Engineering Economic Analysis

2019 SPRING

Prof. D. J. LEE, SNU

Chap. 22 COST CURVES

- Total cost function can be derived from the cost min. problem: $c(w_1, ..., w_n, y)$
- Various costs can be defined based on the total cost function
 - variable cost, fixed cost,
 - average cost, marginal cost,
 - long-run cost, short-run cost

- Let x_f : vector of fixed inputs, x_v : vector of variable factors $w = (w_v, w_f)$
- Short-run cost function $c(w, y, x_f) = w_v \cdot x_v(w, y, x_f) + w_f \cdot x_f$
 - Short-run average cost (SAC): $\frac{c(w, y, x_f)}{y}$
 - Short-run average variable cost (SAVC): $\frac{w_v \cdot x_v(w, y, x_f)}{v}$
 - Short-run average fixed cost (SAFC): $\frac{w_f \cdot x_f}{v}$

• Short-run marginal cost (SMC):
$$\frac{\partial c(w, y, w_f)}{\partial y}$$

- Long-run cost function $c(w, y) = w_v \cdot x_v(w, y) + w_f \cdot x_f(w, y)$ There is no fixed input
 Long-run average cost (LAC): $\frac{c(w, y)}{y}$ Long-run marginal cost (LMC): $\frac{\partial c(w, y)}{\partial y}$
 - Note that 'long-run average cost' equals 'long-run average variable cost' and 'long-run fixed costs' are zero'

- Example: Short-run Cobb-Douglas cost function
 - In a short-run, $x_2 = k$

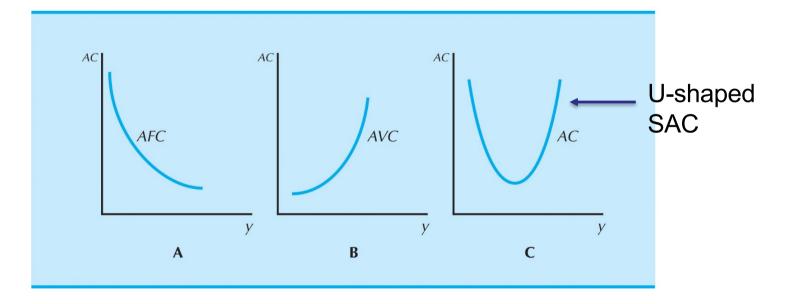
 - SR Cost function: $c(w, y, k) = w_1 k^{\frac{a-1}{a}} \cdot y^{\frac{1}{a}} + w_2 k$

$$SAC = w_1 \left(\frac{y}{k}\right)^{\frac{1-a}{a}} + \frac{w_2 k}{y}$$
$$SAVC = w_1 \left(\frac{y}{k}\right)^{\frac{1-a}{a}}$$
$$SAFC = \frac{w_2 k}{y}$$
$$SMC = \frac{1}{a} w_1 \left(\frac{y}{k}\right)^{\frac{1-a}{a}}$$

- Total cost function can be derived from the cost min. problem: $c(w_1, ..., w_n, y)$
- Assume that the factor prices to be fixed, then
 c(y).
- Total cost, c(y), is assumed to be monotonic in y.
- Various cost curves: Average cost curve, Marginal cost curve, LR cost curve, SR cost curve etc.
- How are these cost curves related to each other?

- SR Average cost
 - SR total cost = VC + FC: $c(y) = c_v(y) + F$
 - SAC = SAVC + SAFC

$$\frac{c(y)}{y} = \frac{c_v(y)}{y} + \frac{F}{y} = \frac{w_v \cdot x_v(w, y, x_f)}{y} + \frac{w_f \cdot x_f}{y}$$



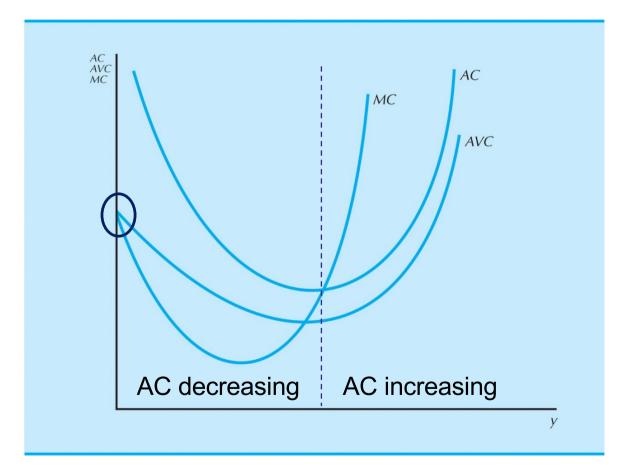
Marginal cost vs. Average cost

$$\frac{dAC(y)}{dy} = \frac{d}{dy} \left(\frac{c(y)}{y} \right) = \frac{c'(y)y - c(y)}{y^2}$$
$$= \frac{1}{y} \left(c'(y) - \frac{c(y)}{y} \right) = \frac{1}{y} \left(MC(y) - AC(y) \right)$$

- Thus, AC is increasing $(AC'(y) > 0) \Leftrightarrow MC(y) > AC(y)$ AC is decreasing $(AC'(y) < 0) \Leftrightarrow MC(y) < AC(y)$ AC is minimum $(AC'(y) = 0) \Leftrightarrow MC(y) = AC(y)$
- MC for the first small unit of amount equals AVC for a single unit of output

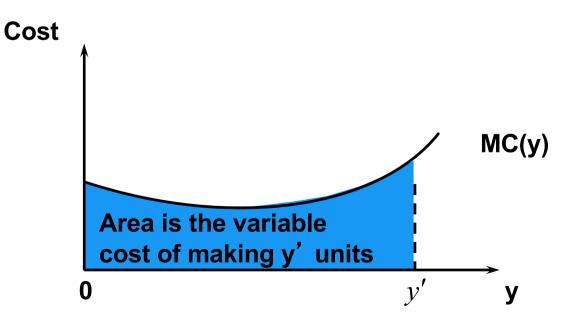
$$MC(1) = \frac{TC(1) - TC(0)}{1} = \frac{c_v(1) + F - c_v(0) - F}{1} = \frac{c_v(1)}{1} = AVC(1)$$

Marginal cost vs. Average cost



- Marginal cost vs. Variable cost
 - Since

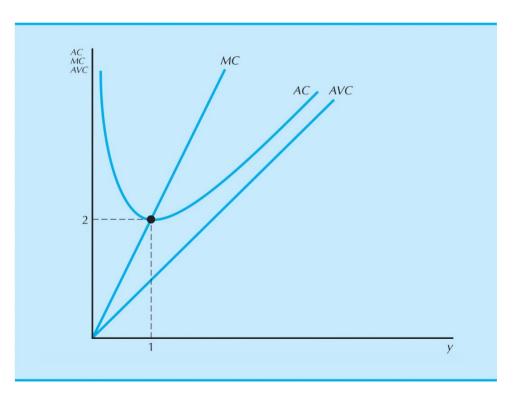
• The area beneath the MC curve up to *y* gives us the variable cost of producing *y* units of output



Example

- SR total cost function: $c(y) = y^2 + 1$
- Variable cost: $c_v(y) = y^2$
- Fixed cost: $c_f(y) = 1$

 $AVC(y) = y^{2} / y = y$ AFC(y) = 1 / yAC(y) = y + 1 / yMC(y) = 2y



Example: C-D Technology

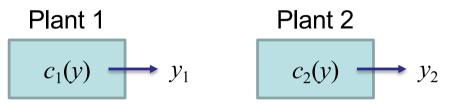
• Recall that
$$c(w_1, w_2, y) = A^{\frac{-1}{a+b}} \left[\left(\frac{a}{b}\right)^{\frac{b}{a+b}} + \left(\frac{a}{b}\right)^{\frac{-a}{a+b}} \right] w_1^{\frac{a}{a+b}} w_2^{\frac{b}{a+b}} y^{\frac{1}{a+b}}$$

• For a fixed W_1 , W_2 , $c(y) = Ky^{\frac{1}{a+b}}$, $a+b \le 1$

$$AC(y) = Ky^{\frac{1-a-b}{a+b}}$$
$$MC(y) = \frac{K}{a+b}y^{\frac{1-a-b}{a+b}}$$

• In the short-run, recall that $c(w, y, k) = w_1 k^{\frac{a-1}{a}} \cdot y^{\frac{1}{a}} + w_2 k$ $c(y) = K y^{\frac{1}{a}} + F$ $AC(y) = K y^{\frac{1-a}{a}} + \frac{F}{y}$

Example: MC curves for two plant



• How much should you produce in each plant?

 $\begin{array}{c} \min_{\{y_1, y_2\}} c_1(y_1) + c_2(y_2) & y_2 = \overline{y} - y_1 \\ s.t. & y_1 + y_2 = \overline{y} & & & \\ \hline \frac{\partial c}{\partial y_1} = \frac{dc_1(y_1)}{dy_1} + \frac{dc_2(y_2)}{dy_2} \frac{dy_2}{dy_1} = 0 \quad \text{and} \quad \frac{dy_2}{dy_1} = -1 \end{array}$

• Therefore, the optimality condition is $MC_1(y_1^*) = MC_2(y_2^*)$

- In the long run, all inputs are variable
 - LR problem: Planning the type and scale investment
 - SR problem: Optimal operation
- Given a fixed factor: Plant size k
 - SR cost function: $c_s(y,k)$
 - In LR, let the optimal plant size to produce *y* be *k*(*y*)

Firm's conditional factor demand for plant size!

• Then LR cost function is

 $c(y) = c_s(y, k(y))$ How this looks graphically?

• For some given level of output *y**

$$\Rightarrow k^* = k(y^*): \text{ optimal plant size for } y^*$$

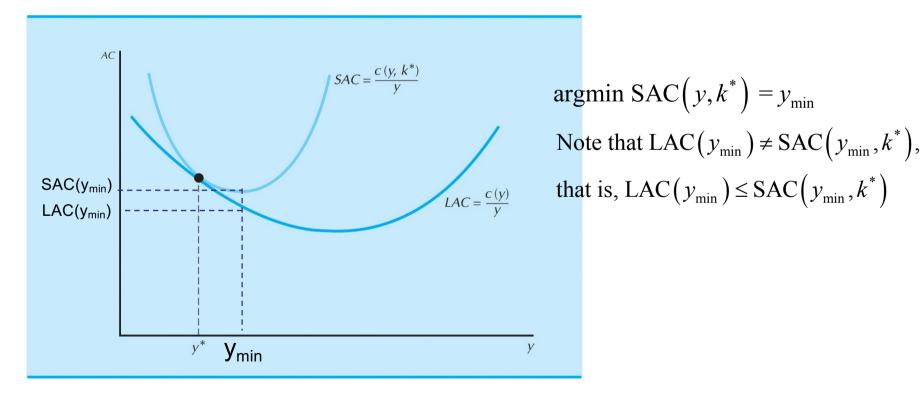
$$\Rightarrow c_s(y,k^*): \text{SR cost function for a given } k^*$$

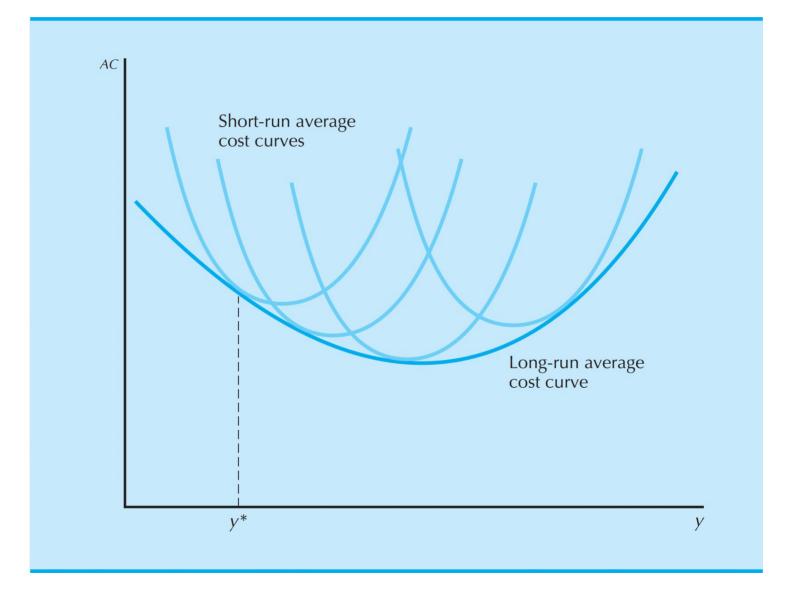
$$\Rightarrow c_s(y,k(y)): \text{LR cost function}$$

• Since SR cost min problem is just a constrained version of the LR cost min problem, SR cost curve must be at least as large as the LR cost curve for all *y*

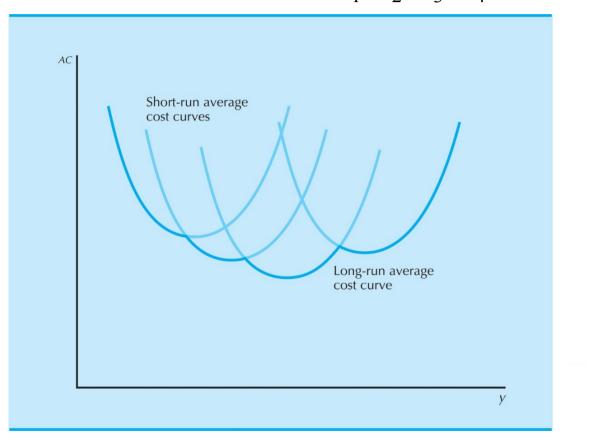
$$c(y) \le c_s(y, k^*) \text{ for all level of } y$$
$$c(y^*) = c_s(y^*, k^*) \text{ when } k^* = k(y^*)$$

- Also $LAC(y) \le SAC(y, k^*)$ for all level of y $LAC(y^*) = SAC(y^*, k^*)$ when $k^* = k(y^*)$
- Hence SR and LR cost curves must be tangent at *y**





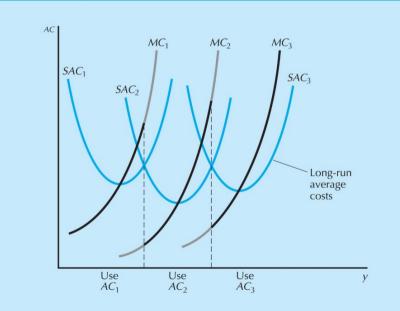
• Discrete levels of plant size: k_1, k_2, k_3, k_4



• LR average cost curve is the lower-envelop of SR average cost curves

• LR marginal cost

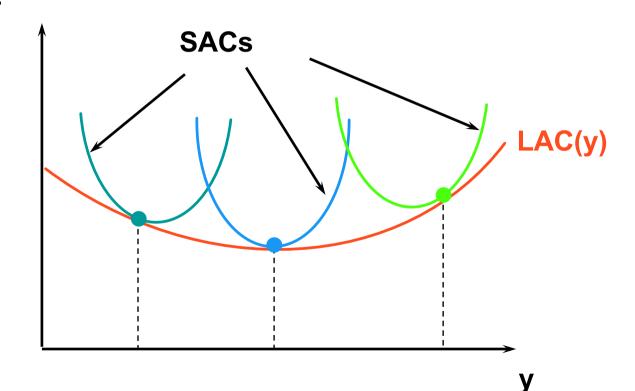
- When there are discrete levels of the fixed factor, the firm will choose the amount of the fixed factor to minimize costs.
- Thus the LRMC curve will consist of the various segments of the SRMC curves associated with each different level of the fixed factor.



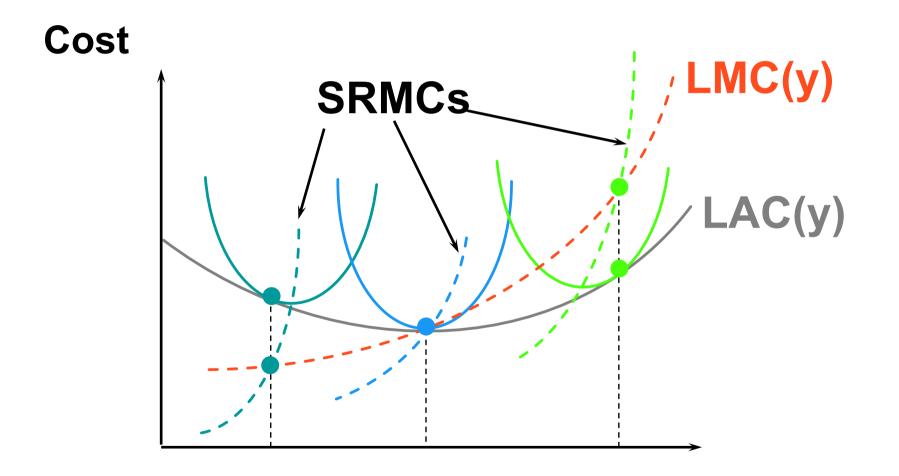
LR marginal cost

• This has to hold no matter how many different plant sizes there are !

Cost



Short-Run & Long-Run Marginal Cost Curves



LR marginal cost

• LR cost function

 $c(y) \equiv c_s(y, k(y))$

• Differentiating LR cost function w.r.t. y

$$\frac{dc(y)}{dy} = \frac{\partial c_s(y,k)}{\partial y} + \frac{\partial c_s(y,k)}{\partial k} \frac{\partial k(y)}{\partial y}$$

• Since *k** is the optimal at *y*=*y**,

$$\frac{\partial c_s(y^*, k^*)}{\partial k} = 0 \qquad \oint \qquad \frac{dc(y^*)}{dy} = \frac{\partial c_s(y^*, k^*)}{\partial y}$$

• Thus LRMC at y^* equals to SR marginal cost at (k^*, y^*)