Advanced Bridge Engineering

Operational Modal Analysis : NExT-ERA

Sunjoong Kim (Postdoctoral Researcher)

Structural Design Laboratory Departments of Civil & Environmental Engineering Seoul National University

Analysis

<u>Force</u> <u>System Response</u> **F** = **K x**

KnownUnknown

Inverse analysis

Ratio of the Fourier transform of an output response and input force

Fourier Transform

- From Fourier series of nonperiodic functions
- Allow period to go to infinity
- Similar to Laplace Transform
- Useful for random inputs

$$X(\boldsymbol{\omega}) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

Corresponding inverse transform

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$

 Fourier transform of the unit impulse response is the frequency response function

$$H(\boldsymbol{\omega}) = \int_{-\infty}^{\infty} h(t) e^{-j\omega t} dt$$

© Eng. Vib, 3rd Ed. 47/47

College of Engineering

Modal testing?

- A form of vibration testing of an object whereby the natural frequencies, modal masses, modal damping ratio and mode shape
- Contents: Impact Hammer test, Shaker Modal Testing

Impact Hammer Modal Testing

- Strike the test object with the force-instrumented hammer
- Measure the resultant motion with an accelerometer
- Analyze the signal with FFT analyzer

Response function of structure

- Measured data: Input (Force) and Output (Accelerometer)
- Calculate the PSD of each signal
- Get the "Frequency Response Function" of the structure

Steps of Impact hammer test

- Measure the excitation and response
- FFT both signals
- Calculate Auto Power Spectrum and Cross Power Spectrum
- Calculate Average Spectrum

Modal properties from FRF

- Natural frequencies: peak value of FRF
- Modal damping for each mode: Half-band width theory

In civil structures

In civil structures

► Shaker and force-balance accelerometers

In civil structures

Free vibration test

Damping estimation using excitation test

Excitation test using TMD

Damping estimation using excitation test

Logarithmic decrement

 $\xi = 0.32746\%$

- Red line: utilized peaks
- Black line: theoretical envelope function

Output-only system identification

NExT-ERA

▶ Impulse response function in modal coordinate (1)

 $\mathbf{M}\mathbf{a}(t) + \mathbf{C}\mathbf{v}(t) + \mathbf{K}\mathbf{x}(t) = \mathbf{f}(t)$

• For the modal coordinates:

$$\{x(t)\} = [\Phi]\{q(t)\} = \sum_{r=1}^{n} \{\phi^r\}q^r(t)$$

 Since real normal modes are assumed, a premultiplication by transpose of modal matrix makes a simultaneously diagonalized matrix. Therefore, each motion of equation can be expressed as a set of scalar equations in the modal coordinates:

$$\ddot{q}^{r}(t) + 2\zeta^{r}\omega_{n}^{r}\dot{q}^{r}(t) + \omega_{n}^{r^{2}}q^{r}(t) = \frac{1}{m^{r}}\{\phi^{r}\}^{T}\{f(t)\}$$

NExT-ERA

Basic procedure

 The output of structure q(t) can be obtained from convolution integral between input f(t) and impulse response function g(t).

$$q^{r}(t) = \int_{-\infty}^{t} \{f(\tau)\} g^{r}(t-\tau) d\tau$$
$$g^{r}(t) = \frac{1}{m^{r} \omega_{d}^{r}} \exp(-\zeta^{r} \omega_{n}^{r} t) \sin(\omega_{d}^{r} t)$$

NExT-ERA

Basic procedure

• Correlation function of output signal can be expressed as:

$$R(T) = \int_{-\infty}^{t} \int_{-\infty}^{t} g^{r} (t + T - \sigma) g^{s} (t - \tau) E [f(\sigma) \quad f(\tau)] d\sigma d\tau$$

• The expectation between white noise can be truncated to Dirac delta function.

$$E[f(\sigma) \ f(\tau)] = \alpha \delta(\tau - \sigma)$$

• Finally, the correlation function of output is formulated as a same form of IRF.

$$R(T) = \alpha \cdot \int_{-\infty}^{t} g^{r} (t + T - \tau) g^{s} (t - \tau) d\tau$$
$$R(T) = \alpha \cdot \int_{0}^{\infty} g^{r} (\lambda + T) g^{s} (\lambda) d\lambda$$

Main procedure of NExT in MATLAB

► Calculation the power spectral density function of output.

% Calculate the auto power spectral density [CPSxy, Fxy] = cpsd(acc, acc, hanning(Nfft), Nfft/2, Nfft, fs);

What is Nfft!?

Example (1): Nfft: 100s / Overlap: 50s

¹⁹

What is Nfft!?

Example (1): Nfft: 300s / Overlap: 150s

Eigensystem Realization Algorithm

Objective

Get the modal parameter from impulse response function

Methodology

- State-space model (S-S model)
- Markov parameter from impulse response function
- Hankel matrix composed of Markov parameter

Expected result

- Natural frequency
- Damping ratio
- Mode shape (not yet!)

State-space model for dynamic system

- Derivation (2)
 - Continuous-time state-space model

$$\ddot{\mathbf{w}} = -\mathbf{M}_{st}^{-1}\mathbf{C}_{st}\dot{\mathbf{w}} - \mathbf{M}_{st}^{-1}\mathbf{K}_{st}\mathbf{w} + \mathbf{M}_{st}^{-1}\mathbf{B}_{f}\mathbf{u}$$

$$\rightarrow \begin{bmatrix} \dot{\mathbf{w}}(t) \\ \vdots \\ \dot{\mathbf{w}}(t) \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{I} \\ -\mathbf{M}_{st}^{-1}\mathbf{K}_{st} & -\mathbf{M}_{st}^{-1}\mathbf{C}_{st} \end{bmatrix} \begin{bmatrix} \mathbf{w}(t) \\ \dot{\mathbf{w}}(t) \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \mathbf{M}_{st}^{-1}\mathbf{B}_{f} \end{bmatrix} \mathbf{u}(t)$$

$$\therefore \dot{\mathbf{x}} = \mathbf{A}_{c}\mathbf{x} + \mathbf{B}_{c}\mathbf{u}$$

$$\dot{\mathbf{x}}(t) = \mathbf{A}_{c}\mathbf{x}(t) + \mathbf{B}_{c}\mathbf{u}(t)$$
where $\mathbf{x}(t) = \begin{bmatrix} \mathbf{w}(t) \\ \dot{\mathbf{w}}(t) \end{bmatrix}$

$$\mathbf{A}_{c} = \begin{bmatrix} \mathbf{0} & \mathbf{I} \\ -\mathbf{M}_{st}^{-1}\mathbf{K}_{st} & -\mathbf{M}_{st}^{-1}\mathbf{C}_{st} \end{bmatrix}$$

$$\mathbf{B}_{c} = \begin{bmatrix} \mathbf{0} \\ \mathbf{M}_{st}^{-1}\mathbf{B}_{f} \end{bmatrix}$$

 $\mathbf{y}(t) = \mathbf{C}_{\mathbf{c}}\mathbf{x}(t) + \mathbf{D}_{\mathbf{c}}\mathbf{u}(t)$

where C_c is the output influence matrix D_c is the direct – transmission term

State-space model for dynamic system

- Derivation (3)
 - Definition of C_c and D_c

$$\mathbf{M}_{st}\ddot{\mathbf{w}} + \mathbf{C}_{st}\dot{\mathbf{w}} + \mathbf{K}_{st}\mathbf{w} = \mathbf{B}_{f}\mathbf{u}$$
$$\Leftrightarrow \ddot{\mathbf{w}} = \mathbf{M}_{st}^{-1}\mathbf{B}_{f}\mathbf{u} - \mathbf{M}_{st}^{-1}\mathbf{C}_{st}\dot{\mathbf{w}} - \mathbf{M}_{st}^{-1}\mathbf{K}_{st}\mathbf{w}$$

substitute
$$\ddot{\mathbf{w}}$$
 to
 $\mathbf{y} = \mathbf{H}_{d}\mathbf{w} + \mathbf{H}_{v}\dot{\mathbf{w}} + \mathbf{H}_{a}\ddot{\mathbf{w}}$
 $\Leftrightarrow \mathbf{y} = \mathbf{H}_{d}\mathbf{w} + \mathbf{H}_{v}\dot{\mathbf{w}} + \mathbf{H}_{a}\left(\mathbf{M}_{st}^{-1}\mathbf{B}_{f}\mathbf{u} - \mathbf{M}_{st}^{-1}\mathbf{C}_{st}\dot{\mathbf{w}} - \mathbf{M}_{st}^{-1}\mathbf{K}_{st}\mathbf{w}\right)$
 $\Leftrightarrow \mathbf{y} = \left(\mathbf{H}_{d} - \mathbf{H}_{a}\mathbf{M}_{st}^{-1}\mathbf{K}_{st}\right)\mathbf{w} + \left(\mathbf{H}_{v} - \mathbf{H}_{a}\mathbf{M}_{st}^{-1}\mathbf{C}_{st}\right)\dot{\mathbf{w}} + \left(\mathbf{H}_{a}\mathbf{M}_{st}^{-1}\mathbf{B}_{f}\right)\mathbf{u}$

$$\therefore \mathbf{y} = \mathbf{C}_{c}\mathbf{x} + \mathbf{D}_{c}\mathbf{u}$$

$$\mathbf{C}_{c} = \begin{bmatrix} \mathbf{H}_{d} - \mathbf{H}_{a}\mathbf{M}_{st}^{-1}\mathbf{K}_{st} & \mathbf{H}_{v} - \mathbf{H}_{a}\mathbf{M}_{st}^{-1}\mathbf{C}_{st} \end{bmatrix}$$

$$\mathbf{D}_{c} = \mathbf{H}_{a}\mathbf{M}_{st}^{-1}\mathbf{B}_{f}$$

State-space model for dynamic system

- Derivation (4)
 - For displacement

For acceleration

 $H_{d} = I, H_{v} = 0, H_{a} = 0$ $\therefore C_{c} = \begin{bmatrix} I & 0 \end{bmatrix} \text{ and } D_{c} = 0$ $H_{d} = 0, H_{v} = I, H_{a} = 0$ $C_{c} = \begin{bmatrix} 0 & I \end{bmatrix} \text{ and } D_{c} = 0$

For velocity

$$\mathbf{H}_{d} = \mathbf{0}, \mathbf{H}_{v} = \mathbf{0}, \mathbf{H}_{a} = \mathbf{I}$$
$$\mathbf{C}_{c} = \begin{bmatrix} -\mathbf{M}^{-1}\mathbf{K} & -\mathbf{M}^{-1}\mathbf{C} \end{bmatrix} \quad \mathbf{D}_{c} = \mathbf{M}^{-1}\mathbf{B}_{f}$$

General solution for the continuous-time dynamic system

$$\mathbf{x}(t) = \mathbf{e}^{\mathbf{A}_{\mathbf{c}}(t-t_0)} \mathbf{x}(t_0) + \int_{t_0}^t \mathbf{e}^{\mathbf{A}_{\mathbf{c}}(t-\tau)} \mathbf{B}_{\mathbf{c}} \mathbf{u}(\tau) d\tau$$

Next work: Discretization!

State-space model for dynamic system

- Derivation (5)
 - Modal form using eigenmode change

```
substitute \mathbf{w}(t) = \mathbf{\Phi} \mathbf{\eta}(t)
```

$$M_{st}\ddot{w} + C_{st}\dot{w} + K_{st}w = B_{f}u$$

$$\Leftrightarrow M_{st}\Phi\ddot{\eta} + C_{st}\Phi\dot{\eta} + K_{st}\Phi\eta = B_{f}u$$

$$\Leftrightarrow \Phi^{T}M_{st}\Phi\ddot{\eta} + \Phi^{T}C_{st}\Phi\dot{\eta} + \Phi^{T}K_{st}\Phi\eta = \Phi^{T}B_{f}u$$

$$\therefore \ddot{\eta} + \Xi\dot{\eta} + \Omega\eta = \Phi^{T}B_{f}u$$

$$\begin{split} \mathbf{y} &= \mathbf{H}_{d}\mathbf{w} + \mathbf{H}_{v}\dot{\mathbf{w}} + \mathbf{H}_{a}\ddot{\mathbf{w}} \\ \Leftrightarrow \mathbf{y} &= \mathbf{H}_{d}\Phi\boldsymbol{\eta} + \mathbf{H}_{v}\Phi\dot{\boldsymbol{\eta}} + \mathbf{H}_{a}\Phi\ddot{\boldsymbol{\eta}} \\ \Leftrightarrow \mathbf{y} &= \mathbf{H}_{d}\Phi\boldsymbol{\eta} + \mathbf{H}_{v}\Phi\dot{\boldsymbol{\eta}} + \mathbf{H}_{a}\Phi\left(\Phi^{T}\mathbf{B}_{f}\mathbf{u} - \Xi\dot{\boldsymbol{\eta}} - \Omega\boldsymbol{\eta}\right) \\ \Leftrightarrow \mathbf{y} &= \left(\mathbf{H}_{d}\Phi - \mathbf{H}_{a}\Phi\Omega\right)\boldsymbol{\eta} + \left(\mathbf{H}_{v}\Phi - \mathbf{H}_{a}\Phi\Xi\right)\dot{\boldsymbol{\eta}} + \mathbf{H}_{a}\mathbf{B}_{f}\mathbf{u} \end{split}$$

State-space model for dynamic system

- Derivation (6)
 - Rule of normalization of eigenvector: mass-orthonormalized

$$\Phi^{\mathrm{T}}\mathbf{M}_{st}\Phi = \mathbf{I}_{n}$$

$$\Phi^{\mathrm{T}}\mathbf{K}_{st}\Phi = \mathbf{\Omega} = \mathrm{diag}(\omega_{ni}^{2}, i = 1, ..., n)$$

$$\Phi^{\mathrm{T}}\mathbf{C}_{st}\Phi = \mathbf{\Xi} = \mathrm{diag}(2\zeta_{i}\omega_{ni}, i = 1, ..., n)$$

where n = # of degree of freedom for the dynamic system

 ω_{ni} = damped natural frequency

 $\zeta_i =$ modal damping rates

State-space model for dynamic system

- Derivation (7)
 - S-S model for the generalized coordinates

$$\dot{\mathbf{x}}_{\eta}(t) = \mathbf{A}_{mdv} \mathbf{x}_{\eta}(t) + \mathbf{B}_{mdv} \mathbf{u}$$
$$\mathbf{y}(t) = \mathbf{C}_{mdv} \mathbf{x}_{\eta}(t) + \mathbf{D}_{mdv} \mathbf{u}(t)$$

where
$$\mathbf{x}_{\eta}(\mathbf{t}) = \begin{bmatrix} \eta \\ \dot{\eta} \end{bmatrix} \mathbf{A}_{mdv} = \begin{bmatrix} \mathbf{0} & \mathbf{I} \\ -\mathbf{\Omega} & -\mathbf{\Xi} \end{bmatrix}, \quad \mathbf{B}_{mdv} = \begin{bmatrix} \mathbf{0} \\ \mathbf{\Phi}^{\mathrm{T}} \mathbf{B}_{\mathrm{f}} \end{bmatrix}$$

 $\mathbf{C}_{mdv} = \begin{bmatrix} \mathbf{H}_{\mathrm{d}} \mathbf{\Phi} & \mathbf{0} \end{bmatrix} + \begin{bmatrix} \mathbf{H}_{\mathrm{v}} \mathbf{\Phi} & \mathbf{0} \end{bmatrix} \mathbf{A}_{3} + \begin{bmatrix} \mathbf{H}_{\mathrm{a}} \mathbf{\Phi} & \mathbf{0} \end{bmatrix} \mathbf{A}_{3}^{2}$
 $\mathbf{D}_{mdv} = \mathbf{H}_{\mathrm{a}} \mathbf{B}_{\mathrm{f}}$

State-space model for dynamic system

- Derivation (8)
 - Finally, obtain the response at the time argument about $k\Delta t$

$$\mathbf{x}(k+1) = \mathbf{e}^{\mathbf{A}_{\mathbf{c}}\Delta t}\mathbf{x}(k) + \int_{k\Delta t}^{(k+1)\Delta t} \mathbf{e}^{\mathbf{A}\mathbf{c}[(k+1)\Delta t-\tau]}\mathbf{B}_{\mathbf{c}}\mathbf{u}(\tau)d\tau$$

$$\cong \mathbf{e}^{\mathbf{A}_{\mathbf{c}}\Delta t}\mathbf{x}(k) + \int_{0}^{\Delta t} \mathbf{e}^{\mathbf{A}_{\mathbf{c}}\tau'}d\tau'\mathbf{B}_{\mathbf{c}}\mathbf{u}(k) \qquad \text{where } \tau' = (k+1)\Delta t - \tau$$

$$= \mathbf{A}_{\mathbf{d}}\mathbf{x}(k) + \mathbf{B}_{\mathbf{d}}\mathbf{u}(k)$$

Otherwise $\mathbf{B}_{\mathbf{d}} = \int_{0}^{\Delta t} \mathbf{e}^{\mathbf{A}_{\mathbf{c}}\tau} d\tau \mathbf{B}_{\mathbf{c}} = [\mathbf{A}_{\mathbf{c}}^{-1} \mathbf{e}^{\mathbf{A}_{\mathbf{c}}\tau}]_{0}^{\Delta t} \mathbf{B}_{\mathbf{c}} = \mathbf{A}_{\mathbf{c}}^{-1} (\mathbf{A}_{\mathbf{d}} - \mathbf{I}) \mathbf{B}_{\mathbf{c}}$

$$\mathbf{x}(k+1) = \mathbf{A}_{d} \mathbf{x}(k) + \mathbf{B}_{d} \mathbf{u}(k) \qquad (\mathbf{x}(k) = \mathbf{x}(k\Delta t))$$
$$\mathbf{y}(k) = \mathbf{C}_{c} \mathbf{x}(k) + \mathbf{D}_{c} \mathbf{u}(k)$$

where
$$\mathbf{A}_{d} = \mathbf{e}^{\mathbf{A}_{c}(\Delta t)}, \quad \mathbf{B}_{d} = \int_{0}^{\Delta t} \mathbf{e}^{\mathbf{A}_{c}\tau'} d\tau' \mathbf{B}_{c} = \mathbf{A}_{c}^{-1} (\mathbf{A}_{d} - \mathbf{I}) \mathbf{B}_{c}$$

State-space model for dynamic system

Example

Continuous system matrix

$$\mathbf{M}_{st} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \mathbf{C}_{st} = \begin{bmatrix} 0.2 & -0.1 \\ -0.1 & 0.1 \end{bmatrix} \qquad \mathbf{K}_{st} = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$$
$$\mathbf{A}_{c} = \begin{bmatrix} \mathbf{0} & \mathbf{I} \\ -\mathbf{M}_{st}^{-1}\mathbf{K}_{st} & -\mathbf{M}_{st}^{-1}\mathbf{C}_{st} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -2 & 1 & -0.2 & 0.1 \\ 1 & -1 & 0.1 & -0.1 \end{bmatrix}$$
$$\mathbf{B}_{c} = \begin{bmatrix} \mathbf{0} & 0 \\ \mathbf{M}_{st}^{-1}\mathbf{B}_{f} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$\mathbf{C}_{c} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \text{ and } \mathbf{D}_{c} = \mathbf{0} \text{ for displacement}$$

State-space model for dynamic system

Example

Discretized form

$$\mathbf{A}_{\mathbf{d}} = \mathbf{e}^{\mathbf{A}_{\mathbf{c}}\Delta t} = \begin{bmatrix} 0.9610 & 0.0194 & 0.1935 & 0.0032 \\ 0.0194 & 0.9804 & 0.0032 & 0.1967 \\ -0.3837 & 0.1902 & 0.9226 & 0.0384 \\ 0.1902 & -0.1935 & 0.0384 & 0.9610 \end{bmatrix}$$

$$\mathbf{B}_{d} = \mathbf{A}_{c}^{-1} (\mathbf{A}_{d} - \mathbf{I}_{2n}) \mathbf{B}_{c} = \begin{bmatrix} 0.0196 & 0.0002 \\ 0.0002 & 0.0198 \\ 0.1935 & 0.0032 \\ 0.0032 & 0.1967 \end{bmatrix}$$

Markov Parameter

Definition

 To express the time-stepped impulse responses as a matrix form which contains modal information

Purpose

Make a basis for identifying mathematical models for linear dynamical systems

Markov Parameter

- Derivation (1)
 - Concept of Markov parameters

 $\mathbf{y}(k) = \mathbf{Y}_k \, \mathbf{u}(0)$

where $\mathbf{Y}_k = \text{Markov parameter for } t = k\Delta t$ $\mathbf{y}(k) = \text{output at } t = k\Delta t$ $\mathbf{u}(k) = \text{input at } t = k\Delta t$

Zero initial condition: x(k) = 0 // The unit pulse: u(0) = 1, u(k) = 0 (k=1,2,..)

Markov Parameter

- Derivation (2)
 - From the response at the time argument about $k\Delta t$

 $\mathbf{x}(k+1) = \mathbf{A}_{\mathbf{d}} \mathbf{x}(k) + \mathbf{B}_{\mathbf{d}} \mathbf{u}(k)$ $\mathbf{y}(k) = \mathbf{C}_{\mathbf{c}} \mathbf{x}(k) + \mathbf{D}_{\mathbf{c}} \mathbf{u}(k)$

- Zero initial condition: x(k) = 0
- The unit pulse: u(0) = 1, u(k) = 0 (k=1,2,..)

let $\mathbf{u}(0) = 1$, $\mathbf{u}(k) = 0$ $(k = 1, 2, \cdots)$: $\mathbf{x}(0) = 0 \qquad \Rightarrow \qquad \mathbf{Y}_0 = \mathbf{D}_c$ $\mathbf{x}(1) = \mathbf{B}_d \qquad \Rightarrow \qquad \mathbf{Y}_1 = \mathbf{C}_c \mathbf{B}_d$ $\mathbf{x}(2) = \mathbf{A}_d \mathbf{B}_d \qquad \Rightarrow \qquad \mathbf{Y}_2 = \mathbf{C}_c \mathbf{A}_d \mathbf{B}_d$ $\vdots \qquad \vdots$ $\mathbf{x}(k) = \mathbf{A}_d^{k-1} \mathbf{B}_d \qquad \Rightarrow \qquad \mathbf{Y}_k = \mathbf{C}_c \mathbf{A}_d^{k-1} \mathbf{B}_d$

It contains A, B and C matrix which contain modal information!

Markov Parameter

Example

From the previous example:

$$\mathbf{A}_{\mathbf{d}} = \mathbf{e}^{\mathbf{A}_{\mathbf{c}}\Delta t} = \begin{bmatrix} 0.9610 & 0.0194 & 0.1935 & 0.0032 \\ 0.0194 & 0.9804 & 0.0032 & 0.1967 \\ -0.3837 & 0.1902 & 0.9226 & 0.0384 \\ 0.1902 & -0.1935 & 0.0384 & 0.9610 \end{bmatrix}$$

$$\mathbf{B}_{d} = \mathbf{A}_{c}^{-1} (\mathbf{A}_{d} - \mathbf{I}_{2n}) \mathbf{B}_{c} = \begin{bmatrix} 0.0196 & 0.0002 \\ 0.0002 & 0.0198 \\ 0.1935 & 0.0032 \\ 0.0032 & 0.1967 \end{bmatrix}$$

$$\mathbf{C}_{\mathbf{c}} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Markov Parameter

Example

From the previous example:

From $\mathbf{Y}_{k} = \mathbf{C}_{c} \mathbf{A}_{d}^{k-1} \mathbf{B}_{d}$: (In fact, it is obtained by NExT)

$$\mathbf{Y}_{1} = \begin{bmatrix} 0.0196 & 0.0002 \\ 0.0002 & 0.0198 \end{bmatrix}, \ \mathbf{Y}_{2} = \begin{bmatrix} 0.0563 & 0.0018 \\ 0.0018 & 0.0581 \end{bmatrix}, \ \mathbf{Y}_{3} = \begin{bmatrix} 0.0873 & 0.0063 \\ 0.0063 & 0.0935 \end{bmatrix}, \\ \mathbf{Y}_{4} = \begin{bmatrix} 0.1106 & 0.0143 \\ 0.0143 & 0.1249 \end{bmatrix}, \ \mathbf{Y}_{5} = \begin{bmatrix} 0.1252 & 0.0263 \\ 0.0263 & 0.1516 \end{bmatrix}, \ \mathbf{Y}_{6} = \begin{bmatrix} 0.1308 & 0.0422 \\ 0.0422 & 0.1730 \end{bmatrix}, \cdots$$

Markov Parameter is a matrix which has a size <u>"# of input x # of output"</u>

Eigensystem Realization Algorithm

Purpose

• Obtain the modal information matrix A, B, C and D

Methodology

- Make a Hankel matrix by Markov parameter
- Apply the Singular Vector Decomposition (SVD)
- Calculate the A, B, C and D

Eigensystem Realization Algorithm

- Hankel matrix (1)
 - The size of Hankel matrix is pm×γ r, where r is the number of inputs and m is the number of outputs. p and γ are just a integers which satisfy that condition γ r ≥ pm

$$\mathbf{H}(\mathbf{0}) = \begin{bmatrix} \mathbf{Y}_1 & \mathbf{Y}_2 & \cdots & \mathbf{Y}_{\gamma} \\ \mathbf{Y}_2 & \mathbf{Y}_3 & \cdots & \mathbf{Y}_{\gamma+1} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{Y}_p & \mathbf{Y}_{p+1} & \cdots & \mathbf{Y}_{p+\gamma-1} \end{bmatrix}$$

Eigensystem Realization Algorithm

- Hankel matrix (1)
 - Substitute the $Y_k = C_c A_d^{k-1} B_d$

$$\mathbf{H}(\mathbf{0}) = \begin{bmatrix} \mathbf{C}_{c}\mathbf{B}_{d} & \mathbf{C}_{c}\mathbf{A}_{d}\mathbf{B}_{d} & \cdots & \mathbf{C}_{c}\mathbf{A}_{d}^{\gamma-1}\mathbf{B}_{d} \\ \mathbf{C}_{c}\mathbf{A}_{d}\mathbf{B}_{d} & \mathbf{C}_{c}\mathbf{A}_{d}^{2}\mathbf{B}_{d} & \cdots & \mathbf{C}_{c}\mathbf{A}_{d}^{\gamma}\mathbf{B}_{d} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{C}_{c}\mathbf{A}_{d}^{p-1}\mathbf{B}_{d} & \mathbf{C}_{c}\mathbf{A}_{d}^{p}\mathbf{B}_{d} & \cdots & \mathbf{C}_{c}\mathbf{A}_{d}^{p+\gamma-2}\mathbf{B}_{d} \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{C}_{c} \\ \mathbf{C}_{c}\mathbf{A}_{d} \\ \mathbf{C}_{c}\mathbf{A}_{d}^{2} \\ \vdots \\ \mathbf{C}_{c}\mathbf{A}_{d}^{p-1} \end{bmatrix} \begin{bmatrix} \mathbf{B}_{d} & \mathbf{A}_{d}\mathbf{B}_{d} & \mathbf{A}_{d}^{2}\mathbf{B}_{d} & \cdots & \mathbf{A}_{d}^{\gamma-1}\mathbf{B}_{d} \end{bmatrix}$$
$$= \mathbf{P}_{p}\mathbf{Q}_{\gamma}$$

Problem: There are infinite orders to decompose H(0) as a two of matrix

Eigensystem Realization Algorithm

Singular Vector Decomposition (SVD)

- Purpose: Decompose the Hankel matrix, which is not a square matrix, with a desirable two of matrix containing eigen image
- Basic concept: If A is a real matrix (size: m x n), there exist two orthonormal matrices, eigenvector of A^TA or AA^T

 $\mathbf{A} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$

- **U** = eigenvector of **AA^T** (m x m)
- V = eigenvector of A^TA (n x n)
- Σ = square root of eigenvalue of both A^TA and A^TA

$$\Sigma = \begin{bmatrix} \Sigma_{2n} & 0 \\ 0 & 0 \end{bmatrix},$$

$$\Sigma_{2n} = \operatorname{diag} [\sigma_1, \sigma_2, \cdots, \sigma_i, \cdots, \sigma_{2n}],$$

$$\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_i \ge \cdots \ge \sigma_{2n} \ge 0.$$

Eigensystem Realization Algorithm

Singular Vector Decomposition (SVD)

$$\mathbf{H}(\mathbf{0}) \cong \mathbf{R}_{2n} \boldsymbol{\Sigma}_{2n} \mathbf{U}_{2n}^{\mathrm{T}} \\ \cong \left[\mathbf{R}_{2n} \boldsymbol{\Sigma}_{2n}^{1/2} \right] \left[\boldsymbol{\Sigma}_{2n}^{1/2} \mathbf{U}_{2n}^{\mathrm{T}} \right] \cong \mathbf{P}_{p} \mathbf{Q}_{\gamma}$$

$$\mathbf{P}_{\mathbf{p}} = \mathbf{R}_{2\mathbf{n}} \mathbf{\Sigma}_{2\mathbf{n}}^{1/2}$$
$$\mathbf{Q}_{\gamma} = \mathbf{\Sigma}_{2\mathbf{n}}^{1/2} \mathbf{U}_{2\mathbf{n}}^{\mathrm{T}}$$

- It is not a exact matrix P and Q because noise and truncation of nonzero small singular values for Σ so the approximation sign is used
- There is no mathematical supports about these formulation yet

Eigensystem Realization Algorithm

- Calculate the A_d, B_d, C_c and D_c
 - To compute A_d, we form the Hankel matrix, H(1)

$$H(1) = \begin{bmatrix} Y_2 & Y_3 & \cdots & Y_{\gamma+1} \\ Y_3 & Y_4 & \cdots & Y_{\gamma+2} \\ \vdots & \vdots & \ddots & \vdots \\ Y_{p+1} & Y_{p+2} & \cdots & Y_{p+\gamma} \end{bmatrix} = \begin{bmatrix} C_c A_d B_d & C_c A_d^2 B_d & \cdots & C_c A_d^{\gamma} B_d \\ C_c A_d^2 B_d & C_c A_d^3 B_d & \cdots & C_c A_d^{\gamma+1} B_d \\ \vdots & \vdots & \ddots & \vdots \\ C_c A_d^p B_d & C_c A_d^{p+1} B_d & \cdots & C_c A_d^{p+\gamma-1} B_d \end{bmatrix}$$
$$= P_p A_d Q_{\gamma}$$
$$= R_{2n} \Sigma_{2n}^{1/2} \hat{A}_d \Sigma_{2n}^{1/2} U_{2n}^T$$

 $\therefore \hat{\mathbf{A}}_{d} = \boldsymbol{\Sigma}_{2n}^{-1/2} \mathbf{R}_{2n}^{T} \mathbf{H}(1) \mathbf{U}_{2n} \boldsymbol{\Sigma}_{2n}^{-1/2}$ $\hat{\mathbf{B}}_{d} = \text{the first } rth \text{ columns of } \mathbf{Q}_{\gamma} (= \boldsymbol{\Sigma}_{n}^{1/2} \mathbf{U}_{n}^{T})$ $\hat{\mathbf{C}}_{c} = \text{the first } mth \text{ rows of } \mathbf{P}_{p} (= \mathbf{R}_{n} \boldsymbol{\Sigma}_{n}^{1/2})$ $\mathbf{D}_{c} = \mathbf{Y}_{0}$

Eigensystem Realization Algorithm

Example

• Hankel matrix (p = γ = 3)

H(0) =	$\begin{bmatrix} \mathbf{Y}_1 & \mathbf{Y}_2 & \mathbf{Y}_3 \\ \mathbf{Y}_2 & \mathbf{Y}_3 & \mathbf{Y}_4 \\ \mathbf{Y}_3 & \mathbf{Y}_4 & \mathbf{Y}_4 \end{bmatrix}$	$\begin{bmatrix} X_3 \\ X_4 \\ X_5 \end{bmatrix}$				
	0.0196	0.0002	0.0563	0.0018	0.0873	0.0063
	0.0002	0.0198	0.0018	0.0581	0.0063	0.0935
_	0.0563	0.0018	0.0873	0.0063	0.1106	0.0143
—	0.0018	0.0581	0.0063	0.0935	0.0143	0.1249
	0.0873	0.0063	0.1106	0.0143	0.1252	0.0263
	0.0063	0.0935	0.0143	0.1249	0.0263	0.1516

Eigensystem Realization Algorithm

Example

SVD

H(0) =	$= \mathbf{R} \boldsymbol{\Sigma} U^{\mathrm{T}} =$	[R _{2n} :	$\mathbf{R}_0] \begin{bmatrix} \boldsymbol{\Sigma}_{2n} \\ 0 \end{bmatrix}$	$\frac{0}{\Sigma_0} \bigg] [U$	_{2n} : U ₀	$\left[\right]^{\mathrm{T}}$
	0.0196	0.0002	0.0563	0.0018	0.0873	0.0063
R _{2n} =	0.0002	0.0198	0.0018	0.0581	0.0063	0.0935
	0.0563	0.0018	0.0873	0.0063	0.1106	0.0143
	0.0018	0.0581	0.0063	0.0935	0.0143	0.1249
	0.0873	0.0063	0.1106	0.0143	0.1252	0.0263
	0.0063	0.0935	0.0143	0.1249	0.0263	0.1516
$\Sigma_{2n} = 0$	diag[0.314	46 0.242	0.031	0 0.029	4 0 0]	
	-0.1890	0.3457	0.6939	0.4410	0.0492	-0.4079
U _{2n} =	-0.3057	-0.2136	-0.4289	0.7136	-0.4069	-0.0465
	-0.2936	0.4997	0.0951	0.0828	-0.0882	0.8003
	-0.4751	-0.3088	-0.0588	0.1340	0.8046	0.1003
	-0.3930	0.5953	-0.4828	-0.2739	0.0596	-0.4237
	-0.6359	-0.3679	0.2984	-0.4432	-0.4162	-0.0390

Eigensystem Realization Algorithm

Example

• H(1)

	Y ₂	Y ₃	Y ₄				
H(1) =	Y ₃	Y_4	Y ₅				
	Y_4	Y ₅	Y ₆				
	0.0	0563	0.0018	0.0873	0.0063	0.1106	0.0143
	0.0	0018	0.0581	0.0063	0.0935	0.0143	0.1249
_	0.0	0873	0.0063	0.1106	0.0143	0.1252	0.0263
_	0.0	0063	0.0935	0.0143	0.1249	0.0263	0.1516
	0.	1106	0.0143	0.1252	0.0263	0.1308	0.0422
	0.0	0143	0.1249	0.0263	0.1516	0.0422	0.1730

Eigensystem Realization Algorithm

Example

Calculate the A_d, B_d, C_c and D_c

$$\hat{\mathbf{A}}_{d} = \boldsymbol{\Sigma}_{2n}^{-1/2} \mathbf{R}_{2n}^{T} \mathbf{H}(1) \mathbf{U}_{2n} \boldsymbol{\Sigma}_{2n}^{-1/2} = \begin{bmatrix} 1.3089 & -0.0000 & 0.0000 & -0.3431 \\ 0.0000 & 1.1647 & 0.3916 & 0.0000 \\ -0.0000 & -0.3916 & 0.6831 & 0.0000 \\ 0.3431 & -0.0000 & -0.0000 & 0.6683 \end{bmatrix}$$
$$\hat{\mathbf{B}}_{d} = \text{the first } rth \text{ columns of } \mathbf{Q}_{\gamma} (= \boldsymbol{\Sigma}_{n}^{1/2} \mathbf{U}_{n}^{T}) = \begin{bmatrix} -0.1060 & -0.1715 \\ 0.1704 & -0.1053 \\ 0.1222 & -0.0755 \\ 0.0757 & 0.1225 \end{bmatrix}$$
$$\hat{\mathbf{C}}_{c} = \text{the first } mth \text{ rows of } \mathbf{P}_{p} (= \mathbf{R}_{n} \boldsymbol{\Sigma}_{n}^{1/2}) = \begin{bmatrix} -0.1060 & 0.1704 & -0.1222 & -0.0757 \\ -0.1715 & -0.1053 & 0.0755 & -0.1225 \end{bmatrix}$$
$$\mathbf{D}_{c} = \mathbf{Y}_{0} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Brief procedure of NExT-ERA

1. Calculate the auto/cross correlation function of measured response.

$$\mathbf{r}_{ij}(k\Delta t) = \frac{1}{N-k} \sum_{l=1}^{N-k} a_i(l) a_j(l+k) \quad (k=0,1,2,3,\dots,N)$$

2. Build the Hankel matrix H(0) and H(1)

$$\mathbf{H}(\mathbf{k}) = \begin{bmatrix} R_{ij}(k) & R_{ij}(k+1) & \cdots & R_{ij}(k+m-1) \\ R_{ij}(k+1) & R_{ij}(k+2) & \cdots & R_{ij}(k+m) \\ \vdots & \vdots & \ddots & \vdots \\ R_{ij}(k+n-1) & R_{ij}(k+n) & \cdots & R_{ij}(k+m+n-1) \end{bmatrix}$$

Brief procedure of NExT-ERA

3. Singular value decomposition of Hankel matrix

 $\mathbf{H}(0) = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathbf{T}}$

4. Calculate the system matrices and modal components

 $\mathbf{A} = \mathbf{\Sigma}^{-1/2} \mathbf{U}^{\mathbf{T}} \mathbf{H}(1) \mathbf{V} \mathbf{\Sigma}^{-1/2}$ $s_i = \gamma_i + j\omega_i = \ln z_i / \Delta t$ $\xi_i = -\frac{\gamma_i}{|s_i|}$

Numerical simulation

Structure & Material condition

- 2-DOF spring supported beam
- All properties are based on the paper "Damping estimation using free decays and ambient vibration tests" (2012).

$$K = \begin{bmatrix} 100 & 0 \\ 0 & 100 \end{bmatrix} (kN/m); \quad M = \begin{bmatrix} 1.25 & 0.25 \\ 0.25 & 1.25 \end{bmatrix} (ton); \quad C = \begin{bmatrix} 0.3275 & -0.0725 \\ -0.0725 & 0.3275 \end{bmatrix} (kN.s/m)$$

$$f_1 = 1.2995 \text{ Hz} \qquad \xi_1 = 1.0410 \% \qquad \phi_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad \phi_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$f_2 = 1.5915 \text{ Hz} \qquad \xi_2 = 2.0000 \%$$

▶ 100 cases of simulation!

• Mean & C.O.V of damping ratio are evaluated.

Magalhães, F., Cunha, Á., Caetano, E., & Brincker, R. (2010). Damping estimation using free decays and ambient vibration tests. *Mechanical Systems and Signal Processing*, 24(5), 1274-1290.

Parameter (1): Data length

- Effect of longer data length
 - More averaging is possible in long data under same Nfft.
 - Appropriate minimum data length: 20min??

Parameter (2): Nfft

► Length of IRF (T_{IRF})

$$T_{IRF} = \frac{Nfft \cdot dt}{2}$$

► Frequency resolution (df)

$$df = \frac{1}{dt \cdot Nfft}$$

▶ Number of averaging (n_{aver})

$$n_{aver} = \frac{2 \cdot ndata}{Nfft} - 1$$

Parameter (2): Nfft

Effect of Nfft

- Nfft ↑ = IRF length ↑, frequency resolution ↑, averaging number ↓
- Nfft ↓ = IRF length ↓, frequency resolution ↓, averaging number ↑

Parameter (2): Nfft

Effect of Nfft

- Nfft ↑ = IRF length ↑, frequency resolution ↑, averaging number ↓
- Nfft ↓ = IRF length ↓, frequency resolution ↓, averaging number ↑

► Case (1): sampling frequency 100Hz, data length 1,200s

Power of NFFT (2 ⁿ)	Length of IRF (s)	Frequency resolution (Hz)		Averaging number	
7	0.64	0.7813		937	
8	1.28	0.3906		468	
9	2.56	0.1953		234	
10	5.12	0.0977		117	
11	10.24	0.0488		58	
12	20.48	0.0244		29	
13	40.96	0.0122		14	
14	81.92	0.0061		7	
15	163.84	0.0031		3	1
16	327.68	0.0015		1	
17	655.36	0.0008		0	
18	1310.72	0.0004		0	

(2) Parameter of ERA: Size of Hankel Matrix

Hankel matrix

- Matrix composed with the IRF (Markov parameter)
- System information is extracted using SVD.

$$\mathbf{H}(\mathbf{0}) = \begin{bmatrix} \mathbf{Y}_{1} & \mathbf{Y}_{2} & \cdots & \mathbf{Y}_{\gamma} \\ \mathbf{Y}_{2} & \mathbf{Y}_{3} & \cdots & \mathbf{Y}_{\gamma+1} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{Y}_{p} & \mathbf{Y}_{p+1} & \cdots & \mathbf{Y}_{p+\gamma-1} \end{bmatrix} = \begin{bmatrix} \mathbf{C}_{c}\mathbf{B}_{d} & \mathbf{C}_{c}\mathbf{A}_{d}\mathbf{B}_{d} & \cdots & \mathbf{C}_{c}\mathbf{A}_{d}^{\gamma-1}\mathbf{B}_{d} \\ \mathbf{C}_{c}\mathbf{A}_{d}\mathbf{B}_{d} & \mathbf{C}_{c}\mathbf{A}_{d}^{2}\mathbf{B}_{d} & \cdots & \mathbf{C}_{c}\mathbf{A}_{d}^{\gamma}\mathbf{B}_{d} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{C}_{c}\mathbf{A}_{d}^{p-1}\mathbf{B}_{d} & \mathbf{C}_{c}\mathbf{A}_{d}^{p}\mathbf{B}_{d} & \cdots & \mathbf{C}_{c}\mathbf{A}_{d}^{p+\gamma-2}\mathbf{B}_{d} \end{bmatrix}$$

Size of Hankel matrix

 <u>As much number of IRF</u> from the spectral density function as possible <u>without including noisy signals</u> is required for a successful damping identification.

- Single case simulation
 - Data length: 1,200s

► Case (2): sampling frequency 100Hz, data length 6,000s

Power of NFFT (2 ⁿ)	Length of IRF (s)	Frequency resolution (I	Iz) Averaging number
7	0.64	0.7813	4687
8	1.28	0.3906	2343
9	2.56	0.1953	1171
10	5.12	0.0977	585
11	10.24	0.0488	292
12	20.48	0.0244	146
13	40.96	0.0122	73
14	81.92	0.0061	36
15	163.84	0.0031	18
16	327.68	0.0015	9
17	655.36	0.0008	4
18	1310.72	0.0004	2

- Single case simulation
 - Data length: 6,000s

Hankel matrix

- Matrix composed with the IRF (Markov parameter)
- System information is extracted using SVD.

$$\mathbf{H}(\mathbf{0}) = \begin{bmatrix} \mathbf{Y}_1 & \mathbf{Y}_2 & \cdots & \mathbf{Y}_{\gamma} \\ \mathbf{Y}_2 & \mathbf{Y}_3 & \cdots & \mathbf{Y}_{\gamma+1} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{Y}_p & \mathbf{Y}_{p+1} & \cdots & \mathbf{Y}_{p+\gamma-1} \end{bmatrix} = \begin{bmatrix} \mathbf{C}_{\mathbf{c}}\mathbf{B}_{\mathbf{d}} & \mathbf{C}_{\mathbf{c}}\mathbf{A}_{\mathbf{d}}\mathbf{B}_{\mathbf{d}} & \cdots & \mathbf{C}_{\mathbf{c}}\mathbf{A}_{\mathbf{d}}^{\gamma-1}\mathbf{B}_{\mathbf{d}} \\ \mathbf{C}_{\mathbf{c}}\mathbf{A}_{\mathbf{d}}\mathbf{B}_{\mathbf{d}} & \mathbf{C}_{\mathbf{c}}\mathbf{A}_{\mathbf{d}}^{2}\mathbf{B}_{\mathbf{d}} & \cdots & \mathbf{C}_{\mathbf{c}}\mathbf{A}_{\mathbf{d}}^{\gamma}\mathbf{B}_{\mathbf{d}} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{C}_{\mathbf{c}}\mathbf{A}_{\mathbf{d}}^{p-1}\mathbf{B}_{\mathbf{d}} & \mathbf{C}_{\mathbf{c}}\mathbf{A}_{\mathbf{d}}^{p}\mathbf{B}_{\mathbf{d}} & \cdots & \mathbf{C}_{\mathbf{c}}\mathbf{A}_{\mathbf{d}}^{p+\gamma-2}\mathbf{B}_{\mathbf{d}} \end{bmatrix}$$

• Effect of size of Hankel matrix

- Data number of utilized IRF.
- Too short? Little cycle would be included in ERA analysis
- Too long? meaningless noisy can be utilized.

▶ Data length: 3,000s / Nfft = 2¹⁴

Single case

• Data length: 3,000s / Nfft = 2^{14}

► C.O.V of 100 cases simulation

• Data length: 3,000s / Nfft = 2^{14}

► C.O.V of 100 cases simulation

• Data length: 3,000s / Nfft = 2^{14}

TIV characteristic (1): Nonstationarity

► Nonstationarity in TIV

Signal stationarization

- Amplitude modulating function (Chiang and Lin, 2008)
 - Nonstationary process can be expressed as product form

 $a(t) = \Gamma(t) \ddot{\nu}(t)$

where a(t) is the nonstationary measurement, $\Gamma(t)$ is amplitudemodulating (AM) function and w(t) is stationary process.

Amplitude-modulating

Chiang and Lin (2008). Identification of modal parameters from nonstationary ambient vibration data using correlation technique. AIAA journal, 46(11), 2752-2759.

Application to damping estimation

• Estimated damping ratio according to signal stationarization

• Proper parameter selection — Mean of p.p.s

▲ P.P.S + Stationarization Mean of stationarization

Thanks for your attention!

I welcome your questions, ideas, suggestion and comments!

KSJ (fanta909@snu.ac.kr)