(x + y)



$$\gamma = \frac{\beta F}{4\pi R}$$

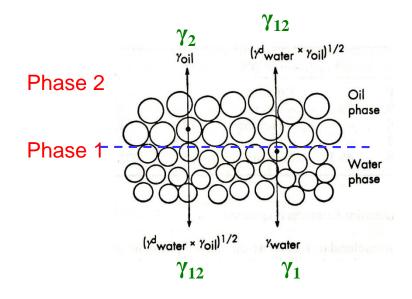
 $(\beta - a)^{2} = \frac{4b}{\pi^{2}} \cdot \frac{1}{R^{2}} \cdot \frac{F}{4\pi R(\rho_{1} - \rho_{2})} + c$

Correction factor β

Ring perimeter, $2\pi R + 2\pi R$

Drop- volume, drop-weight method

$$\vec{P} = \underbrace{\vec{P} \cdot m \cdot g}_{2\pi r}$$
 $\vec{P} : density of liquid
 $m : mass of the drop$
 $\vec{Q} = \underbrace{\vec{P} \cdot \ell \cdot g}_{2\pi r}$
 $\vec{P} : volume$
 $\vec{P} : v$$


Interfacial tension

- Force /unit surface area for a pure liquid = γ
- Force /unit interface area at a liquid-liquid interface/unit length = γ_i
- The total unbalanced force acting on the molecules at the interface

 $\gamma_i = (\gamma_1 - \gamma_{12}) + (\gamma_2 - \gamma_{21}) = \gamma_1 + \gamma_2 - 2\gamma_{12}$

where $\gamma_{12} = \gamma_{21}$ (action-reaction) $\gamma_i =$ free energy per unit interfacial area

- If 1 and 2 are the same materials, $\gamma_i = 0$
- Consider the case where 2 surfaces are brought from infinity to contact

Additivity of intermolecular force

 $\begin{aligned} \gamma_{W} &= \gamma_{W}^{d} + \gamma_{W}^{h} & \text{Dispers} \\ \gamma_{Hg} &= \gamma_{Hg}^{d} + \gamma_{Hg}^{m} & \text{Dispers} \\ \gamma_{OW} &= \gamma_{O}^{d} + (\gamma_{W}^{d} + \gamma_{W}^{h}) - 2 \times (\gamma_{W}^{d} \times \gamma_{O}^{d})^{\frac{1}{2}} \\ \text{Ex: n-hexane-water interface} & \text{H} \end{aligned}$

Dispersion force (van der Waals) + hydrogen bonding Dispersion force (van der Waals) + metal bonding

Hydrocarbon: Dispersion force only

 $51.1 = 18.4 + 72.8 - 2 \times (\gamma_{W}^{d} \times 18.4)^{\frac{1}{2}}$

 $\gamma_{\rm W}^{\rm d}=21.8~{\rm mNm^{-1}}$

$$\gamma_{\rm W}^{\rm h} = 72.8 - 21.8 = 51.0 \ {\rm mNm^{-1}}$$

Table 4.1 Surface tensions and interfacial tensions against water for liquids at 20°C (in mN m⁻¹)

Liquid	γο	γi	Liquid	γο	γi
Water	72.8	_	Ethanol	22.3	_
Benzene	28.9	35.0	n-Octanol	27.5	8.5
Acetic acid	27.6		<i>n</i> -Hexane	18.4	51.1
Acetone	23.7	-	<i>n</i> -Octane	21.8	50.8
CCl ₄	26.8	45.1	Mercury	485	375

 H_2O , $Hg \rightarrow high \gamma$ hydrogen bonding, Metal bonding

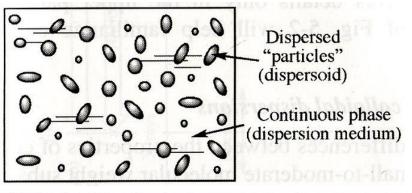
cf. colloidal particle

The dispersed particles with a size of 1nm(10⁻⁹m) ~10µm may be solid particles, liquid drops, macromolecules (polymers, proteins) etc
A colloidal system can be made by combination of various phases

Areas of colloidal systems

Aerosols Agrochemicals Cement Cosmetics Dyestuffs Emulsions Fabrics Foams Foodstuffs Ink Paint Paper Pharmaceuticals Plastics Rubber Soil

Applications


Adhesion Chromatography Detergency Electrophoretic deposition Emulsion polymerisation Food processing Grinding Heterogeneous catalysis Ion exchange Lubrication Oil-well drilling Ore flotation Precipitation Road surfacing Sewage disposal Soil conditioning Sugar refining Water clarification Water evaporation control Water repellency Wetting

Factors to contribute the overall of a colloidal system

Particle size Particle shape and flexibility Surface (including electrical) properties Particle-particle interactions Particle-solvent interactions

Classification of colloidal systems

• Dispersions

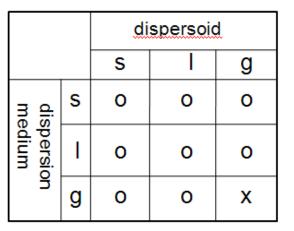


 Table 1.1
 Types of colloidal dispersion

Dispersed phase	Dispersion medium	Name	Examples
Liquid	Gas	Liquid aerosol	Fog, liquid sprays
Solid	Gas	Solid aerosol	Smoke, dust
Gas	Liquid	Foam	Foam on soap solutions, fire-extinguisher foam
Liquid	Liquid	Emulsion	Milk, mayonnaise
Solid Liquid		Sol, colloidal suspension; Au sol, AgI sol; paste (high solid toothpaste concentration)	
Gas	Solid	Solid foam	Expanded polystyrene
Liquid	Solid	Solid emulsion	Opal, pearl
Solid	Solid	Solid suspension	Pigmented plastics

• e.g. oil-in-water (O/W) emulsion & water-in-oil (W/O) emulsion

• 'sol' is used to distinguish colloidal suspensions from macroscopic suspensions. When the dispersion medium is aqueous: 'hydrosol'. If the dispersed phase is polymeric in nature: 'latex'

c.f. *gel*: solid appearance which all of the solvent becomes mechanically trapped and immobilized within this network

Importance of interface

• A characteristic feature of colloidal dispersions is the large area to volume ratio for the particles involved

- Characteristic surface properties such as adsorption and electric double layer at the interface play an important part in determining the physical properties of the system as a whole
- Even a small amount of additives can significantly modify the interfaces, hence influencing the overall bulk properties
- Surface science is closely linked to colloid science; indeed colloid science is a part of surface science

Lyophilic and lyophobic systems

• lyophilic (liquid-loving) and lyophobic (liquid-hating): in aqueous, *hydrophilic* and *hydrophobic*