Ship Stability

Ch. 12 Deterministic Damage Stability

Spring 2018

Myung-II Roh

Department of Naval Architecture and Ocean Engineering Seoul National University

sydlab

Contents

V Ch. 1 Introduction to Ship Stability
V Ch. 2 Review of Fluid Mechanics
च Ch. 3 Transverse Stability Due to Cargo Movement
Ch. 4 Initial Transverse Stability
\square Ch. 5 Initial Longitudinal Stability

- Ch. 6 Free Surface Effect
\square Ch. 7 Inclining Test
\square Ch. 8 Curves of Stability and Stability Criteria
\square Ch. 9 Numerical Integration Method in Naval Architecture
Ch. 10 Hydrostatic Values and Curves
Ch. 11 Static Equilibrium State after Flooding Due to Damage
∇ Ch. 12 Deterministic Damage Stability
V Ch. 13 Probabilistic Damage Stability

Ch. 12 Deterministic Damage Stability

1. Introduction to Deterministic Damage Stability
2. Example of Evaluation of Damage Stability

1. Introduction to Deterministic Damage Stability

Definition of Damage and Flooding

Procedures of Calculation of Deterministic Damage Stability

Step 1: Determination of international regulations to be applied according to ship type
∇ Step 2: Assumption of the according to ship length

Step 3: Assumption of the

Step 4: Assumption of the for each compartment

Step 5: Evaluation of the required damage stability of international regulations

Step 1: International Regulations for Damage Stability According to Ship Type

Ship Type	Freeboard Type	Deterministic Damage Stability				Probabilistic Damage Stability
	ICLL 1	MARPOL2	IBC 3	IGC 4		
	A 6				SOLAS	

1: International Convention on Load Lines
2: International Convention for the Prevention of Marine Pollution from Ships
4: Internationa Gas Carrier Code
5: Safety Of Life At Sea
6: Freeboard type for a ship which carries liquid cargo (e.g., Tanker). Its freeboard is smaller than that of Type B. 7: Freeboard type for a ship which carries dry cargo (e.g., Container ship, passenger ship).

Step 2 \& 3: Location and Extent of Damage in International Regulations - MARPOL, IBC, IGC

1) Type 1, Type 2, Typ
2) Type 1G, Type 2G, Type 2PG, Type 3G: Classification of gas carrier according to the danger of the loaded cargo. The ship which carries most
dangerous cargo is classified into Type $1 G$
3) The bottom raking damage is only considered in MARPOL
4) The outer shell is only damaged in the vertical direction
sydlab

[Reference] Definition of Freeboard Length $\left(L_{f}\right)$

Freeboard Length $\left(L_{f}\right)^{*}$:

(a) The length shall be taken as 96% of the total length on a waterline at 85% of the least moulded depth measured from the top of the keel $\left(L_{1}\right)$, or as the length from the fore side of the stem to the axis of the rudder stock on that waterline $\left(L_{2}\right)^{2}$, if that be greater.
(b) For ships without a rudder stock, the length (L) is to be taken as 96% of the waterline at 85% of the least molded depth.

Step 2 \& 3: Location and Extent of Damage in International Regulations - ICLL

Location of damage

Regulation		ICLL
Draft		Summer load line
Location of damage in lengthwise	Anywhere (Engine room: 1 compartment)	L $>150 \mathrm{~m}$ Ship type A: 1 compartment / B-60: 1 compartment / B-100: 2 compartments
	Anywhere (Engine room: exception)	$100 \mathrm{~m}<\mathrm{L}_{\mathrm{f}} \leq 150 \mathrm{~m}$ Ship type B-60: 1 compartment / B-100: 2 compartments

Extent of damage

Regulation			ICLL
Extent of Damage	Side Damage	Longitudinal Extent	Type A: 1 compartment
			Type B-60: 1 compartment
			Type B-100: 2 compartments
		Transverse Extent	$1 / 5$ or 11.5 m , whichever is the lesser
		Vertical Extent	No limit

Damage assumptions

(a) The vertical extent of damage in all cases is assumed to be from the base line upwards without limit.
(b) The transverse extent of damage is equal to one-fifth $(1 / 5)$ or 11.5 m , whichever is the lesser of breadth inboard from the side of the ship perpendicularly to the center line at the level of the summer load water line.
(c) No main transverse bulkhead is damaged.
sydlab

Step 4: Permeability of Compartment (1/2)

When the ship is flooding, how to calculate the actual amount of flooding water?
The compartment of the ship already contains cargo, machinery, liquids, accommodations, or any other equipment or material. To consider this characteristics, the concept of permeability is introduced.

The permeability (μ) of a space is

Permeability of each general compartment

Spaces	MARPOL	IBC	IGC
Appropriated to stores		0.60	ICLL
Occupied by accommodation		0.95	0.95
Occupied by machinery		0.85	0.95
Void spaces	0.95	0.95	
Intended for liquids	0 to 0.95^{*}	0.95	

* The permeability of partially filled compartments should be consistent with the amount of liquid carried in the compartment.

Step 4: Permeability of Compartment (2/2)

Permeability of each cargo compartment

Spaces	Permeability at draft d_{s}	Permeability at draft d_{p}	Permeability at draft d_{1}
Dry cargo spaces	0.70	0.80	0.95
Container cargo spaces	0.70	0.80	0.95
Ro-Ro spaces	0.90	0.90	0.95
Cargo liquids	0.70	0.80	0.95
Timber cargo in holds	0.35	0.70	0.95

Definitions of three draft
Light service draft (d_{1}): the service draft corresponding to the lightest anticipated loading and associated tankage, including, however, such ballast as may be necessary for stability and/or immersion. Passenger ships should include the full complement of passengers and crew on board.
Partial subdivision draft $\left(d_{p}\right)$: the light service draft plus 60% of the difference between the light service draft and the deepest subdivision draft.
Deepest subdivision draft $\left(d_{s}\right)$: the waterline which corresponds to the summer load line draft of the ship
sydlab

Step 5: Evaluation of the Required Damage Stability

Regulations	MARPOL	IBC	IGC	ICLL
Equilibrium point (angle of heel)			Below 30°	Below 15° or 17°
Maximum righting arm ($\mathrm{GZ}_{\text {max }}$)	Over 0.1 m within the 20° range			
Flooding angle (ϕ_{f})	Over 20° from the equilibrium point			
Area under the curve within this range	Over 0.0175 m.rad			

Step 5: Evaluation of the Required Damage Stability - MARPOL Regulation for Damage Stability

(a) The final waterline shall be below the lower edge of any opening through which progressive flooding may take place.
(b) The angle of heel due to unsymmetrical flooding shall not exceed 25 degrees, provided that this angle may be increased up to 30 degrees if no deck edge immersion occurs.
(c) The statical stability curve has at least a range of 20 degrees beyond the position of equilibrium in association with a maximum residual righting arm of at least 0.1 meter within the 20 degrees range
(d) The area under the curve within this range shall not be less than 0.0175 meter-radians.
sydlab

Step 5: Evaluation of the Required Damage Stability - Damage Stability Criteria in Battleship*

- Regulation
$\phi_{0}($ Initial Angle of Heel $) \leq 15^{\circ}, \mathrm{A}_{2} \geq 1.4 \cdot \mathrm{~A}_{1}$

| Righting
 arm |
| :--- | :--- | :--- |

2. Example of Evaluation of Damage Stability According to the Deterministic Method for a BoxShaped Ship

Principal Characteristics of the Box-Shaped Ship

\boxtimes Principal dimensions

- Ship type: Tanker

■ Length B.P: 100m
■ Breadth, molded: 40.0m
■ Summer draft, molded (Scantling draft): 14.5m
■ Deadweight: 50,000ton

A.P.
F.P.

Applied Rules and Loading Conditions

 ar moter $\therefore \quad \therefore \quad: \quad, \quad \% \cdot: 1$

International rules to be applied: MARPOL

Loading conditions to be calculated

- All loading conditions should be evaluated.
- Here, we will evaluated the damage stability for the homogeneous scantling draft condition only.

Hydrostatic values for the homogeneous scantling draft condition

Condition	Displacement	Draft	Trim	GoM	KGo
Homo. Scant. Draft $($ S.G. $=0.810)$	59,450	14.5	0.0	7.47	8.98

Step 1: International Regulations for Damage Stability According to Ship Type

Ship Type	Freeboard Type	Deterministic Damage Stability				Probabilistic Damage Stability
		ICLL ${ }^{1}$	MARPOL ${ }^{2}$	$1 B^{3}$	IGC ${ }^{4}$	SOLAS ${ }^{5}$
Oil Tankers	A^{6}					
	B^{7}					
Chemical Tankers	A					
Gas Carriers	B					
Bulk Carriers	B					
	B-60					
	B-100					
Container Carriers Ro-Ro Ships Passenger Ships	B					

1: International Convention on Load Lines
2: International Convention for the Prevention of Marine Pollution from Ships
4: International Gas Carrier Code
5: Safety Of Life At Sea
6: Freeboard type for a ship which carries liquid cargo (e.g., Tanker). Its freeboard is smaller than that of Type B.
7: Freeboard type for a ship which carries dry cargo (e.g., Container ship, passenger ship).

Step 2 \& 3: Location and Extent of Damage in International Regulations - Case 1: Side Damage

Assumption of Extent of Damage (Side Damage)

Step 2 \& 3: Location and Extent of Damage in International Regulations

- Case 1: Side Damage

Information on the damaged compartments of the damage case "101"

	Permeability	Volume	XG (From AP)	YG (From Centerline)	ZG (From Baseline)
No. 1 C.O.T(S)	0.95	$3,373.0$	90.0	8.0	14.5
No. 1 W.B.T(S)	0.95	$2,388.0$	90.0	13.0	5.0

Step 5: Evaluation of the Required Damage Stability - Case 1: Side Damage

Evaluation results for the damage case "101" according to MARPOL			
Regulations	Requirements	Calculation results	Satisfaction
Equilibrium point	Below 25° or 30°	1.878°	0
Maximum righting $\operatorname{arm}\left(\mathrm{GZ}_{\text {max }}\right)$	Over 0.1 m within the 20° range	2.652 m	0
Flooding angle $\left(\phi_{f}\right)$	Over 20° from the equilibrium point	24.475°	0
Area under the curve within this range	Over $0.0175 \mathrm{~m} . \mathrm{rad}$	0.446 mrad	0

Step 2 \& 3: Location and Extent of Damage in International Regulations - Case 2: Bottom Damage

Assumption of Extent of Damage (Bottom Damage)

Step 2 \& 3: Location and Extent of Damage in International Regulations - Case 2: Bottom Damage

Step 2 \& 3: Location and Extent of Damage in International Regulations - Case 2: Bottom Damage

<Section view>		 Extent o		m		
Damage Case	No. 1 W.B.T(S)	No. 1 W.B.T(P)	No. 2 W.B.T(S)	No. 2 W.B.T(P)	No. 3 W.B.T(S)	No. 3 W.B.T(P)
201	Damaged	Damaged				
202			Damaged	Damaged		
203					Damaged	Damaged
204	Damaged	Damaged	Damaged	Damaged		
205			Damaged	Damaged	Damaged	Damaged
206	Damaged					
207			Damaged			
208					Damaged	
209	Damaged		Damaged			
210			Damaged		Damaged	
301 (bottom raking damage)	Damaged	Damaged	Damaged	Damaged		
302 (bottom raking damage)	Damaged		Damaged			

